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This study investigates natural frequency analysis of an FG composite rectangular plate partially 

contacting with a bounded fluid. The material properties are assumed to be varying continuous-

ly through the thickness direction according to a simple power law distribution in terms of vol-

ume fraction of material constituents. Wet dynamic transverse displacements of the plate are 

approximated by a set of admissible trial functions which are required to satisfy the clamped 

and simply supported geometric boundary conditions. Fluid velocity potential satisfying fluid 

boundary conditions is derived and wet dynamic modal functions of the plate are expanded in 

terms of finite Fourier series for compatibility requirement along the contacting surface be-

tween the plate and the fluid. Natural frequencies of the plate coupled with sloshing fluid modes 

are calculated using Rayleigh–Ritz method based on minimizing the Rayleigh quotient. The pro-

posed analytical method is validated by available data in the literature. The numerical results 

show  the effects of boundary conditions, aspect ratios, thickness ratios, gradient index, material 

properties of the FG plate, depth of the fluid and dimensions of the tank on the wet natural fre-

quencies. 
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1. Introduction

Functionally Graded Materials (FGMs) have been 
developing rapidly in the past two decades. Nowa-
days FGMs are used widely in many engineering ap-
plications including aircraft and aerospace industry, 
micro and nano electromechanical system, thermal 
barrier coating etc. Numerous studies have been 
performed to investigate free and forced vibrations 
of thin isotropic plates in partial contact with a fluid. 
Some of the most complete reviews on the subject 
are presented by Khorshidi [1], Amabili [2], Jeong et 
al. [3-5], Kwak [6], Zhou and Cheung [7], Chang and 
Liu [8], Ergin and Uğurlu [9], Zhou and Liu [10], 
Uğurlu et al.[11], and Kerboua et al. [12]. 

A few researchers have employed Classical Plate 
Theory (CPT) to analyze vibration behaviour of thin 
FG plates (Abrate [13], Zhang and Zhou [14] and 
Woo et al. [15]). First and third order shear defor-
mation plate theory and three-dimensional elasticity 
theory are used by some investigators for analyzing 
thick FG plates. Early research efforts on harmonic 
vibration analysis of an FG simply-supported rec-
tangular plate, using a 3D asymptotic theory, date 
back to the work of Reddy and Cheng [16]. Qian et al. 
[17] conducted an investigation on free and forced 
vibrations and static deformations of an FG thick 
simply-supported square plate by using a higher-
order shear and normal deformable plate theory and 
a meshless local Petrov–Galerkin method. Vel and 
Batra [18] did an excellent investigation on the ana-
lytical solution for free and forced vibrations of FG 
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simply-supported square plates based on the 3D 
elasticity solution. Hosseini-Hashemi et al. presented 
analytical solutions for free vibration analysis of 
FGMs rectangular plates based on the First-order 
Shear Deformation Plate Theory (FSDT) [19] and 
Third-order Shear Deformation Theory (TSDT) [20]. 
In their study, the proposed rectangular plates have 
two opposite edges simply-supported, while all pos-
sible combinations of free, simply-supported and 
clamped boundary conditions are applied to the 
other two edges. Suresh Kumar et al. [21] develop an 
analytical solution to study the free vibration analy-
sis of FGM plate without enforcing zero transverse 
shear stress conditions on the top and bottom sur-
faces of the plate using higher order displacement 
model. In their study, the governing equations of 
FGM plate are established using energy principles 
and are solved using Navier’s method. Jha et al. [22] 
presented free vibration analysis of FG elastic, rec-
tangular, and simply supported (diaphragm) plates 
using a Higher Order Shear and Normal Deformation 
Theory (HOSNT). Jha et al. assumed the material 
properties of FG plates to be varying through thick-
ness of the plate in a continuous manner. They used 
Navier solution method to solve the equations of 
motion. Zhao et al. [23] present free vibration analy-
sis of metal and ceramic FG plates based on FSDT 
using the element-free kp-Ritz method. The material 
properties of the plates are assumed to vary contin-
uously through their thickness according to a pow-
er-law distribution of the volume fractions of the 
plate constituents. The mesh-free kernel particle 
functions are used to approximate the two dimen-
sional displacement fields. Four types of FG rectan-
gular and skew plates of Al/Al2O3, Al/ZrO2, Ti–6Al–
4V/Aluminum oxide, and SUS304/ Si3N4 are includ-
ed in their study. Huang et al. [24] reported an accu-
rate solution of the free vibration characteristics of 
side-cracked rectangular FGM thick plates.  Huu et 
al. [25] developed a refined shear deformation theo-
ry for free vibration of FG plates on elastic founda-
tion. Zhu and Liew [26] presented free vibration 
analyses of metal and ceramic FG plates with the 
local Kriging meshless method based on the FSDT 
and the local Petrov–Galerkin formulation. 

