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In this paper free vibration analysis of two rectangular isotropic plates, which are connected to 

each other by two translational and rotational springs along the edges, are investigated. The 

equation of motion and associated boundary and continuity conditions are derived using the 

extended Hamilton principle. To solve the eigenvalue problem, the Ritz method is utilized. Nu-

merical investigations are presented to show some applications of this method. In this research 

two types of problems are investigated: first, vibration of a continuous plate and second, free 

vibration of two hinged plates. This approach is usually referred to as the artificial spring method, 

which can be regarded as a variant of the classical penalty method. In order to validate the re-

sults, the achieved results are compared to results which are presented in literatures. 

 

Keyw ord s:  

Vibration analysis 
Composite plates 

Artificial spring 

Trigonometric Ritz method 

 © 2014 Published by Semnan University Press. All rights reserved. 

 

1. Introduction    

The plate is one of the most common structural 
elements that are encountered by either scientific or 
technological interest. It’s widely utilized in aero-
space, marine, mechanical, electrical, nuclear and 
civil engineering structures. The vibration analysis 
of plates is one amongst the most important issues 
in coming up with this sort of structure. Vibration 
characteristics of plates were extensively studied by 
other researchers. Plates with completely different 
shapes, boundary conditions and complicating ef-
fects were thought of and also the frequency param-
eters were investigated in some monographs [1, 2], 
normal texts [3-5] and review papers [6, 7]. 

In engineering applications, plates with various 
complications were investigated. These effects in-
clude elastically restrained boundaries, presence of 

elastically or rigidly connected masses, point sup-
ports, variable thickness, anisotropic material, stiff-
eners[8, 9], interior openings[10] and line hinged 
[11-13], that are used to serve different purposes 
required in a structure. In Refs. [13-15] general 
studies on the vibration of plates with point sup-
ports have been deliberated and the vibration of 
plates with line supports have been studied in Refs. 
[13-19]. For instance, a line hinge in a plate can be 
used to expedite folding of gates, or the opening of 
doors and hatches [20]. The hinge can also be used 
to simulate a through crack prior to the edge misa-
lignment. 
Due to its conceptual simplicity, wide flexibility, 
high reliability and computational efficiency, the 
Ritz technique has been widely utilized to resolve 
the vibration problem of rectangular plates. The Ritz 
procedure consists in approximating the normal 
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displacement variable through a linear combination 
of generally assumed functions, commonly known 
as admissible functions, trial functions or basis func-
tions, each satisfying at least the geometrical 
boundary conditions of the plate. The unknown con-
stant factors of the combination can be obtained by 
the minimization of the energy functions of the sys-
tem. Convergence to the exact solution is assured if 
the admissible functions are linearly independent 
and form a mathematically complete set. The chosen 
functions are not required to satisfy the natural 
boundary conditions, although, if they do, better 
convergence and accuracy might be achieved. More-
over, the properties of trial functions have a signifi-
cant effect on computational efficiency and numeri-
cal stability of the solution [21]. The rather weak 
conditions imposed by the Ritz method and the 
great sensitivity of the related solution to the choice 
of admissible functions have prompted many re-
searchers in evaluating and developing suitable 
ways of constructing the trial set for Kirchhoff plates 
with arbitrary boundary conditions and complicat-
ing effects. There is a so huge amount of literature 
on the topic which prevents to provide a compre-
hensive review of all the available approaches here. 
Restricting the analysis to rectangular plates, nota-
ble solutions include the use of characteristic beam 
functions, simple and orthogonal polynomials, static 
beam functions, Fourier sine and cosine series or 
their appropriate combinations [21, 22]. Since the 
initial works of Young [23], Warburton [24]and 
Leissa [25], admissible functions as products of vi-
brating beam eigenfunctions have been presented 
by many researchers. They work well in most condi-
tions. However, because of the occurrence of over-
restraint at free edges, the results obtained for 
plates involving one or more free edges are much 
less accurate [26]. Characteristic beam functions are 
also clearly dependent on the boundary conditions. 
There exist 21 different cases for rectangular plates 
by considering all possible combinations of classical 
edge conditions [25]. Therefore, their use involves a 
boring solution process since a specific set is re-
quired for each type of boundary. Finally, numerical 
instability happens when the common expressions 
for the beam mode shape functions are evaluated at 
high orders [27]. 

