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An equivalent continuum model based on the Eshelby-Mori-Tanaka approach was employed to 

estimate the effective constitutive law for an elastic isotropic medium (i.e., the matrix) with ori-

ented straight carbon nanotubes (CNTs). The two-dimensional generalized differential quadra-

ture method was an efficient and accurate numerical tool for discretizing equations of motion 

and for implementing various boundary conditions. The proposed rectangular plates have two 

opposite edges simply supported, and all possible combinations of free, simply supported, and 

clamped boundary conditions were applied to the other two edges. The CNTs volume fraction 

varied based on the thickness of the functionally graded carbon nanotube-reinforced plate and 

the generalized power-law distribution of four parameters. The effects of geometrical and mate-

rial parameters and boundary conditions on the frequency parameters of the laminated func-

tionally graded nanocomposite plates were investigated, and the results revealed that the natu-

ral frequencies of the structure were significantly affected by the influence of CNT agglomeration. 
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1. Introduction    

Functionally graded materials (FGMs) are ad-
vanced composite materials engineered for smooth 
spatial variation among material properties, which is 
achieved by fabricating composite materials with 
gradual spatial variations among constituent materi-
als’ relative volume fractions and microstructures 
[1]. 

Malekzadeh, Golbahar, Haghighi, and Atashi [2] 
performed a free vibration analysis of functionally 
graded, thin to moderately thick annular plates sub-
jected to a thermal environment and supported on a 
two-parameter elastic foundation based on the first-
order shear deformation theory and differential 
quadrature method (DQM). Hosseini-Hashemi, 

Es’haghi, and Karimi [3] performed a vibration anal-
ysis of piezoelectric-coupled thick annular function-
ally graded plates subjected to different combina-
tions of boundary conditions at the inner and outer 
edges of an annular plate, based on Reddy’s third-or-
der shear deformation theory. Free and forced vibra-
tions of functionally graded annular sectorial plates 
with simply supported radial edges and arbitrary cir-
cular edges were investigated by Nie and Zhong [4]. 
Yas and Tahouneh [5] performed a free vibration 
analysis of thick functionally graded annular plates 
on elastic foundations using the DQM and the three-
dimensional (3-D) elasticity theory. The same au-
thors [6–9] investigated free vibrations among thick 
one- and two-directional (2-D) functionally graded 

  

mailto:vahid.tahouneh@ut.ac.ir
http://dx.doi.org/10.22075/macs.2018.11539.1111
https://www.google.com/search?q=Continuously+graded+sandwich+plates&spell=1&sa=X&ved=0ahUKEwjzsM38gKLUAhVoCcAKHVOrBpIQvwUIJCgA


 

50 V. Tahouneh / Mechanics of Advanced Composite Structures 5 (2018) 49–66 

 

 

annular sector plates on Pasternak elastic founda-
tions using the DQM. Tahouneh et al. [10] studied 
free vibration characteristics of annular continuous-
grading fiber reinforced plates resting on elastic 
foundations using the DQM. Arefi [11] proposed an 
elastic solution for a curved beam made of FGMs with 
different cross sections. Bennai, Atmane, and Tounsi 
[12] developed a new refined hyperbolic shear and 
normal deformation beam theory to study the free vi-
brations and buckling of functionally graded sand-
wich beams under various boundary conditions. Ta-
houneh [13] used a semi-analytical approach based 
on the DQM and a series solution to present a 3-D 
elasticity solution for free vibration analysis of thick 
continuously graded carbon nanotube-reinforced 
rectangular plates. Yas and Sobhani Aragh [14] 
achieved natural frequencies for rectangular contin-
uously graded fiber reinforced plates resting on elas-
tic foundations. Matsunaga [15] analyzed the natural 
frequencies and buckling stresses of functionally 
graded plates using a higher order shear deformation 
theory based on the through thickness series expan-
sion of displacement components. Hosseini-Hash-
emi, Rokni Damavandi Taher, and Akhavan [16] em-
ployed the DQM to investigate free vibrations of func-
tionally graded circular and annular sectorial thin 
plates of variable thicknesses resting on the Paster-
nak elastic foundation. 