The governing equations and a detailed analysis 
of vibrating rectangular plates in contact with a fluid 
can be found in Khorshidi [1], Khorshidi and Farhadi 
[27], and Jeong [3-5] works. Such equations are not 
available for FG plates in the literature. Compensat-
ing for this apparent void, the present work is car-
ried out to provide a theory to calculate the wet nat-
ural frequencies of an FG rectangular plate partially 
contacting with a bounded fluid in the bottom and 
vertical direction using Rayleigh–Ritz method. In the 
developed model, the von Kàrmàn linear strain-

displacement relationships are used in order to ob-
tain kinetic and strain energies of the plate based on 
CPT, FSDT and TSDT. The contributions given by the 
presence of the fluid and by the sloshing effects of 
the free surface are also included in the model. In 
conclusion, the results show that the fluid in contact 
with the plate changes the linear dynamics com-
pletely. Therefore, fluid-structure interaction is care-
fully considered. The developed numerical models 
are able to reproduce such results with good accura-
cy. Finally, the effects of boundary conditions, aspect 
ratio, thickness ratio, gradient index, material prop-
erties of the FG plate, depth of the fluid and dimen-
sions of the tank on the wet natural frequencies are 
investigated. 

2. Elastic Strain and Kinetic Energies of an 
FG Plate 

An FG composite rectangular plate with length a, 
width b, thickness h, which is a part of the vertical 
side of a bounded rigid tank filled with a fluid, is 
considered  as shown in Fig. 1. The tank has width of 

1c and the fluid is of depth 1b  and mass density of 

F . The fluid is considered to be incompressible, 
inviscid and irrotational. A Cartesian coordinate sys-
tem is used to describe governing equations. The 
coordinate system is placed so that the origin is lo-
cated in the corner of the studied plate as shown in 
Fig. 1, while axes x  and y  lie on plate’s edges and 
axis z  is perpendicular to the middle plane. The 
boundary conditions of the plate are introduced in 
Appendix A. 

We Assume that in FGM the material composition 
varies smoothly from the top surface (z=0) to the 
bottom surface (z=-h) of the plate (in this study, the 
FG plate is made from a mixture of ceramics and 

 

Figure 1. FGM composite rectangular plate in contact with 

liquid, dimensions, coordinates and displacement systems 
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metal). In this case, the effective mechanical proper-
ties of the plate, such as Young’s modulus and densi-
ty, are assumed to vary continuously through the 
plate thickness according to a power-law distribu-
tion as the following: 

( ) ( )m c m cE z E E V E    (1) 

( ) ( )m c m cz V       (2) 

where the subscripts m and c represent the metallic 
and ceramic constituents, respectively, and the vol-

ume fraction mV  may be given by: 

( )m

z
V

h


  (3) 

where  is the gradient index and takes only posi-
tive values. Fig. 2 shows the variation of Young’s 
modulus through the dimensionless thickness for 
the FGM Al/ZrO2 plate. The top surface is ceramic 
rich and the bottom surface is metal rich.  Typical 
values for metal and ceramics used in the FG plate 
are listed in Table 1. 

The stress-strain relations for the FG rectangular 
plates, under the hypothesis 0z  , in the material 
principal coordinates, are given by: 
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Where             ⁄ , 12 11Q Q  and    
          ⁄ , x , 

y , 
xy , xz  and 

yz  are the 
strain components (see Appendix B), and   is the 
Poisson’s ratio of the plate. The elastic strain energy 
UP of the plate is given by: 
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where Kx and Ky are the shear correction factors, 
which are equal to one (no correction) for the third-
order shear deformation theory. The shear correc-
tion factor used in the present calculations (for the 
first-order shear deformation theory) is 

2 2

x yK K  3 / 2  [27]. The kinetic energy TP of the 
plate, including rotary inertia, is given by: 
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where the overdot denotes time derivative. The 
boundary conditions on bending moments for 
clamped boundary condition of the plates can be 
approximated by assuming that rotational springs of 
very high stiffness   are distributed along the plate 
edges, so an additional potential energy stored by 
the elastic rotational springs at the plate edges must 
be added. This potential energy UR is given by: 
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 (7) 