In this paper, a more general case of free vibra-
tion analysis of assembled plates is considered for 
preparing a model that can approximate vibration 
behaviour of a hinged rectangular plate or a uni-
formed rectangular plate, only with determination 
of various stiffness’s of translational and rotational 
springs that connect two plates to each other. In the 
process of solving the eigenvalue problem which is 
obtained from the variation method on the total sys-

tem, the quasi analytical Ritz method is used. The 
trigonometric sets are used as admissible functions 
due to the fact that they are very effective from a 
computational point of view and their reliability and 
versatility for flexural vibration analysis of rectan-
gular plates which may be subjected to various 
complicating factors. Finally some illustrating re-
sults are presented in tabular and graphical forms to 
validate the method. 

2. The Determination of the Boundary 
Value Problem 

Figure 1 represents an isotropic rectangular thin 
plate in the x-y plane. In this figure h is thickness, a 
and b are length and width of the plate, respectively. 
A slit that is parallel to the y-axis is located at x=c, as 
shown in Figure 1. The plate is considered to have 
two spans that are separated by the slit. The total 
domain of the plate A is divided into two sub-
domains and  as is shown in Figure 1. It is 
seen that these two sub-domains are separated by 
the line  at x=c. and  are connected to 
each other by using linear translational and rota-
tional springs.  and  are constants of transla-
tional and rotational springs, respectively. It can be 
assumed that the thickness and deflection of each 
sub-domain are small compared with the wave-
length of flexural vibration; consequently, thin plate 
theory is applicable. Throughout the remainder of 
the paper, the counter-clockwise four-letter symbol-
ic notation introduced by Leissa [25] is used for de-
scribing classical boundary conditions. For instance, 
an SFSC plate has a simply supported (zero deflec-
tion and free rotation) left edge, a free (free deflec-
tion and rotation) bottom edge, a simply supported 
right edge and a clamped (zero deflection and rota-
tion) top edge, respectively. 

 1
A

 2
A

 c
L

 1
A

 2
A

tk rk

 

Figure 1. A schematic diagram of hinged plates in x-y plane 
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In order to analyse the transverse displacements 
of the system, it can be assumed that the vertical 
position of the k-th (k=1, 2) plate at any time t, is 
defined by the function

 
. The 

total kinetic energy of the system is [28]: 

 (1) 

Where     is the mass density of the k-th plate and 
 such that  is constituted of both sub-

domains  , and each respective boundary
. 

    The total potential energy due to the elastic de-
formation of the plate is [28]: 

 

(2) 

where  is the rigidity of the k-th plate, ν is the 
Poisson’s ratio, is the external load,  
is the difference in the lateral displacement of the 
two plates along the slit,  is the difference 
between the normal slopes and  denotes the 
directional derivative of w with respect to the out-
ward normal unit vector to the curve  and s is 
the coordinate along the line of slit. 
    To derive the equations of motion, the extended 
Hamilton principle is used as: 

 

          (3)  

where: 
 

 

    
(4)    

and δ is variational operator. 
    Consequently, by using the Hamilton principle, 

the equations of motion for free vibration analysis of 
the coupled plates are obtained as follows: 

 (5) 

The above equations represent the dynamical 
behaviour of the vibrating plates. 

2.1. Classical Boundary Conditions 

    In this study, plates may take any classical bound-
ary conditions, including free, simply supported and 
clamped. The boundary conditions along the edges 

 and  are satisfied by the following 
relations [17]: 

(a) For a free edge: 

 ,    (6) 

(b) For a simply supported edge: 

 ,    (7) 

(c) For a clamped edge: 

 ,    (8) 

Where  is the bending moment on the edges 
 and , and  is the Kirch-

hoff equivalent force, one can write: 
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(10) 

And similarly it could be obtained for the other edg-
es. Applying the states before boundary conditions 
and continuity conditions, a set of the homogeneous 
equations would be obtained. 

2.2. Continuity conditions for connection of two 
regions 

At the slit location (x=c), continuity conditions along 
the slit line can be written as: 

 

(11) 

 

 (12) 

According to the variational principle, the coeffi-
cients of  ̅      ⁄   and  should be zero. Conse-
quently, the following equations are obtained: 

 

(13) 

 

 

  (14) 

 

(15) 

 

(16) 

where all of the above equations would be evaluated 
at x=c. Eqs. (11) and (12) express an equal moment 
with the opposite signs, which are applied to the 
edges x=c and indicate the Kirchhoff equivalent 
force on the common edge between two regions. 

