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In the present research, the effects of delamination size and location on vibration characteristics of 

laminated composite beams are investigated both analytically and numerically. In the analytical 

method, the delaminated beam is modeled as four interconnected Euler–Bernoulli beams and the 

constrained and free mode models are both simulated. The differential stretching and the bending-

extension coupling are considered in the formulation. Analytical expressions for displacement func-

tions are presented in a simple form based on the basic standard trigonometric and hyperbolic 

functions. This new technique considerably simplifies the calculations regardless of the number of 

delaminations. In finite element method, delaminated composite beams are modeled in commercial 

finite element software, ABAQUS, and natural frequencies and mode shapes are extracted from the 

modal analysis. Analytical results are compared with finite element ones and available experiments 

in the literature. Finally, the generated database for different sizes and locations of delamination 

can be used to detect the existence of delamination in laminated composite beams and thento  spec-

ify the size and location of delamination. 
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1. Introduction 

Advanced composite materials are increasingly 
used in structural designs of aircraft, helicopters, 
spacecraft, automobiles, marine and submarine ve-
hicles because of the desirable properties such as 
high strength and stiffness, lightweight, fatigue re-
sistance, and damage tolerance, etc. However, com-
posites are very sensitive to the anomalies induced 
during their fabrication or service life. One of the 
commonly encountered types of defects or damage 
in laminated composite structures is delamination. 
Delaminations may originate during fabrication or 
may be service-induced, such as by impact or fatigue 
loading. Delaminations not only affect the strength 
and integrity of the structure but also cause the re-

duction in the stiffness, thus affecting its vibration 
and stability characteristics. Reflections of these 
effects in dynamic response are the alteration of 
natural frequencies and damping ratios. As a result, 
considerable analytical, numerical and experimental 
efforts have been expended to capture these phe-
nomena. 

One of the earliest models for vibration analysis of 
composite beams including delaminations was pro-
posed by Ramkumar et al. [1]. They modeled a beam 
with one through-thickness delamination simply 
using four Timoshenko beams connected at delami-
nation edges. Natural frequencies and mode shapes 
were solved by a boundary eigenvalue problem. Us-
ing this model, the predicted natural frequencies 
were consistently lower than the results reported in 
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experimental measurements. Authors attributed this 
discrepancy to the effect of contact with the delami-
nated "free" surfaces during vibrations. They sug-
gest that the inclusion of the contact effect may im-
prove the analytical prediction. 

To study the effect of a through-thickness delami-
nation on the free vibration of an isotropic beam, 
Wang et al. [2] present an analytical model using 
four Euler-Bernoulli beams that are joined together. 
They assum that the delaminated layers deform 
"freely" without touching each other ("free mode" 
model) and will have different transverse defor-
mations. 

Later, Mujumdar and Suryanarayan [3] presented 
two models namely the free mode model and the 
constrained mode model for the flexural vibrations 
of isotropic beams with delamination at the mid-
plane as well as at the off-mid-plane locations. Ex-
perimental results have also been presented for var-
ious cases of delaminations in the beams. This paper 
concludes that the constrained mode model in which 
the transverse displacement and the normal stress 
of the upper and lower layer at the delaminated in-
terface have been constrained to be the same, gives 
results in good agreement with the experimental 
results. The free mode model (similar to the one de-
veloped by Wang [2]) underestimates the frequen-
cies, particularly at the higher modes. 

The "constrained model" fails to explain the de-
lamination opening modes found in experiments [4]. 
In these experiments conducted by Shen and Grady, 
the opening modes were even found in the first 
bending mode of the beam for some delamination 
cases. However, their finite element formulations 
(Model A and B) were essentially followed by the 
"constrained model" by Mujumdar and Surya-
narayan [3] and the "free model" by Wang et al. [2]. 
In this paper the "Model A" is corresponding to the 
"constrained model" and the "Model B" is corre-
sponding to the "free model". The discrepancy be-
tween the results predicted by the two models is 
significant even in cases where mode shapes do not 
show any opening in the delamination region. Fur-
thermore, in some cases, opening delamination 
modes are shown clearly in their experiment, while 
the "constrained model" frequency prediction has a 
better match with the corresponding experimental 
results for these modes, even though the delamina-
tion cannot open using the "constrained model". 