In order to simulate clamped edges in numerical 
calculations, a very high value of the stiffness 
(  ) must be assumed. This approach is usually 
referred to as the artificial spring method, which can 
be regarded as a variant of the classical penalty 
method. The values of the spring stiffness simulating 
a clamped plate can be obtained by studying the 
convergence of the natural frequencies of the linear-
ized solution by increasing the value of  . In fact, it 
is found that the natural frequencies of the system 
converge asymptotically with those of a clamped 

Table 1. Material properties of the Functionally Graded 
plates [19] and [20]. 

properties 
Material 

 
 

2702 70 Al
 

4429 105.7 Ti-6Al-4V
 

3800 380 AL2O3
 

5700 200 ZrO2
 

3750 320.2 Aluminum Oxide
 

 

 

Figure 2. Variation of Young’s modulus through the dimensionless 

thickness of Al/ZrO2 plate. 

3(kg/m )(GPa)E
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plate when   becomes very large (in this study the 
non-uniform stiffness is assumed as 

810  ) [27]. 

3. Formulation of the Fluid Oscillations 

Using the principle of superposition, the fluid ve-

locity potential O , can be obtained as follows: 

O B S     (8) 

where B  describes the velocity potential of the 
fluid obtained by neglecting free surface waves and 

S  is the velocity potential due to fluid sloshing in 
the presence of the rigid plate. The fluid velocity po-
tential can be separated into spatial velocity poten-
tial and a harmonic time function.  

     , , , , , exp iO Ox y z t x y z t    (9) 

The fluid velocity potential must satisfy the three 
dimensional Laplace equation in the fluid domain. 

2 2 2 0O B S       (10) 

The boundary conditions on the bottom and the 
vertical walls of the tank are given by: 
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(11-18) 

For the liquid upper surface with neglecting of 
the liquid sloshing, we obtain the following equa-
tion: 

1

0B y b



  (19) 

For the liquid-contacting surface of the elastic 
plate, the following equation is obtained: 

 , ,
B
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 (20) 

where  , ,w x y t  is the transverse deflection of the 

plate. Applying the method of separating variables 
based on the boundary conditions of Eqs. (11-19), 
general solution of Eq. (10) is given as follows: 
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(22) 

where  1

2 2
( / ) (2 1) / (2 )l a k b    , here l  and k  

are arbitrary nonnegative integers, 

   
2 2

1/ /i a j c   , here i  and j  are arbitrary 

nonnegative integers, and  ,l kA t  and  ,i jB t  are 

the unknown coefficients. Applying the compatibility 

condition of Eq. (20), one obtains the following [27]: 
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(23) 

By the assumption of the ideal fluid and no sur-
face waves, the kinetic energy of the fluid with re-
spect to the bulging modes of the plate and the fluid 
sloshing can be written as follows[27]: 
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The linearized sloshing conditions at the fluid 
free surface of the tank are as the following: 
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where g  is the gravity acceleration and   is the 
circular natural frequency of the liquid-coupled 
plate.  
Substituting Eq. (8) with Eq. (26) and using Eq. (19), 
one obtains the following: 

1 1 1
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SB
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y b y b y b
y y g
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 (27) 

Multiplying both sides of the Eq. (27) by F S   
then integrating them over the free surface of the 
fluid in the tank lead to the following equation: 
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4. Rayleigh–Ritz Approach 

The Lagrangian function of the fluid-plate cou-
pled system is as follows: 

max max
. . .Starin E Kinetic E     (32) 

With applying Ritz minimization method, an ei-
genvalue equation can be derived from Eq. (32) as 
the following: 
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where q  is the vector of generalized coordinates 

and contains the unknown time variable coefficients 
of the admissible trial functions presented by Eqs. (B 
26-40) and (22) (i.e. 
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Eq. (34) cannot be solved until an expression for 

,i jB  is obtained. Thus, Eq. (28) is added to the Ga-

lerkin equation (34). This act increases the dimen-

sions of the associated eigenvalue problem from 
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5. Comparative Study 

In order to validate the present formulation, the 
natural frequencies obtained by the present method 
are compared with those of Bishop (1979), Zhao et 
al. (2009), Hosseini-Hashemi et al. (2010) and Uğur-
lu et al. (2008), as listed in Tables 2-5. Calculations 
are performed for functionally graded rectangular 
plates. Material properties of the plate are defined as 
listed in Table 1. Also, fluid density is considered as 

31000 /F kg m  . 
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Table 2 shows a comparative study of the natural 
frequencies of simply supported FG square plates 
with those given by Bishop (1979), Zhao et al. 
(2009). The geometric properties of the plates are 

