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In this research, the buckling and bending behaviour of smart nanocomposite plate reinforced by 

single- walled carbon nanotubes (SWCNTs) under electro-magneto-mechanical loadings is stud-

ied. The extended mixture rule approach is used to determine the elastic properties of nanocom-

posite plate. Equilibrium equations of smart nanocomposite plate are derived using the Hamil-

ton’s principle based on the classical plate theory (CPT). The nonlocal critical biaxial buckling 

load and the nonlocal deflection of smart nanocomposite plate are obtained by applying the Er-

ingen’s theory and Navier’s method. In this article, the influences of applied voltage, magnetic 

field, aspect ratios, nonlocal parameter, and elastic foundation coefficients on the critical buckling 

load and deflection of smart nanocomposite plate are investigated. The nonlocal critical biaxial 

buckling load of smart nanocomposite plate increases with the increase in applied voltage and 

magnetic field intensity. The nonlocal deflection of smart nanocomposite plate decreases with an 

increase in the magnetic field intensity. Also, the stability of smart nanocomposite plate increases 

in the presence of elastic foundation. 

 

Keyw ord s:  

Biaxial buckling and bending  

Smart nanocomposite plate          

Electro-magneto-mechanical 

loadings 

The extended mixture rule ap-

proach 

Classical plate theory  

 © 2014 Published by Semnan University Press. All rights reserved. 

 

1. Introduction 

Today, nano-materials due to their unique prop-
erties have many applications in various fields. One 
of the applications of these materials is the rein-
forcement of polymer composite materials which is 
improved mechanical, electrical, and thermal prop-
erties of composites. The excellent properties of 
carbon nanotubes (CNTs) have attracted the atten-
tion of many researchers. Firstly, Fukuda and Kawa-
ta studied Young's modulus of the composite mate-
rials [1]. Also, molecular dynamics approach is used 
to define the mechanical properties of these compo-
sites by researchers [2-5]. Their results showed that 
the long nanotubes are the best reinforcement for 

composite materials. Zhu et al. [6] investigated 
stress and strain behaviours of composite materials 
reinforced by CNT. Li et al. [7] studied polymer 
composites. They estimated the elastic properties of 
composite materials based on micromechanical, 
Halpin-Tsai and Mori-Tanaka approaches. Their 
results indicated that random and irregular distri-
butions of CNTs have the same effect on the me-
chanical properties of composites [7]. Joshi and 
Upadhyay [8] obtained the elastic properties of mul-
ti-walled carbon nanotubes (MWCNTs) as rein-
forcement in composite materials. They concluded 
that the elastic modulus of the composite in tension 
is higher than that of in compression. Vodenitcha-
rova and Zhang [10] illustrated the bending and 
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buckling of nanocomposites beam reinforced by 
single-walled carbon nanotube (SWCNTs) using Airy 
stress function. 

Buckling of nanocomposite plate reinforced by 
CNTs subjected to uniaxial compressive and thermal 
loadings is extended by Shen [11]. Properties of 
nanocomposite plate are obtained by using the ex-
tended mixture rule. He showed that the use of a 
linear functionally graded carbon nanotubes (FG 
CNTs) as reinforcement in nanocomposites increas-
es the critical buckling load. 