An analytical model based on the Timoshenko 
beam theory is presented by Hu and Hwu [5] for the 
free vibrations of delaminated sandwich beams. The 
natural frequencies and the mode shapes of the de-
laminated composite sandwich beams are presented 
in this paper. Lee [6] presents a displacement-based 

layer-wise finite element model for the analysis of 
free vibration of delaminated beam. In which the 
effects of the fiber angle, location, size and number 
of delamination are investigated numerically. A re-
view paper on the vibration-based model-dependent 
damage (delamination) identification and health 
monitoring for composite structures is presented by 
Zou et al. [7]. This paper deals with various models 
proposed for the free vibrations of delaminated 
beams. 

In the analytical research done by Luo and Hana-
gud [8], a piecewise-linear spring model is used to 
simulate the behavior between delaminated surfac-
es. Shear and rotary inertia effects, as well as bend-
ing-extension coupling, are included in the govern-
ing equations. Frequencies and mode shapes are 
solved through a boundary eigenvalue problem. The 
proposed model includes the "free model" and the 
"constrained model" as special cases. The nonlinear 
response simulated by this model shows good 
agreement with the experiment results. 

Karmakar et al. [9] studied the effect of delamina-
tion on free vibration characteristics of graphite-
epoxy composite pre-twisted shallow shells of vari-
ous stacking sequences considering length of delam-
ination as a parameter. An exhaustive review on the 
vibration of delaminated composites has been pre-
sented by Della et al. [10]. The paper deals with var-
ious analytical models and numerical analysis for 
the free vibration of composite laminates. Della et al. 
[11] develop analytical solutions to study the free 
vibrations of multiple delaminated beams under 
axial compressive loadings. The Euler–Bernoulli 
beam theory and free mode and constrained mode 
assumptions in delamination buckling and vibration 
are used in the analysis. Ramtekkar [12] presented 
free vibration analysis of laminated beams with de-
lamination using mixed finite element model. Ana-
lytical solutions for beams with multiple delamina-
tions were presented by some researchers. Shu and 
Della [13, 14] and Della and Shu [15] used the "free 
mode" and "constrained mode" assumptions to 
study a composite beam with various multiple de-
lamination configurations. Their study emphasized 
the influence of a second delamination on the first 
and second natural frequencies and the correspond-
ing mode shapes of a delaminated beam. Shariati Nia 
et al. [16] presented an analytical method for calcu-
lating natural frequencies of a delaminated compo-
site beam from both free and constrained mode fre-
quencies. An improved combined natural frequency 
is proposed in this new formulation based on the 
breathing of delamination. 

In this paper, at first, the delaminated beam is 
modeled as four interconnected Euler-Bernoulli 
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beams. The free mode and constrained mode models 
are considered. Furthermore, the expressions for 
displacement functions are presented in a more 
convenient form based on concerning basic standard 
trigonometric and hyperbolic functions. The pro-
posed technique considerably simplifies the calcula-
tion, and regardless of the number of delaminations, 
the problem can be solved by a 2×2 system of equa-
tions. Also, delaminated composite beams with dif-
ferent sizes and locations of delaminations are mod-
eled in commercial finite element software, ABAQUS, 
and natural frequencies are extracted from the mod-
al analysis. 

2. Analytical Modelling of a Delaminated 
Composite Beam 

Fig 1.(a) shows a cantilever beam with a single de-
lamination at an arbitrary location and various 
lengths. L, h and a are beam length, beam thickness 
and delamination length, respectively. 

The beam is separated along the interface by a de-
lamination with length a located at the centre of the 
beam. The beam can be subdivided into three span-
wise regions, a delamination region and two integral 
regions. The delamination region is comprised of 
two segments (delaminated layers), beam 2 and 
beam 3, which are joined at their ends to the integral 
segments, beam 1 and beam 4. Each of the four 
beams is treated as beams with different boundary 
conditions. 