0.4ma b  and 0.005mh  . The material prop-
erties of the Aluminum oxide/Ti-6Al-4V are listed in 
Table 1. The results shown in this table are selected 
for two special gradient index components 0   
(Pure Metal) and 2000   (Pure Ceramic). It is 
seen that the solutions from this study agree well 
with those presented by Bishop and Zhao et al. In 
Tables 3 and 4, the fundamental non-dimensional 
natural frequencies (  2

/ / ,c cb h E Hz    ) of 
a simply supported functionally graded square plate 
are compared with those reported by Zhao et al. 
(2009), and Hosseini-Hashemi et al. (2010) for dif-
ferent gradient indexes. It is worth noting that the 
results of Tables 3 and 4 are calculated for square 

2 3(AL/Al O )  material. In these tables the fundamen-

tal non-dimensional natural frequencies of the 
simاply supported functionally graded plate are 
computed using the Classical Plate Theory (CPT), the 
First order Shear Deformation Plate Theory (FSDT) 
and the Third order Shear Deformation Plate Theory 
(TSDT). From the results presented in these tables, it 
is observed that the non-dimensional natural fre-
quencies decrease as the gradient index increases. In 
addition, the fundamental natural frequencies com-
puted CPT are not at the same accuracy of those 
provided FSDT and TSDT. 

In Table 5, the fundamental non-dimensional 
natural frequencies (

2 / , ( )Fa h D Hz    ) of a 
simply supported square isotropic plate in partial 
contact with water are reported for different fluid 
depth ratios including 1 / 0b b  , 0.2 , 0.4 , 0.6 , 0.8 , 
and 1 . The results are compared with those ob-
tained by Uğurlu et al. (2008) based on the CPT. In 
this table calculations are performed for a square 
plate with dimensions and material properties of 

10ma  , 10mb  , 0.15mh  , 32400 kg/m  , 

25 GPaE   and 0.15  , and width of the tank is 

1 100mc  . It is worth mentioning that Uğurlu et al. 
calculate their results for a rectangular plate in con-
tact with an infinite fluid ( 1c   ). 

It is observed from Table 5 that the fundamental 
natural frequency of the plate increases monoton-
ically, as the fluid depth ratio tends to zero. It is also 
observed that the mode sequence changes according 
to the fluid depth. Table 5 shows that there is a good 
agreement between the present results and those of 
Uğurlu et al. (2008). 

From Tables 2-5, it is observed that the accuracy 
of fundamental natural frequencies computed by 
CPT decreases as the thickness ratio increases. 

6. Numerical Results and Discussion 

In this section, numerical results are obtained ac-
cording to the developed analytical solution for the 
free vibrations of a functionally graded rectangular 
plate in air or in contact with the bounded fluid by 

Table 2. Comparison of the fundamental natural frequency 
(Hz) for simply supported square Ti–Al–4V/Aluminum Oxide 

Functionally Graded plates (a=b = 0.4m, h =0.005m). 

Mode 
Sequence 

Pure Metal,  

Present 
(CPT) 

Present 
(FSDT) 

Present 
(TSDT) 

Ref 
[23] 

Ref 
[28] 

1 145.021 144.968 144.958 143.67 145.04 

2 362.484 362.153 362.087 360.64 362.61 

3 362.484 362.153 362.087 360.64 362.61 

4 579.862 579.017 578.848 575.87 580.18 

5 724.735 723.415 723.152 725.53 725.22 

6 724.735 723.415 723.152 725.53 725.22 

7 941.974 939.748 939.304 938.18 942.79 

8 941.974 939.748 939.304 938.18 942.79 

9 1231.5 1227.7 1226.94 1238.76 1233.0 

10 1231.5 1227.7 1226.94 1238.76 1233.0 

Mode 
Sequence 

Pure Ceramic,  

Present 
(CPT) 

Present 
(FSDT) 

Present 
(TSDT) 

Ref 
[23] 

Ref 
[28] 

1 271.174 270.975 271.061 268.60 271.23 

2 677.803 676.567 677.099 674.38 678.06 

3 677.803 676.567 677.099 674.38 678.06 

4 1084.28 1081.12 1082.48 1076.8 1084.9 

5 1355.17 1350.25 1352.36 1356.9 1356.1 

6 1355.17 1350.25 1352.36 1356.9 1356.1 

7 1761.38 1753.09 1756.65 1754.4 1763.0 

8 1761.38 1753.09 1756.65 1754.4 1763.0 

9 2302.76 2288.63 2294.68 2316.9 2305.4 

10 2302.76 2288.63 2294.68 2316.9 2305.4 

Table 3. Comparison of the fundamental natural frequency 

parameter 2( / ) / , ( )c cb h E Hz     for simply supported 

Al/Al2O3 Functionally Graded square plates (a/b = 1, h/a=0.05). 