 Shaat  et al. [12] presented size-dependent 
bending, buckling, and vibration analysis of Kirch-
hoff nano-plates based on a modified couple-stress 
theory or surface stress effects. They derived an 
analytical solution of the static bending for modified 
couple-stress theory. Nonlinear bending behavior of 
the orthotropic single layered graphene sheet 
(SLGS) is investigated by Golmalani and Rezataleb 
[13]. They developed finite difference method 
(FDM) and dynamic relaxation method (DRM). Ma-
lekzade and Shojaee [14] studied the buckling anal-
ysis of quadrilateral laminated plates reinforced by 
CNT. They investigated the effects of CNTs volume 
fraction, thickness-to-length ratio, different kinds of 
CNTs distribution and boundary conditions on the 
critical buckling load of the laminated plates. Mo-
hammadimehr et al. [15] described the size depend-
ent effect on the buckling and vibration analysis of 
double bonded nanocomposite piezoelectric plate 
reinforced by BNNT based on modified couple stress 
theory. They considered the effects of material 
length scale parameter, elastic foundation coeffi-
cients, aspect ratio (a/b), length to thickness ratio 
(a/h), transverse and longitudinal wave numbers on 
the dimensionless natural frequency. In another 
research, they [16] investigated the effect of surface 
stress on the nonlocal biaxial buckling and bending 
analysis of polymeric piezoelectric nanoplate rein-
forced by CNT using Eshelby-Mori-Tanaka ap-
proach. They concluded that the effect of surface 
stress on the surface biaxial critical buckling load to 
the non-surface biaxial critical buckling load ratio 
can’t be neglected. Ghorbanpour Aran et al. demon-
strated that the nonlocal buckling load of graphene 
orthotropic plate increases with the increase in the 
applied voltage [17]. Murmu and Pradhan [18] con-
cluded that the difference between the critical buck-
ling load of isotropic and orthotropic plate is high in 
the small amounts of the nonlocal parameter. Zhu et 
al. [19] extended finite element method for bending 
and free vibration of composite plate reinforced by 
CNTs. They used extended mixture rule to estimate 
the properties of the composite plate. Lei et al. [20] 
developed meshless method for analyzing the buck-
ling behavior of composite plate reinforced by CNTs 
based on first order shear deformation theory 
(FSDT). The extended mixture rule approach is used 
in their research. Jafari Mehrabadi et al. [21] pre-

sented biaxial buckling of nanocomposite plate rein-
forced by CNTs based on FSDT. They concluded that 
the critical biaxial buckling load ratio increases with 
increasing of thickness to width ratio and volume 
fraction of CNTs. The small scale effect on the behav-
ior of graphene plate subjected to hygro-thermo-
mechanical loadings are studied by Alzahrani et al. 
[22]. They found that deflection of graphene sheets 
increases with an increase in humidity and heat. 
Alibeigloo [23] studied the bending of composites 
plate reinforced by functionally graded CNTs em-
bedded in piezoelectric layers using three-
dimensional elasticity theory. He concluded that the 
deflection of composite plate decreases with an in-
crease in volume fraction of CNTs. Mohammadimehr 
and Rahmati [24] studied the electro-thermo-
mechanical loading effect on vibration and axial dis-
placement of single walled boron nitride nanorod. 
They showed that the axial displacement increases 
with the increase of temperature change and vice 
versa with the decrease of dielectric constant. 

In this research, the buckling and bending of 
smart nanocomposite plate reinforced by SWCNTs 
is presented based on CPT. The extended mixture 
rule approach is used to estimate the mechanical 
properties of nanocomposite plate. Matrix and fiber 
of smart nanocomposite plate are made of polyvi-
nylidene fluoride (PVDF) and CNT, respectively.  

2. The Extended Mixture Rule Approach 
for Smart Nanocomposite Plate 

Figure 1 shows a schematic of smart nanocom-
posite plate reinforced by SWCNTs. In this figure, 
matrix and fiber of smart nanocomposite plate are 
made of PVDF and CNT, respectively. It is noted that 
PVDF has the piezoelectric property. This means 
that PVDF produces electrical displacement when 
subjected to mechanical loading and vice versa. As it 
can be seen in figure 1, the smart nanocomposite 
plate is surrounded by elastic foundation. 

In the extended mixture rule approach for nano-
composite reinforced by SWCNTs, the longitudinal 
elastic modulus (  ), the transverse elastic modulus 

 

Figure 1. A schematic of smart nanocomposite plate reinforced by 

SWCNTs resting on elastic foundation 
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(  ) and the shear modulus (   ) are obtained with 
the following equations [15, 21]: 

(1) 1 1 1
E E V E V

m mf f
  

(2) 2

2 2

V Vf m
E E Ef m


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(3) 3

12

V Vf m
G G Gf m


  

In the above equations    ,     ,   ,    and    
are the longitudinal elastic modulus of SWCNTs, the 
transverse elastic modulus of SWCNTs,  elastic 
modulus of matrix, volume fraction of SWCNTs and 
volume fraction of matrix, respectively.   and    are 

shear moduli of SWCNTs and matrix, respectively.    