Carbon nanotubes (CNTs) possess exceptional 
electrical, mechanical, and thermal properties that 
are relevant for various applications ranging from 
nano-electronics to biomedical devices. A detailed 
summary of the mechanical properties of CNTs can 
be found in [17]. The addition of nano-sized fibers or 
nanofillers, such as CNTs, can further increase the 
merits of polymer composites [18]. These nanocom-
posites, easily processed due to the small diameter of 
the CNTs, exhibit unique properties [19–20], such as 
enhanced modulus and tensile strength, high thermal 
stability, and environmental resistance. This behav-
ior, combined with low density makes CNTs suitable 
for a broad range of technological sectors, including 
telecommunication, electronic [21], and transport in-
dustries, and particularly for aeronautic and aero-
space applications for which reduced weight is cru-
cial to reducing fuel consumption. For example, Qian 
et al. [22] showed that the addition of a 1 wt. % (i.e., 
1% by weight) multiwall CNT to polystyrene resulted 
in 36–42% and 25% increases in the elastic modulus 
and the break stress of the nanocomposite proper-
ties, respectively. In addition, Yokozeki, Iwahori, and 
Ishiwata [23] reported the retardation of the onset of 
matrix cracking in composite laminates containing 
cup-stacked CNTs compared to those without such 
CNTs. The properties of the CNT-reinforced compo-
sites (CNTRCs) depend on a variety of parameters, 
including CNT geometry and the interphase between 

the matrix and CNT. Interfacial bonding in the inter-
phase region between an embedded CNT and its sur-
rounding polymer is a crucial issue for load transfer-
ring and reinforcement [24]. Experimental and nu-
merical studies of CNTRCs have shown that distrib-
uting CNTs uniformly for reinforcement in a matrix 
can achieve moderate improvements of mechanical 
properties [22, 25] due to the weak interface be-
tween the CNTs and the matrix where a significant 
material property mismatch exists.  

FGMs can be utilized to manage a material’s micro‐
structure and to improve the vibrational behavior of 
a plate or shell structure reinforced by CNTs. In the 
literature, few studies on the mechanical behavior of 
functionally graded CNTRC structures have been per-
formed. Shen [26] suggested that nonlinear bending 
behavior can be considerably improved through the 
use of a functionally graded distribution of CNTs in a 
matrix. The compressive post-buckling and thermal 
buckling behaviors of functionally graded nanocom-
posite plates reinforced by aligned, straight single-
wall CNTs (SWCNTs) subjected to in-plane tempera-
ture variation were reported by Shen and Zhu [27] 
and Shen and Zhang [28]. Ke, Yang, and Kitipornchai 
[29] investigated the nonlinear free vibration of func-
tionally graded CNTRC Timoshenko beams and 
found that both linear and nonlinear frequencies of 
functionally graded CNTRC beam with symmetrical 
distribution of CNTs were higher than those of beams 
with uniform or unsymmetrical distribution of CNTs. 
Marin and Lupu [30] obtained a spatial estimate, sim-
ilar to the Saint-Venant type using Toupin-type 
measure associated with corresponding steady-state 
vibrations and assumed that the exciting frequency 
was lower to a certain critical frequency. Marin [31] 
extended the concept of domain of influence to cover 
the elasticity of microstretch materials. Sharma and 
Marin [32] studied wave propagation in micropolar 
thermoelastic solid half space with distinct conduc-
tive and thermodynamic temperatures by examining 
the oblique reflection of a plane waves incident at the 
free surface of the micropolar generalized thermoe-
lastic solid half space at two temperatures. 