 
Present 

(CPT) 

Present 

(FSDT) 

Present 

(TSDT) 
   Ref [19]  Ref [23] 

Diff 

with 

[19] 

(TSDT) 

0 0.01490 0.01482 0.01480 0.01480 0.01464 0 

0.5 0.01262 0.01256 0.01254 0.01281 0.01241 0.21 

1 0.01137 0.01132 0.01131 0.01150 0.01118 1.67 

4 0.00988 0.00983 0.00980 0.01013 0.00970 3.36 

10 0.00950 0.00943 0.00941 0.00963 0.00931 2.33 

0 

 


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the rigid container walls. Calculations are performed 
using the commercial software, Mathematica (ver-
sion 7), and the results are presented in tabular and 
graphical forms for different boundary conditions, 
plate parameters, and fluid parameters. In the pre-
sent study, three different boundary conditions are 
investigated, namely; simply supported immovable 
(SSI), simply supported movable (SSM) and clamped 
(CL) edges. The presented results are obtained using 
a model with 33 dots. 

6.1. The Effect of Plate Aspect Ratio (a/b) on the 
Wet Natural Fequency 

Fundamental wet natural frequencies of a func-
tionally graded (AL/AL2O3) rectangular plate versus 
plate aspect ratio are illustrated in Fig. 3 for differ-
ent boundary conditions. The results in Fig. 3 are 
shown for 40% fluid depth ratio and dimensions of 

1b m , h/a=0.1, b1/b=0.5, and c1=0.4 m while gra-
dient index   varies from 0 to 5. From Fig. 3, it is 
observed that the wet natural frequencies of the 
plates with SSI and SSM boundary conditions give 
exactly the same results. Moreover, it is observed 
that the highest values of fundamental wet natural 
frequency correspond to clamped boundary condi-
tions. 

6.2. The Effect of Fluid Depth on the Wet Natural 
Frequency 

Fig. 4 illustrates fundamental wet natural fre-
quencies of a functionally graded (AL/AL2O3) rec-
tangular plate (a=1 m, b=1 m, h/a=0.1, c1=0.4 m, 
a/b=1) versus fluid depth for SSI and SSM and 
clamped boundary conditions while gradient index 
  varies from 0 to 5. The wet natural frequencies of 

the functionally graded rectangular plate in contact 
with fluid are always less than the corresponding 
natural frequencies of the plate in air. Due to this 
fact, when normalizing the natural frequency with 
respect to the free plate natural frequencies, one can 
see that defined normalized natural frequencies of 
fluid-structure coupled system always lie between 
unity and zero. In Fig. 4, the results are shown for 
the plate partially in contact with water where the 
depth of the fluid (b1/b) varies from 0 to 0.9. From 
this figure, it is realized that the wet natural fre-
quencies decrease as fluid depth increases. 

6.3. The Fffect of Plate Thickness Ratio (h/a) on the 
Wet Natural Frequency 

In Fig. 5, the influence of the thickness ratios on 
the fundamental wet natural frequencies is illustrat-
ed for a functionally graded (AL/AL2O3) rectangular 
plate (a=1 m, b=1 m, b1/b=1, c1=0.4 m, a/b=1) with 
SSI and SSM boundary conditions while gradient 
index   varies from 0 to 5. From Fig. 5, it is ob-

served that the fundamental wet natural frequency 
of the plate increases monotonically, as the thick-
ness ratio increases. This is not a surprising result 
since we know higher values of thickness ratio in-
crease the stiffness of the structure more effectively 
than its inertia and thus, higher vibration frequen-
cies are expected. 

6.4. The Effect of Tank Width on the Wet Natural 
Frequency 

Fig. 6 shows fundamental wet natural frequency 
of a functionally graded (AL/AL2O3) rectangular 
plate (a=1 m, b1/b=0.5, h/a=0.1, a/b=1) versus fluid 
width. From these results, it is seen that the funda-
mental wet natural frequency increases as the tank 
width increases and approaches an asymptotic val-
ue. This means that for high enough values of width 
ratio, one can use the assumption of infinite fluid 
depth. In addition, Fig. 6 shows that width the wet 
natural frequencies corresponding to CL boundary 
conditions possess higher values for all values of 
fluid in comparison with SSI and SSM boundary con-
ditions, which agree with the results of previous 
subsections. 