1 ,    and    are the size dependent effect and usu-
ally vary from 0.7 to 1[21]. 

3. The Equations of Equilibrium for Smart 
Nanocomposite Plate 

In smart material, the constitutive equations 
could be stated as follows: 
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(5) 

where
ij , 

ij , Di  and 
i

E  denote the stress, strain, 
electric displacement components and electric field, 
respectively. 

ijc , 
ije  and ii are the stiffness, piezoe-

lectric and dielectric constants, respectively. 
Electric field as a function of electric potential ( ) 

can be expressed as: 

(6) ,i iE  
 

The electric potential function should be satis-
fied Maxwell equation thus it is assumed as follow-
ing equation [16]: 

(7) 
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where    is applied voltage and   is the natural 
frequency of nanocomposites.  

Assuming displacements of mid plane are equal 
to zero. Then displacement field for the nanocompo-
site CPT is displayed as follows [24]: 
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where u , v  and w  are displacement of nanocom-

posite CPT in x, y and z directions, respectively. 

Strain-displacement relationships using the non-
linear kinematic equations of von Karman can be 
written as follows: 
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To derive the equations of equilibrium, firstly, 
the energy method and Hamilton principle and then 
substituted stress and dielectric relations are used 
in it, then using variational method, the basic equa-
tions of the nanocomposite plate are derived. 

The variation form of Hamilton's principle can be 
expressed as follows: 

(10) 0
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Where      
 

and U are the variations of the ex-

ternal work and strain energy, respectively.  
Variation of strain energy can be written as fol-

lows: 
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where N ij  and M ij  are stress resultant forces and 
moments, respectively, which can be expressed as: 
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(13) 

Also the critical buckling forces are defined as fol-

lows: 
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To calculate variation of the external work done by 
the magnetic field for smart nanocomposite plate, at 
first, using Maxwell's equations, the Lorentz force 
due to the magnetic field is obtained as follows [16, 
21, 25]: 

(15) 
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In the above equations, U , H , J  ,  and    are 
displacement vector, magnetic field vector, electric 
current density, magnetic permeability and Lorentz 
force, respectively. If the magnetic field is only ap-
plied in z direction (along thickness of nanocompo-
siote plate), Lorentz force is obtained as follows: 
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Variations of the work done by Lorentz force can 
be expressed as: 

(17)  lf
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By substituting Eqs. (8) and (16) into Eq. (17), 
variations of work done by the magnetic field along 
the z direction is obtained as follows: 
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Variations of the work done by the elastic foun-
dation can be written as: 

(19) 
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where wk  and gk denote the elastic foundation coef-
ficients. Also q  is the transverse load. 

Using Eqs. (12), (13), (14), (18) and (19) and 
separating the variables, equilibrium equations of 
smart nanocomposite plate can be stated as: 
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In classical or local theory of continuum mechan-

ics, the stress at a point is only proportional to the 
strain at that point. This theory is valid in large 
scale. In small scale, the stress at a reference point x 
is a function of the strain at all the other points of 
the body. This phenomenon is known as small-scale 
effect which is cleared in constitutive equations by 
the parameter e0a and its theory is identified as 
small-scale or non-local theory. For a structure in 
the nanoscale, it is not reasonable to ignore the 
small-scale effect (e0a). By ignoring this term (e0a = 
0), the non-local theory reduces to local or classical 
theory which has no desired accuracy for the analy-
sis of CNTs. The constitutive equations of non-local 
theory for polymeric piezoelectric nanocomposite 
plate should be written [26, 27]. 