2.1. Free Mode Model 

In "free mode" model, it is assumed that the de-
laminated layers deform "freely" without touching 
each other and have different transverse defor-
mations. The governing equations for the free vibra-

tion of a delaminated beam using the Euler–
Bernoulli beam theory are as the following:    

(1)   

    

   
   

    

   
                

where Di is the equivalent bending stiffness of the ith 
beam, mi is the mass per unit length and is equal to 
    ,  ρi is the mass density and Ai is the cross-
sectional area of the beam. The bending stiffness for 
homogeneous and isotropic beams is given by Di=EIi, 
where E denotes the Young’s modulus and I is the 
moment of inertia. The mechanical properties of the 
composite beams are determined using the classical 
lamination theory (CLT) as follows: 

 (2)        
    

(   
   )

 

   
   

 

where    
    is the extensional stiffness,    

    is the 
bending-extension coupling stiffness, and    

    is 
the bending stiffness of the ith beam [13]. 

For free vibration, the solution of Eq. (1) is given 
as follows: 

(3)                  
    

where ω is the natural frequency and Wi is the mode 
shape. Substituting Eq. (3) for Eq. (1) and eliminat-
ing the trivial solution sin(ωt)=0, one can obtain the 
general solutions of the differential equation in Eq. 
(1) as follows: 

(4) 

                           

              

               

where,  

(5) 
  

  
   

 

  

 

and λi are the non-dimensional frequencies. The 
lowest eigenvalue λ is the nondimensional primary 
frequency of the beam. The 16 unknown coefficients 
Ci, Si, CHi and SHi are determined by four boundary 
conditions and twelve continuity conditions. 

For cantilever beam B.C.'s at fixed end are as fol-
lows: 

(6-1)   =0 ,   
    

and at free end (x=L) 

              (6-2)     =0 ,        

Continuity conditions at x=x1 
 

 

(a) 

 

(b) 

Figure 1. a) Geometry of the delaminated beam, b) Model of 

delaminated beam with four interconnected beams 
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where,  

 

(8) 
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The second term on the left side of Eqs. (7-4) rep-
resents the contribution to the bending moment 
from the differential stretching between beams 2 
and 3 and contributes to the bending stiffness of the 
beam [3, 13-15]. Similarly, the continuity conditions 
at the end tip of delamination (x=x2) are derived. The 
boundary conditions and continuity conditions pro-
vide 16 homogeneous equations for 16 unknown 
coefficients. A non-trivial solution for the coeffi-
cients exists only when the determinant of the coef-
ficient matrix vanishes. The frequencies and mode 
shapes can be obtained as eigenvalues and eigenvec-
tors, respectively. 

2.2. Constrained Mode Model 

The "constrained mode" model is simplified by the 
assumption that the delaminated layers are in touch 
along their whole length all the time, but are allowed 
to slide over each other. Therefore, the delaminated 
layers have the same transverse deformations 
(w3=w2). This is reasonable since if there is no open-
ing in the delamination region, the "free model" and 
"constrained model" are essentially the same. In this 
model the governing equations are as the following: 

 

(9-1) 
  

    

   
   

    

   
            

For beams 2 and 3 
 

(9-2) 
   

    

   
    

    

   
   

where,  

(10-1) D23=D2 + D3 

(10-2) 
m23=m2 + m3 

The generalized solutions for the constrained 
model are identical in form to the free model. The 

unknown coefficients Ci, Si, CHi and SHi, however, are 
reduced to twelve coefficients which can be deter-
mined by four boundary conditions and eight conti-
nuity conditions. 

B.C.'s for cantilever beam at fixed end (x=0) and 
free end (x=L) are the same as Eqs. (6-1) and (6-2), 
but four continuity conditions at x=x1 are as follows: 

 
(11-1)       

(11-2)   
    

  

(11-3)     
          

    

(11-4)     
    [  

        
     ]        

   

Similarly, four continuity conditions at the end tip 
of delamination (x=x2) can be derived. These bound-
ary and continuity conditions provide 16 homoge-
neous equations for 16 unknown coefficients. 

According to these procedures, the characteristic 
equation of a beam with one delamination relies on 
the solution of a determinant of order 16 for free 
mode model and 12 for constrained mode model. 
Furthermore, this determinant order increases by 
varying the number of delamination and converting 
single delamination to multiple delaminations. This 
method is computationally expensive to analyze the 
presence of multiple delaminations in beams. 