 

Table 4. Comparison of the fundamental natural frequency 

parameter 2( / ) / , ( )c cb h E Hz    for simply supported 

Al/Al2O3 functionally graded square plates (a/b = 1, h/a=0.1). 

 
Present 

(CPT) 

Present 

(FSDT) 

Present 

(TSDT) 
   Ref [19]  Ref [23] 

Diff 

with 

[19] 

(TSDT) 

0 5.92483 5.79441 5.7694 5.7693 5.6763 0.001 

0.5 5.14926 4.91874 4.9015 4.9207 4.8209 0.39 

1 4.92899 4.91874 4.4192 4.4545 4.3474 0.79 

2 4.71048 4.02911 4.0090 4.0063 3.9474 0.067 

5 4.39092 3.80486 3.76823 3.7837 3.7218 0.41 

8 4.16293 3.72511 3.6846 3.6830 3.6410 0.04 

10 4.04527 3.67619 3.63684 3.6277 3.5928 0.25 

 
 

Table 5. Comparison of the fundamental natural frequency 

parameters ( 2 / , ( )Fa h D Hz    ) for a simply support-

ed square isotropic plate in contact with fluid. 

Diff 

(TSDT) 

Present 

(TSDT) 

Present 

(FSDT) 

Present 

(CPT) 
Ref [11]  

0.94 3.139 3.140 3.141 3.169 0 

1.43 3.020 3.020 3.021 3.064 0.2 

0.22 2.191 2.191 2.192 2.196 0.4 

5.48 1.414 1.414 1.415 1.496 0.6 

12.1 1.031 1.031 1.032 1.173 0.8 

16.9 0.860 0.860 0.861 1.036 1 
 



1 /b b
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7. Conclusion  

In this study hydrostatic vibration analysis of a 
functionally graded (AL/AL2O3 and AL/ZrO2) rec-
tangular plate partially in contact with a bounded 
fluid is investigated. For this purpose, Classical 

(CPT), the First order Shear Deformation (FSDT) and 
the Third order Shear Deformation (TSDT) plate 
theories are employed. Using numerical data pro-
vided, the effect of different parameters including 
boundary conditions, material properties, aspect 
ratio, thickness ratio, and dimensions of the tank on 
the plate natural frequencies is examined and dis-
cussed in detail. The obtained results show that the 
accuracy of fundamental natural frequencies com-
puted using CPT decreases as the thickness ratio 
increases. These results show that interaction be-
tween plate and fluid causes the wet mode shapes to 
distort from the dry mode shapes of the plate. Espe-
cially, severe distortions from dry modes are ob-
served in the higher vibration modes. Also, it is ob-
served that the mode shapes change according to 
the fluid depth and the wet natural frequencies de-
crease as fluid depth increases. The fundamental wet 
natural frequency of the plate increases monoton-
ically as the thickness ratio increases. For all values 
of depth ratio and thickness ratio the frequencies 
corresponding to clamped boundary conditions pos-
sess higher values in comparison with movable and 
immovable simply supported boundary conditions. 
Numerical results reveal that the fundamental wet 
natural frequency increases as the tank width in-
creases and approaches an asymptotic value. More-
over, the higher the aspect ratio is, the lower the 
natural frequencies are. 
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Appendix 

APPENDIX A: Stress-Displacement Relation-
ships 

A-1. Classical Plate Theory (CPT) 

Three independent displacements variables u, v 
and w, in x, y and z directions, respectively, are used 
to describe deformations of the plate; the geometric 
imperfection (or initial deformation due to hydro-
static pressure, Appendix C) w0 in normal direction 
is also introduced. The displacements u1, u2, u3 of a 
generic point of the plate at distance z from the z=0 
plane (see Figure 1) are related to the middle sur-
face displacements u, v, w by: 

1 ( / 2)
w

u u z h
x


  


    (A 1) 

2 ( / 2)
w

u v z h
y


  


     (A 2) 

3 0u w w      (A 3) 

 

Figure 3. Variation of fundamental wet natural frequen-
cy of functionally graded

2 3(Al/Al O ) rectangular plates 

versus aspect ratios for three combinations of boundary 
conditions using TSDT (c1=0.4 m, h/a=0.1 , b1/b=0.4, 

α=2) 

 

 