3. Eigenvalue Problem in Ritz Method 

For free vibrations of the plate, the displace-
ments can be written as: 

 

(17) 

where ω is the circular frequency of the plate. Sub-
stituting Eq. (17) into Eqs. (1) and (2), the maximum 
kinetic energy  and the maximum potential 
energy  are obtained. For the sake of simplici-
ty the following dimensionless parameters are used: 

  ,  (18) 

Therefore, it can be written: 
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(20) 

Where  ̅     ⁄  ,  and  are assumed to be 
constant for two areas i.e. 

,  (21) 

Due to classical boundary conditions, the func-
tional energy of the system is expressed as: 

 (22) 

The Ritz approximation is: 

 (23) 

Where the superscript k denotes the k-th sub-
domain,  are unknown coefficients and  
and  are appropriate admissible functions 
satisfying at least the geometrical boundary condi-
tions of the problem. After substituting Eqs. (19) 
and (20) into Eq. (22), the coefficients can be 
obtained by finding extremum of the functional en-
ergy as follows: 

 (24) 

Consequently the following eigenvalue equation 
is obtained: 

 (25) 

where is the dimensionless fre-
quency. 

The stiffness and mass matrices K and M are pre-
sented respectively as: 

 (26) 

 (27) 

where, 

 (28) 

 (29) 

 (30) 

In the above equations the integral statements 
are defined as: 

 (31) 

 (32) 

 
(33) 

 (34) 

 (35) 

 
(36) 

where α and β denote the order of derivatives. 
It is noted that  ,  and 

 are dimensionless coefficients. The 
spring stiffnesses  and  are selected either 
as the actual connecting stiffnesses, if flexible joints 
are represented, or as very high values compared 
with the adjoining plates, therefore approximating 
rigid connections. (For example, at a free edge,  
and  are taken as zero, while, to approximate a 
hinged boundary or connection between two adja-
cent plates,  is given some very high value and 

 is taken as zero.)[21] 
In the present study the admissible functions 

 and  are defined by means of the 
trigonometric set. The following trial functions 
which are used by Beslin and Nicolas [29] for flex-
ural vibration of Kirchhoff plates are presented: 

 (37) 

where the coefficients , ,  and  are listed in 
Table 1. 

The function  is defined according to Eq. 
(30), where  and m are replaced by  and n, re-
spectively. A subset of  is plotted in Figure 2 
where functions of increasing order are arranged in 
a matrix form [21]. 
It is seen that the first and third functions  
and  have a non-zero displacement at  
and , respectively. The second and fourth trig-
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onometric functions  and  have a free 
slope at the same edges at , respectively. The 
functions and  are arranged in a simi-
lar style for . 

As it is, the first four functions to  enable 
one to easily satisfy any classical boundary condi-
tion by selecting a suitable combination among 
them. For example, the analysis of a completely free 
plate (FFFF) will keep all these four functions in the 
final sequence. If a simple support condition is im-
posed on the edge  (FFFS plate), the function 

 will be eliminated from the set. For a fully 
clamped plate (CCCC) all the couples of these func-
tions both in  and in  direction will be removed. 
The nine combinations of classical boundary condi-
tions are reported in Table 2 where a bullet denotes 
that the corresponding function must be kept in the 
final set. The first letter in the table refers to the 

edge at  or  , whereas the second letter 
refers to that at  or  [22]. 

Due to the zero determinant of the coefficient 
matrix in Eq. (21), the problem has a nontrivial solu-
tion. The stated determinant gives the natural fre-
quencies of the system. It is important to note that 
the nontrivial solution of the system gives the mode 
shapes of the plate. 

 
4. Numerical Results and Discussions 
 

In order to examine the accuracy and applicabil-
ity of the approach developed and discussed in the 
previous sections, numerical results were calculated 
for a number of different problems for which com-
parison values were available in the literature and 
also convergence studies have been carried out in 
the graphical and tabular form. All calculations have 
been performed with Poisson’s ratio . 

4.1. Rectangular Plate with Different Boundary 
Conditions 

The discussed method is applied to rectangular 
isotropic plates with four different combinations of 
classical boundary conditions. To obtain the fre-
quency parameters corresponding to a continuous 
rectangular plate without slit, it is necessary that the 
translational and rotational stiffnesses approach 
infinity. For this purpose in this section dimension-
less translational stiffness per unit length  is as-
sumed to be equal to the dimensionless rotational 
stiffness  and it can be assumed to be equal to a 
high value ( ). The problems are solved for two 
cases which have well-known closed form solutions 
[25], i.e., SSSS and SFSF plates; and, last, a cantilever 
plate (CFFF) that there is no exact solution for this 
case [30]. Table 3 shows the convergence of the di-
mensionless frequency parameter  
for the first eight modes. 