2.3. Basic Functions 

The expressions for the displacements of beams 
as general solution of the differential equations in 
Eq. (9) can be written in a simple form based on the 
basic standard trigonometric and hyperbolic func-
tions and in terms of just four factors: the displace-
ment W0, slop   , bending moment M0, and shear 
force V0 at x=0. 

 

(12) 
                            

         

where the functions of gi(x) are expressed as fol-
lows: 

 

(13-1)       
 

 
[                 ] 

(13-2)       
 

  
[                 ] 

 (13-3)       
 

   
[                 ] 

(13-4)       
 

   
[                 ] 
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2.3.1. Constrained Mode Model 

According to basic functions expressed in Eq. (13) 
and the boundary conditions at fixed end of beam 1, 
transverse deformations of beam 1 can be written as 
follows: 

 
(14)                       

Based on two continuity conditions at x=x1 for 
displacement and slope, and according to Eqs. (11-
1) and (11-2), deflection of beam 2 is as follows: 

 

(15) 
             ̅         

  ̅          

These unknown coefficients ( ̅   ̅ ) can be ob-
tained using two other continuity conditions at x=x1 
for bending moment and shear force, which are ex-
pressed in Eq. (11-3) and (11-4) as follows: 

 

(16-1) 

 ̅  (
  

   

  )  
      

 
 

   

[  
        

     ] 

(16-2)  ̅  (
  

   

  )  
        

Similarly, based on two continuity conditions at 
x=x2 for displacement and slope, deflection of beam 
4 is as the following: 

 

(17) 
             ̿         

  ̿          

Also, these unknown coefficients can be obtained 
from two other continuity conditions at x=x2 for 
bending moment and shear force as follows: 

(18-1) 

 ̅  (
   

  

  )  
      

 
 

  

[  
        

     ] 

(18-2)  ̅  (
   

  

  )  
        

Finally, the other two unknown coefficients (M0, 
V0), are obtained by using two equations from 
boundary conditions at free end of beam 4. Natural 
frequencies and mode shapes can be obtained by 
solving this simple system of equations. 

The general solution proposed in this method sat-
isfies the compatibility conditions at the delamina-

tion tips, and two of the factors are obtained directly 
from the type of support at x=0. The other two fac-
tors are obtained by the system of two equations 
from the boundary conditions at x=L. The technique 
used considerably simplifies the calculation, and 
regardless of the number of delaminations, the prob-
lem can be solved by a 2×2 system of equations. 

2.4. Numerical Investigations 

Numerical investigations are undertaken for the 
free vibrations of cross-ply laminated beams with 
embedded internal delaminations of different sizes 
and at several different locations. For this purpose, 
an eight-layer symmetric cross-ply laminated 
[0/90]2s beam, under the clamped-free supports is 
considered. Thickness direction delamination loca-
tions are defined as mentioned in work of Shen and 
Grady [4]. "Interface 1" implies the mid-plane de-
lamination, while "Interface 4" implies the skin ply 
delamination and so on. Lengthwise delamination 
locations are at the middle of beams. Fig. 2 shows 
interfaces and dimensions for a cross-ply delaminat-
ed beam. 

3. Finite Element Modelling 

The delamination is introduced as a debonding of 
adjoining plies in the laminated composite beam. 
The geometry of the delaminated beam is shown in 
Fig 1. The finite element modelling for simulating 
the delaminated beams and extracting the natural 
frequencies is conducted using the commercial finite 
element software ABAQUS. The composite beam is 
modeled as a cantilever with length (L) 127 mm, 
width (b) 12.7 mm and total thickness (h) 1.016 mm 
with delamination of length of 25.4, 50.8, 76.2, and 
101.6 mm along one of the four ply interfaces shown 
in Fig 2. Nominal thickness of each ply is 0.127 mm 
and delamination dimensionless length (a/L) is 0.2, 
0.4, 0.6, and 0.8. Material properties of unidirection-
al composite ply are presented in Table 1. 