Figure 4. Variation of fundamental wet natural fre-
quency versus depth of the fluid for a functionally 

graded 
2 3(Al/Al O ) rectangular with three combina-

tions of boundary conditions using TSDT (c1=0.4 m, 
h/a=0.1 , a/b=1 , α=2) 

 

 

Figure 5. Variation of fundamental wet natural frequency versus 
thickness ratios for a functionally graded 

2 3(Al/Al O )  rectangular 

with three combinations of boundary conditions using TSDT 
(c1=0.4 m, a/b=1 , b1/b=1, α=2) 
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The von Kàrmàn nonlinear strain–displacement re-
lationships are introduced to describe the defor-
mations of the plate. The strain components x , y  
and xy  at an arbitrary point of the plate are related 
to the middle surface strains ,x 0 , ,y 0  and ,xy 0  
and the torsion of the middle surface xk , yk  and 

xyk by the following three relationships: 

( )
, ( / ) 0

x x 0 xz h 2 k     (A 4) 

( )
, ( / ) 0

y y 0 yz h 2 k     (A 5) 

( )
, ( / ) 0

xy xy 0 xyz h 2 k     (A 6) 

where 

0
,0x

wu w

x x x


 
 
  

 (A 7) 

0
,0y

wv w

y y y


 
 
  

 (A 8) 

0 0
,0xy

w wu v w w

y x x y x y


    
   
     

 (A 9) 

2
(0)

2x

w
k

x


 


 (A 10) 

2
(0)

2y

w
k

y


 


 (A 11) 

2
(0) 2xy

w
k

x y


 

 
 (A 12) 

A-2. First-Order Shear Deformation Theory (FSDT) 

 Five independent variables, three displacements 
u, v, w and two rotations 1 and 2, are used to de-
scribe the plate’s middle plane deformation. This 
theory may be regarded as the thick-plate version of 
the von Kàrmàn theory. 

The hypotheses are: (i) the transverse normal 
stress z  is negligible; in general, this is a good ap-
proximation of the actual behaviour of moderately 
thick plates; and (ii) the normal to the middle sur-
face of the plate before deformation remains 
straight, but not necessarily normal, after defor-
mation; this is a relaxed version of the Kirchhoff’s 
hypothesis.  

The displacements u1, u2, u3 of a generic point at 
distance z from the z=0 plane (see Fig. 1) are related 
to the middle surface displacements u, v, w, 1  and 

2  by the following equations: 

1 1( / 2)u u z h     (A 13) 

2 2( / 2)u v z h     (A 14) 

3 0u w w   (A 15) 

where 1 and 2 are the rotations of the transverse 
normal about the y and x axes, respectively. A linear 
field in z is assumed for the first-order shear defor-
mation theory. In Eq. (B-15) it is assumed that the 
normal displacement is constant through the thick-
ness, which means 0Z  . 

The strain-displacement equations for the first-
order shear deformation theory are given by the 
following equations: 

( )
, ( / ) 0

x x 0 xz h 2 k     (A 16) 

( )
, ( / ) 0

y y 0 yz h 2 k     (A 17) 

( )
, ( / ) 0

xy xy 0 xyz h 2 k     (A 18) 

,0xz xz   (A 19) 

,0yz yz   (A 20) 

where 

0
,0x

wu w

x x x


 
 
  

 (A 21) 

0
,0y

wv w

y y y


 
 
  

 (A 22) 

0 0
,0xy

w wu v w w

y x x y x y


    
   
     

 (A 23) 

,0 1xz

w

x
 


 


 (A 24) 

,0 2yz

w

y
 


 


 (A 25) 

(0) 1
xk

x





 (A 26) 

(0) 2
yk

y





 
(A 27) 

(0) 1 2
xyk

y x

  
 
 

 (A 28) 

,0yz yz   (A 29) 

Eqs. (A 19) and (A 20) show a uniform distribu-
tion of shear strains through the shell thickness, 
which gives uniform shear stresses. The actual dis-
tribution of shear stresses is close to a parabolic dis-
tribution through the thickness, taking zero value at 
the top and bottom surfaces. For this reason, for 
equilibrium considerations, it is necessary to intro-
duce a shear correction factor with the first-order 
shear deformation theory in order not to overesti-
mate the shear forces. 
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A-3. Third-Order Shear Deformation Theory 
(TSDT) 

A third-order shear deformation theory of plates 
is introduced by Reddy. The displacements of a ge-
neric point of the plate are related to the middle 
plane displacements by the following equations: 