Results are obtained by using a square selection 
method, i.e., the similar number of terms M=N is 
adopted in the series expansion, with no regard to 
symmetry. It is seen that the solutions monotonical-
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Figure 2. The first 15 functions of the trigonometric set 

Table 2. Combination of the first four functions in the trigo-
nometric set to satisfy the related boundary conditions. 

Boundary  
condition 

    

FF ● ● ● ● 

FS ● ● - ● 

FC ● ● - - 

SF - ● ● ● 

SS - ● - ● 

SC - ● - - 

CF - - ● ● 

CS - - - ● 

CC - - - - 
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ly decrease as the number of terms in the set in-
creases. Table 3 also shows that the higher frequen-
cy convergent values to four digits are obtained with 
a different number of terms for each mode and case.   

Moreover, this number does not necessarily in-
crease as the mode number increases. It is illustrat-
ed from Table 3 that the frequency parameters 
which are obtained by the presented method in this 
paper in comparison to reference [21] are higher 
about 0.2% at worst state. This difference is due to 
the discontinuity in the plate and the values of  
and which are assumed to be a finite value. 

4.2. Rectangular Plate with an Internal Line Hinge 

The problem is the transverse vibration of two 
rectangular plates which hinged together along they 
coordinate at x=c. There are some literatures about 
this problem. As it was referred to previously, to 
approximate a hinged connection between two ad-

jacent plates,  is given some very high value and 
is taken as zero. In this case some results of a 

convergence study of the values of the frequency 
  are presented in Table 4 and Table 

5. The first eight values of  are presented for a 
square SSSS plate with an internal line hinge located 
at two different positions, namely  and 

. It can be observed that with an increase in 
iteration number the frequency parameters con-
verge monotonically. From Table 4 it can be ob-
served that the results are in a good agreement with 
exact frequency parameters for a SSSS plate with an 
internal line hinge presented in Ref. [28]. 

Similar results for plates with different boundary 
conditions, aspect ratios and position of line hinge 
are presented in Table 5. A convergence study is 
shown in Figure 3 and Figure 4 for fundamental fre-
quency in terms of translational and rotational fre-
quencies that vary from 0 to  . 

These figures are presented in two cases in 
terms of boundary conditions; Case 1: symmetric 
boundary conditions (SSSS, SFSC) and Case 2: 
asymmetric boundary conditions (CCFF, CCSS). 
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Table 3. Convergence study of the first eight frequency parame-

ters  for square isotropic plates with different 

classical boundary conditions. 

BCs N 
Mode sequence 

1 2 3 4 

SSSS 6 19.7438 49.3666 49.3772 78.9872 

8 19.7408 49.3544 49.3596 78.9682 

10 19.7398 49.3515 49.3537 78.9627 

12 19.7392 49.3501 49.3510 78.9602 

Ref.[30] 19.7392 49.3480 49.3480 78.9569 

SFSF 6 9.6506 16.2247 37.1184 39.0561 

8 9.6362 16.1626 36.8367 38.9784 

10 9.6332 16.1466 36.7684 38.9594 

12 9.6321 16.1407 36.7454 38.9523 

Ref.[30] 9.6314 16.1348 36.7256 38.9451 

CFFF 6 3.4893 8.5887 21.3913 27.4601 

8 3.4778 8.5354 21.3250 27.2712 

10 3.4745 8.5209 21.3058 27.2279 

12 3.4723 8.5108 21.2917 27.2038 

Ref.[21] 3.47108 8.5066 21.2848 27.1990 

Table 4. convergence study of the first eight values of the  for 
a SSSS plate with an internal line hinge. 