 

Figure 2. Geometry of the eight layer symmetric composite 

laminated beam [0/90]2s (Various interfaces for delamination) 

Table 1. Mechanical properties of the laminated beam 

E11 (GPa) E22 (GPa) G12 (GPa) υ12 ρ (kg/m3) 

134.49 10.34 5.00 0.33 1500 
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A shell element formulation is adopted since the 
beam is comparatively thin (h/b is less than 10 and 
h/L is less than 100). The composite laminates are 
modeled using a double layer of shells, with reduced 
integration and three integration points over the 
thickness (ABAQUS element type S4R, Simpson’s 
rule for shell section integration), and an orthotropic 
material definition is used. Modelling a delamination 
generally involves nonlinearities, due to the opening 
and closing of the delamination during cyclic defor-
mation of the structure and friction between the two 
faces of the delamination. This requires explicit 
solvers and time-domain simulations. 

At "free mode" model, there is no interaction de-
fined between the surfaces of the delamination. Con-
sequently, the elements on either side of the delami-
nation deform freely and can separate and penetrate 
each other, effectively, causing a lower stiffness and 
absence of damping induced by contact during cyclic 
closing of the delamination. At "constrained mode" 
model, standard surface-to-surface contact interac-
tions with normal and tangential behavior are intro-
duced between the surfaces of the two sub-
laminates, which allow neither penetration nor sep-
aration between the sub-laminate structures. There-
fore, the delaminated layers have the same trans-
verse deformations. Based on the model proposed 
and material properties, a total of 33 cases including 
an intact beam and 32 delaminated beams with dif-
ferent delamination lengths and different delamina-
tion interfaces are calculated. Natural frequencies 
are compared with the experimental results provid-
ed in Ref. [4]. 

4. Results and Discussion 

The fundamental frequencies of a delaminated 
composite beam with various locations and sizes of 
delamination are presented in Tables 2-5. The ex-
perimental and analytical results related to model A 
(constrained model) and model B (free model) are 
provided from Ref. [4]. It is observed that the fun-
damental frequencies obtained from analytical and 
finite element method, closely match the experi-
mental results of Ref. [4] for most of the cases.  

 

Comparing constrained mode and free mode 
model, for delaminations located near the beam sur-
faces, free mode models have better agreement with 
experimental results. Figures 3 and 4 show the first 
three mode shapes for constrained and free mode 
models respectively. Delamination dimensionless 
length (a/L) is 0.4 and is located along interface 4. 
Blue elements show points with no deflection and 
refer to nodes of mode shapes. Furthermore, the 
second and third frequencies obtained from finite 
element analysis and analytical results from basic 
function formulation are presented in Tables 6-9. 
Comparing constrained mode and free mode model, 
and according to first three mode shapes, when de-
lamination locates on the node of one mode shapes, 
the discrepancy decreases between related free 
mode and constrained mode frequencies.  

Table 2. Fundamental natural frequency (Hz), Interface 1 

 Shen and Grady [4]  Present Study 

 

 
 Exp 

Analytical  FEM Analytical 

Const Free  Const Free Consta Constb 

0.0 79.83 82.04 82.04  82.12 82.12 82.21 82.21 

0.2 78.17 80.13 67.36  80.17 68.67 80.63 80.41 

0.4 75.37 75.29 56.48  75.60 58.09 76.10 75.27 

0.6 67.96 66.94 47.90  66.64 48.97 68.04 66.4 

0.8 57.54 57.24 40.59  56.18 41.16 58.47 56.23 
a Without bending-extension coupling. 
b With bending-extension coupling. 

Table 3. Fundamental natural frequency (Hz), Interface 2 

 Shen and Grady [4]  Present Study 

 

 
 Exp 

Analytical  FM Analytical 

Const Free  Const Free Consta Constb 

0.0 79.83 82.04 82.04  82.12 82.12 82.21 82.21 

0.2 77.79 81.39 68.78  79.80 67.72 80.94 80.56 

0.4 75.13 78.10 59.44  75.56 57.02 77.21 75.87 

0.6 66.96 71.16 51.18  67.13 48.12 70.27 67.60 

0.8 48.34 62.12 43.86  57.06 40.59 61.55 57.89 
a Without bending-extension coupling. 
b With bending-extension coupling. 
 