Appling the nonlocal theory of Eringen 

 2 2 2 2 2

0(1 ( ) / / ) nonlocal locale a x y        ), the equi-
librium  equations of smart nanocomposite plate  
can be expressed as: 
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The essential and natural boundary conditions for 
the smart nanocomposite plate reinforced by CNTs 
are considered as follows: 

a) essential boundary conditions 

(21b) 
0 at x=0,a
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b) natural boundary conditions 
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4. The Navier’s Type Solution to Obtain 
the Critical Biaxial Buckling Load and De-
flection of Smart Nanocomposite Plate 

Assuming the simple supported boundary condi-
tions in all edges of nanocomposite plate reinforced 
by SWCNTs, the Navier’s type solution is considered 
as follows: 

(22) 
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Substituting Eq. (22) into Eq. (21), the following 
equations in matrix form are obtained: 
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The 11c , 12c , 22c , and 66c  coefficients for com-

posite materials are defined as follows: 
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The extended mixture rule approach for nano-
composite plate reinforced by SWCNTs (Eqs. (1) to 
(3) plays an important role in obtainning the non-
local critical biaxial buckling load (Eq. 25) or non-
local deflection(Eq. 26).  

By substituting Eqs. (1) to (3) into Eqs. (24b), we 
have the elastic coefficients in micromechanics scale 
that this point is the difference between microme-
chanics scale and macromechanics of composite 
plate. 

By substituting 0q   in Eq. (23) and if the de-
terminant of coefficient of Eq. (23) set to zero, the 
critical nonlocal biaxial buckling load of smart nano-
composite plate reinforced by SWCNTs is obtained 
as follows: 

(25) 
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Also by removing the critical buckling forces in 
Eq. (23), the nonlocal deflection of smart nanocom-
posite plate reinforced by SWCNTs can be written as 
follows: 

1( / )
mn

mn

q
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p q r s



 

(26) 

5. Results and Discussion 

Material properties and geometrical dimensions 
of smart nanocomposite plate reinforced by CNT 
which used in this research are listed in Table (1) 
[15, 16, 17]. Table (2) shows the analytical and finite 
element results for critical uniaxial buckling load for 
various volume fractions of SWCNTs. As it can be 

observed in this table, the analytical results which 
are estimated by the extended mixture rule ap-
proach have relatively good agreement with the re-
sults obtained by Ghorbanpour et al. [29]. The rea-
son of these results is experimental constants of the 
extended mixture rule approach.  

Figure 2 illustrates the ratio of the nonlocal criti-
cal biaxial buckling load to local critical biaxial buck-
ling load of smart nanocomposite plate reinforced 
by SWCNTs ( ) versus the nonlocal parameter 
( 0e a  ) for different elastic foundation parameters. 
As it can be seen,  decreases with an increase in

0e a . This is due to the interaction between atoms. The 

Stability of smart nanocomposite plate increases by the 

presence of elastic foundation thus   increases in the 

presence of elastic foundation. Also the effect of Win-

kler constant on   is higher than Pasternak constant 

on it. As the nanocomposite plate rested on elastic 
foundation, the rigidity of it and then the critical 
buckling load increases. This point increases the 
stability of nanocomposite plate reinforced by CNTs.  

Effects of the nonlocal parameter on  for differ-

ent applied voltage and magnetic field are depicted in 

figures 3 and 4, respectively. As it can be seen,   
increases with the increase of applied voltage and 
magnetic field. It is noted that the stability of systems 

increases with their increase.  

Moreover, by applying electrical loading to the pie-

zoelectric nanocomposite plate, its polarization occurs 

in the directions which assist to compression resistance 

of the nanocomposite plate. Hence the piezoelectric 

matrix enhances the nonlocal critical biaxial buckling 

load. Due to magnetic property of SWCNTs, the in-

Table 1. Material properties and geometric dimensions of 

smart nanocomposite plate [15, 16, 17] 

Dimension of 
matrix and fiber 
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Properties of 

fiber 

h=1nm; 
 

 
a=9.26nm 
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crease of magnetic field leads to the improvement of 

the nanocomposite plate and tolerates compression 

loadings.  

Figure 5 depicts the nonlocal deflection to local 
deflection of smart nanocomposite plate rienforced 
by SWCNTs (  ) for various /a b  and the nonlocal 
parameter. As it can be seen   decreases by in-
creasing /a b . In the higher values of /a b , the 
nanocomposite plate converts to nanobeam, as it 

can be expected, and the flexibility of nanocompo-
site plate is higher than that of nano composite 
beam.  
The nonlocal to local deflection ratio of smart nano-
composite plate reinforced by SWCNTs (  ) versus 
the nonlocal parameter for various applied voltage 
is illustrated in figure 6.   decreases with the in-
crease of positive applied voltage and vice versa 
with the increase  of negative applied voltage. This 
phenomenon is due to the polarization of smart 
nanocomposite plate. 