1 1

3

12

( / 2)

4
                ( / 2)

3

u u z h

w
z h

xh





  

 
   

 

 (A 30) 

2 2

3

22

( / 2)

4
               ( / 2)

3

u v z h

w
z h

yh





  

 
   

 

 (A 31) 

3 0u w w   (A 32) 

where 1 and 2 are the rotations of the transverse 
normal at middle plan about the y and x axes, re-
spectively, and the other terms can be computed as 
functions of w, 1 and 2. Eqs. (A 30) and (A 31) rep-
resent the parabolic distribution of shear effects 
through the thickness and satisfy the zero shear 
boundary condition at both the top and bottom sur-
faces of the plate.  
 The strain-displacement equations, keeping 
terms up to z3, are written as follows: 

 
,0

(0) 2 (2)       ( / 2) ( / 2)

x x

x xz h k z h k

 

   
 (A 33) 

 
,0

(0) 2 (2)        ( / 2) ( / 2)

y y

y yz h k z h k

 

   
 (A 34) 

 
,0

(0) 2 (2)        ( / 2) ( / 2)

xy xy

xy xyz h k z h k

 

   
 (A 35) 

 (1)
,0 ( / 2) ( / 2)xz xz xzz h z h k      (A 36) 

 (1)
,0 ( / 2) ( / 2)yz yz yzz h z h k      (A 37) 

 
where 
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(1)

,02

4
xz xzk

h
   (A 49) 

(1)

,02

4
yz yzk

h
   (A 50) 

APPENDIX B: Boundary Conditions and Dis-
cretization [27] 

 The boundary conditions for simply supported 
plates with movable edges (SSM) are as the follow-
ing: 

v = w = 2 = x xN M   0,      at x = 0, a, (B 1-5) 

u = w  = 1 = y yN M   0,       at y = 0, b, (B 6-10) 

Where xN  or yN  and xM  or yM are the normal 
force and the bending moment per unit length, re-
spectively. 
 The boundary conditions for simply supported 
plates with immovable edges (SSI) are as follows: 

u = v = w = 2 = xM   0,      at x = 0, a, (B 11-15) 

u = v = w = 1 = yM   0,      at y = 0, b. (B 16-20) 

 The boundary conditions for clamped plates (CL) 
are as follows: 

u=v=w=1=2=0,  at x=0, a,  and at y=0, 
b 

(B 21-25) 

 Three expansions of plate displacements are 
used to discretize the system for the different 
boundary conditions. For simply supported movable 
(SSM) edges, the displacements u, v and w and rota-
tions 1 and 2 are expanded using the following ex-
pressions, which satisfy identically the geometric 
boundary conditions: 
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where m and n are the numbers of half-waves in x 
and y directions, respectively, and t is the time; 
um,n(t), vm,n(t), wm,n(t), 

,1 ( )
m n

t  and 
,2 ( )

m n
t  are the 

generalized coordinates, which are unknown func-
tions of t. M and N indicate the terms necessary in 
the expansion of the in-plane displacements and, in 
general, are larger than M̂  and N̂ , respectively, 
which indicate the terms in the expansion of out-of-
plane displacement and rotations.  
 For simply supported immovable (SSI) edges, the 
following expansions are used: 
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 Finally, for clamped edges (CL), the expansions 
take the following form: 
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APPENDIX C: The Effect of the Hydrostatic 
Triangular Pressure 

To account the effect of the hydrostatic triangu-
lar pressure, the virtual work corresponding to the 
hydrostatic triangular pressure is estimated by the 
following equation: 

1
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0 0

1
( )

2

ba

h FU g w b y dydx   , (C 1) 

The virtual work due to hydrostatic triangular 
pressure can be taken into account for the forced 
and nonlinear vibrations. In order to take into ac-
count the effects of hydrostatic triangular pressure 
on the linear free vibration, the plate configuration 
due to hydrostatic triangular pressure is developed. 
The plate configuration for the thin plates due to 
hydrostatic triangular pressure is approximated as 
follows: 
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where
 hpA  is the unknown constant coefficient. Ap-

plying bi-harmonic equation 
4

0 1( )Fw g b y     
coefficient hpA is defined as follows: 
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From Eq. (A-3), the associated Fourier coefficient 

hpA  is obtained as follows: 
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(C 4) 

The system is then studied in the case of a plate 
contacting water on both sides. In this case, the con-
tribution of the initial deformation of the plate, given 
by the hydrostatic pressure of the fluid, can be elim-
inated if the water level in both tanks is identical. 
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