Table 4. Fundamental natural frequency (Hz), Interface 3 

 Shen and Grady [4]  Present Study 

 

 
 Exp 

Analytical  FEM Analytical 

 Const Free  Const Free Consta Constb 

0.0 79.83 82.04 82.04  82.12 82.12 82.21 82.21 

0.2 80.13 81.46 75.14  81.00 78.32 81.65 81.61 

0.4 79.75 79.93 70.42  79.70 73.96 80.10 80.00 

0.6 76.96 76.71 65.06  76.69 6858 76.98 76.77 

0.8 72.46 71.66 59.13  72.00 62.10 72.31 71.99 
a Without bending-extension coupling. 
b With bending-extension coupling. 
 

Table 5. Fundamental natural frequency (Hz), Interface 4 

 Shen and Grady [4]  Present Study 

 

 
 Exp 

Analytical  EM Analytical 

Const Free  Const Free Consta Constb 

0.0 79.83 82.04 82.04  82.12 82.12 82.21 82.21 

0.2 79.96 81.60 75.83  80.88 79.75 81.84 81.70 

0.4 68.92 80.38 71.88  79.70 76.63 80.72 80.34 

0.6 62.50 77.70 67.18  76.96 72.28 78.33 77.60 

0.8 55.63 73.15 61.70  72.66 66.64 74.59 73.44 
a Without bending-extension coupling. 
b With bending-extension coupling. 
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(a) 

 

(b) 

 

(c) 

Figure 3. First three mode shapes of delaminated beam 

(Interface 4 and a/L=0.4) for constrained mode model 

a) 1st mode,  b) 2nd  mode shape,  c) 3rd  mode 

 

 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4. First three mode shapes of delaminated beam 

(Interface 4 and a/L=0.4) for free mode model 

a) 1st mode,  b) 2nd  mode shape,  c) 3rd  mode 
 

Table 6. 2nd and 3rd natural frequencies (Hz) for analytical delamination along interface 1. 

 2nd mode  3rd mode 

 

 
 

FEM Analytical  FEM Analytical 

Const Free Consta Constb  Const Free Consta Constb 

0.0 514.02 514.02 515.26 515.26  1437.00 1437.00 1449.89 1449.89 

0.2 488.99 348.73 490.31 487.13  1216.50 1217.40 1257.99 1233.16 

0.4 485.28 313.94 462.55 455.82  851.87 852.73 909.21 872.53 

0.6 426.48 284.14 406.94 395.30  752.00 746.88 802.87 770.64 

0.8 332.95 248.31 332.18 318.28  720.38 677.55 768.85 734.03 
a Without bending-extension coupling. 
b With bending-extension coupling. 
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Table 7. 2nd and 3rd natural frequencies (Hz) for delamination along interface 2. 

 2nd mode  3rd mode 

 

 
 

FEM Analytical  FEM Analytical 

Const Free Consta Constb  Const Free Consta Constb 

0.0 514.02 514.02 515.26 515.26  1437.00 1437.00 1449.89 1449.89 

0.2 480.65 342.71 495.00 489.24  1229.50 1231.30 1289.91 1251.77 

0.4 481.85 310.50 472.02 460.49  870.19 871.55 963.05 899.63 

0.6 431.19 284.06 423.33 403.69  767.48 763.55 851.24 794.39 

0.8 341.09 250.47 352.41 328.43  735.51 693.55 820.74 759.63 
a Without bending-extension coupling. 
b With bending-extension coupling. 

Table 8. 2nd and 3rd natural frequencies (Hz) for delamination along interface 3. 

 2nd mode  3rd mode 

 

 
 

FEM Analytical  FEM Analytical 

Const Free Consta Constb  Const Free Consta Constb 

0.0 514.02 514.02 515.26 515.26  1437.00 1437.00 1449.89 1449.89 

0.2 493.59 441.50 504.98 504.13  1372.40 1374.50 1383.79 1382.04 

0.4 497.61 378.81 494.66 493.25  1172.10 1102.00 1191.86 1186.15 

0.6 483.71 451.89 472.89 470.99  1064.00 1156.40 1083.32 1076.74 

0.8 438.10 423.84 430.14 427.71  1043.10 1060.30 1061.96 1055.06 
a Without bending-extension coupling. 
b With bending-extension coupling. 

Table 9. 2nd and 3rd natural frequencies (Hz) for delamination along interface 4. 