 N 
Mode sequence 

1 2 3 4 

-0.1 6 16.8401 39.1790 47.4875 72.1332 

8 16.7937 39.0915 47.4346 72.0232 

10 16.7904 39.0859 47.4268 72.0129 

12 16.7890 39.0851 47.4248 72.0106 

Ref.[28] 16.7891 39.0862 47.4207 72.0098 

0 6 16.1427 46.7697 49.3666 75.3799 

8 16.1372 46.7504 49.3545 75.3063 

10 16.1360 46.7443 49.3517 75.2949 

12 16.1353 46.7416 49.3499 75.2836 

Ref.[28] 16.1347 46.7381 49.3480 75.2833 
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(b1) 

 

 
(b2) 

Figure 1 Fundamental frequency parameter  for 

symmetric boundary conditions as (1) translational and (2) both 

stiffnesses equally vary from 0 to  for (a)SSSS plates and 

(b)SFSC plates 

It should be noted that the first natural frequen-
cy of vibration is named as fundamental frequency 
and its magnitude is less than all of the other fre-
quencies. In Figure 3 and Figure 4, the “a” and “b” 
letters introduce the types of boundary conditions 
and their indices are used to show the variation of 
the translational and rotational stiffnesses which 
are specified in each figure. As it can be seen, the 

fundamental frequency  oscillates in a range 

which is very small when only translational fre-

quency  varies, but when both the translational 

and rotational stiffnesses vary, the fundamental fre-
quency converges monotonically to a specific value. 
This result is due to the symmetry in boundary con-
ditions which yields this fact that in the low values 

of  a good accuracy of can be obtained.  

 

Table 5. The first ten values of the  for a rectangular plate 
with different boundary conditions and aspect ratios 

BSc b/a 
 

Mode sequence 
1 2 3 4 

SSSS 1/2 -1/3 3.7002 4.2606 11.0746 11.4277 
0 2.4345 3.6877 11.3615 15.0393 

1/3 1.5930 3.6902 10.4245 11.9999 

1/3 -1/3 2.3530 4.9276 7.2380 12.9054 
0 1.0761 2.3474 6.6699 7.2363 

1/3 0.7038 2.3549 4.6153 7.3915 

SFSF 1/2 -1/3 3.5258 7.6768 8.2681 16.5416 
0 2.2370 7.4994 11.3763 18.0312 

1/3 1.5060 7.5078 10.0619 17.0707 

1/3 -1/3 1.5587 3.6584 4.7732 10.0594 
0 0.9886 4.7513 5.0260 8.5270 

1/3 0.6654 4.4529 4.7517 10.1410 

CFFF 1/2 -1/3 6.6122 10.4308 14.1414 21.8162 
0 6.6445 13.4687 14.8999 19.5932 

1/3 -1/3 4.3687 4.6372 9.1419 12.8157 
0 4.3766 6.6159 8.9322 9.5142 
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(b1) 

 
(b2) 

Figure 2 Fundamental frequency parameter for 

asymmetric boundary conditions as (1) translational and (2) 

both stiffnesses equally vary from 0 to  for (a)CCFF plates 

and (b)CCSS plates 

On the other hand, for asymmetric boundary 
conditions such as CCFF and CCSS, for the cases in 
which only varies or both  and  vary, the 
fundamental frequency parameter converges 
monotonically to a specific value as is shown in Fig-
ure 2. 

5. Conclusions 

This paper presents the formulation of an analyt-
ical model for the dynamic behaviour of rectangular 
isotropic plates, with an arbitrarily located slit and 
classical boundaries. The equations of motion and 
associated boundary and compatibility conditions 
are derived by using the extended Hamilton princi-
ple. An approach has been presented to solve the 
free vibration of the previously mentioned plates in 
a direct variational and numerical way. A not com-

plicated, computationally efficient and accurate 
method has been developed for the determination 
of natural frequencies and modal shapes. The ap-
proach is the trigonometric Ritz method which is 
based on a simple, stable and computationally effi-
cient set of admissible trigonometric functions and 
has been presented for free vibration analysis of 
rectangular Kirchhoff plates. The versatility and re-
liability of the present approach have been shown in 
various states of the slotted plate with an arbitrarily 
selected subset of complicating factors. Very accu-
rate and stable solutions have been obtained for all 
cases with lesser computational effort in compari-
son with the other similar methods. Consequently, 
the present analysis shows that the trigonometric 
Ritz method is a valuable way for solving transverse 
free vibrations of thin rectangular plates and is easi-
ly applicable to a wide class of problems with com-
plicating effects. To investigate the effect of the line 
slit and its location on the vibration behaviour, par-
ametric studies have been performed. It is valuable 
to note that by using a modified version of this 
method, the static deflection problems and buckling 
can be analysed. On the other hand, this method can 
be easily generalized for analysing problems that 
include anisotropic plates. 
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