Figure 7 shows   versus the nonlocal parameter 
for different elastic foundation parameters. It is 
shown that   decreases in the presence of elastic 
foundation. 

 

Also elastic foundation effects on   in high values 

of the nonlocal parameter are considerable. 

As elastic foundation effects on buckling behav-
iour, the nonlocal deflection diminishes drastically 
in elastic foundation.   

 
Figure 3.  Effect of applied voltage on the nonlocal critical biaxial 
buckling load to critical local biaxial buckling load ratio of smart 

nanocomposite plate rienforced by SWCNTs 

 
Figure 4.  Effect of magnetic field on the nonlocal critical biaxial 
buckling load to critical local biaxial buckling load ratio of smart 

nanocomposite plate rienforced by SWCNTs 

 
Figure 5.  Effect of the nonlocal parameter on the nonlocal deflection 

to local deflection of smart nanocomposite plate rienforced by 

SWCNTs for various /a b  
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Table 2. Analytical results of the uniaxial local critical buckling 

loads of composite plate reinforced by SWCNTs (a=b=25e -3 m, 

h=1.5e -3 m, E = 1.9 e9 GPa and 0.3  ) 

( )Analytical

crN kN [29] ( )crN kN
 

SWCNTs volume frac-

tion 

54.13 55.57 0.01 

201.95 208.64 0.05 

397.268 400.23 0.1 

 
Figure 2. Ratio of the nonlocal critical biaxial buckling load to 

critical local biaxial buckling load (  )of smart nanocomposite 

plates rienforced by SWCNTs versus the nonlocal parameter for 
different elastic foundation parameters. 
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Figure 6.  Effect of applied voltage on  of smart nanocomposite plate 

rienforced by SWCNTs for various nonlocal parameter 

 
Figure 7.  Effect of elastic foundation on  of smart nanocomposite 

plate rienforced by SWCNTs for various nonlocal parameter  

Figure 8 demonstrates the effect of magnetic field on 
the nonlocal deflection to local deflection ratio of smart 
nanocomposite plate reinforced by SWCNTs for different 
values of the nonlocal parameter. It is obvious that   de-
creases with the increase  of magnetic field. This is due to 
the production of compressive load due to magnetic field 
hence   decreases. Applying magnetic field could be an 
effective method for reducing nonlocal deflection. 

6. Conclusion 

 
In this research, the buckling and bending of smart 

nanocomposite plate reinforced by SWCNTs under elec-
tro-magneto-mechanical loadings based on CPT was in-
vestigated. Matrix of nanocomposite is made of PVDF 
which is a smart material. The extended mixture rule ap-
proach is used to define the elastic properties of nano-
composite plate. Following results are obtained in this 
research: 

 The nonlocal critical biaxial buckling load to local 
critical biaxial buckling load ratio of smart nano-
composite plate reinforced by SWCNTs increases 
in the presence of the elastic foundation, applied 

voltage, and magnetic field.  
 The nonlocal critical biaxial buckling load to local 

critical biaxial buckling load ratio of smart nano-
composite plate reinforced by SWCNTs decreases 
with the increase in the nonlocal parameter. 

 The nonlocal deflection to local deflection ratio of 
smart nanocomposite plate reinforced by SWCNTs 
decreases with the nonlocal parameter and length 
to width ratio ( /a b  ). 

 The nonlocal deflection to local deflection ratio 
decreases with an increase in the positive applied 
voltage and vice versa with the increase in nega-
tive applied voltage.  

 The nonlocal deflection to local deflection ratio de-
creases in the presence of the elastic foundation 
and magnetic field. 

 
Figure 8.  Effect of magnetic field on  of smart nanocomposite plate 

rienforced by SWCNTs for various nonlocal parameter 
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