 2nd mode  3rd mode 

 

 
 

FEM Analytical  FEM Analytical 

Const Free Consta Constb  Const Free Consta Constb 

0.0 514.02 514.02 515.26 515.26  1437.00 1437.00 1449.89 1449.89 

0.2 490.79 465.59 508.85 505.69  1377.90 1381.60 1397.59 1392.17 

0.4 495.86 413.08 501.64 496.41  1192.80 1152.30 1239.71 1220.29 

0.6 485.50 451.20 484.34 477.50  1088.90 1141.50 1140.50 1116.76 

0.8 444.67 423.11 447.88 439.25  1069.00 1078.70 1121.30 1096.38 
a Without bending-extension coupling. 
b With bending-extension coupling. 

Also, analytical frequencies of delaminated beam 
with bending-extension coupling assumptions 
decrease more rather than without bending-
extension coupling condition. 

Here, first three natural frequencies are 
presented for single delamination located at various 
lengthwise locations. Tables 10 and 11 show results 
for beams with clamped-free and clamped-clamped 
boundary conditions respectively. Delamination 
length (a/L) is 0.2 and is located in interface 1 (mid-
plane) through thickness for all cases. 

Natural frequencies from constrained mode 
model of finite element analysis better match the 
experiments, for all cases. Also for small 
delamination lengths (a/L<0.3) there is no 
considerable difference between analytical 
frequencies obtained from both constrained and free 

mode model, especially for lower natural 
frequencies. Therefore, only results of constrained 
mode model with bending-extension coupling are 
presented here. 

5. Conclusion 

In this study, a new simple mathematical tech-
nique is proposed for free vibration analysis of a 
delaminated composite beam with any numbers of 
delaminations. This technique is verified for a com-
posite beam with single delamination. Therefore, a 
delaminated beam is divided into four Euler-
Bernoulli beams and beams on both sides of delam-
ination have free or constrained modes. The effects 
of delamination size and location on vibration char-
acteristics of laminated composite beams are inves-
tigated. Modal parameters are extracted using both 
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analytical and finite element methods. In the analyt-
ical part, the expressions for displacement functions 
are written based on basic standard trigonometric 
and hyperbolic functions for simplifying the calcula-
tion. In the finite element part, constrained mode 
and free mode models are simulated using suitable 
elements, boundary conditions, interactions and 
constrains. The numerical results are validated by 
the analytical and experimental results available in 
the literature for some case studies. These results of 
the proposed analytical method and finite element 
method show good agreement with them and with 
each other. 

The numerical results show that delamination in 
composite beams affects the natural frequencies and 
this change depends not only on the size of 
delamination but also on its location. Comparing 
constrained mode and free mode model, the natural 
frequencies obtained from free mode model are 
comparatively lower than the results of constrained 
mode model. This discrepancy can be attributed to 
the effect of contact between the delaminated 
surfaces during vibrations. Also, for delaminations 
located near the beam surfaces, free mode models 
have better agreement with them and with 
experimental results. Vice versa, when delamination 
moves from the surface to the mid-plane of beam, 
constrained mode frequencies better match the 
experiment. Also according to corresponding mode 
shapes, when delamination locates on the node of 
one mode shapes, the discrepancy decreases 
between related free mode and constrained mode 
frequencies. 

Natural frequencies from constrained mode 
model of finite element analysis better match the 
experiment, for all cases. Also, for small 
delamination lengths (a/L<0.3) there is no 

considerable difference between analytical 
frequencies obtained from both constrained and free 
mode model, especially for lower natural 
frequencies. 

Finally, the obtained results can be used as a da-
tabase to predict the frequency behaviour of a de-
laminated beam by changing the size and location of 
delamination. The results show that if the effect of 
the delamination can be accurately predicted, then 
changes in modal parameters can be used to deter-
mine the location and extent of delamination in 
composite structure. 

Nomenclature 

L beam length 

h  beam thickness 

b beam width 

A delamination length 

D reduced bending stiffness 

ρ mass density 

A cross-sectional area 

    extensional stiffness 

    coupling stiffness 

    bending stiffness 
 

ω natural frequency 

W mode shape 

λ non-dimensional frequency 
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