Although research has been conducted on general 
sandwich structures, very little work has been done 
to consider the vibrational behavior of functionally 
graded sandwich structures [33,34]. Li, Iu, and Kou 
[35] studied free vibrations of functionally graded 
sandwich rectangular plates with simply supported 
and clamped edges. Kamarian, Yas, and Pourasghar 
[36] studied free vibration of functionally graded 
sandwich rectangular plates with simply supported 
edges, resting on elastic foundations using the DQM.  
Very recently, Wand and Shen [37] investigated the 
large amplitude vibration and the nonlinear bending 
of a sandwich plate with CNTRC face sheets resting 
on an elastic foundation based on a micromechanical 
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model and multi-scale approach. Tahouneh and Naei 
[38] investigated free vibration and vibrational dis-
placements of thick laminated curved panels with fi-
nite using the DQM. It was assumed that the inner 
surfaces of the functionally graded sheets were metal 
rich, while the outer surface layers were metal or ce-
ramic rich or made of a mixture of two constituents. 
Moradi-Dastjerdi [39] investigated the effect of wave 
propagation in functionally graded composite cylin-
ders reinforced by aggregated CNTs. Moradi-
Dastjerdi and Momeni-Khabisi [40] studied free and 
forced vibrations and resonance phenomena in sand-
wich plates with an isotropic core and composite re-
inforced by wavy CNT face sheets. Moradi-Dastjerdi 
and Momeni-Khabisi [41] investigated free-vibration 
and stress-wave propagation behavior in nanocom-
posite plates reinforced by wavy CNTs using the 
mesh-free method based on the first order shear de-
formation theory. Moradi-Dastjerdi and Malek-
Mohammadi [42] investigated biaxial buckling of 
sandwich plates with symmetric composite lami-
nated core and functionally graded face sheets using 
a new and improved high-order theory. Other re-
search considered vibration and static analyses of 
functionally graded CNT-reinforced nanocomposite 
structures [43-45], such as Bouchafa et al. [46], who 
investigated thermal stress and deflections of func-
tionally graded sandwich plates via a new refined hy-
perbolic shear deformation theory.  

In most of the studies mentioned above, the mate-
rial properties of functionally graded CNTRCs were 
assumed to be graded by thickness, which was esti-
mated  based on the extended rule of mixtures. Using 
this rule, CNT efficiency parameters were deter-
mined by matching the elastic modulus of CNTRCs 
from the molecular dynamics (MD) simulation re-
sults with numerical results obtained from the ex-
tended rule of mixture. The extended rule of mixture 
is not applicable when CNTs are oriented randomly 
in the matrix.  

CNTs have low bending stiffness, due to a small di-
ameter and small elastic modulus in the radial direc-
tion, and a high aspect ratio, allowing for simple ag-
glomeration in polymer matrices [47–48]. To achieve 
the desired properties for CNTRCs, it is critical to en-
sure that CNTs are uniformly dispersed in a matrix 
[49]. It has been observed that a large amount of the 
nanotubes concentrate in agglomerates [50]; 
Stephan et al. [51] observed that in a 7.5% concen-
tration sample, a large amount of CNTs were concen-
trated in aggregates. Other researchers have consid-
ered the agglomeration effect of single-walled CNTs 
on different structures [52–56], such as Tornabene, 
Fantuzzi, and Bacciocchi [57] who studied the static 
response of composite plates and shells reinforced 
by agglomerated nanoparticles made of CNTs. Fan-

tuzzi et al. [58] investigated the free vibration of ar-
bitrary shaped functionally graded CNT-reinforced 
plates using the non-uniform rational b-spline curve 
method, which describes arbitrary shapes with holes 
and discontinuities. The buckling behavior of moder-
ately thick CNT-reinforced spherical composite pan-
els subjected to both uniaxial and biaxial loads was 
examined by Pouresmaeeli, Fazelza-
deh, and Ghavanloo [59], while Tahouneh and 
Eskandari-Jam [60] performed a free vibration anal-
ysis of elastically supported continuously graded 
CNT-reinforced annular plates. The volume fractions 
of oriented, straight SWCNTs were assumed to be 
graded by thickness.  

The specific objective of the present investigation 
is to provide a 3-D elasticity solution for the analysis 
of the natural frequencies of functionally graded 
nanocomposite sandwich plates. The volume frac-
tions of randomly oriented agglomerated SWCNTs 
are assumed to be graded by the thickness of sheets. 
The direct application of CNT properties in microme-
chanics models for predicting material properties of 
nanotube/polymer composites is inappropriate 
without taking into account the effects of significant 
size differences between nanotubes and a typical car-
bon fiber [61]. In other words, continuum microme-
chanics equations cannot capture the scale difference 
between the nano and micro levels. To overcome this 
limitation, a virtual equivalent fiber consisting of a 
nanotube and its interphase, which is perfectly 
bonded to surrounding resin, was applied. A two-pa-
rameter micromechanics model of agglomeration 
was used to determine the effect of CNT agglomera-
tion on the elastic properties of randomly oriented 
CNTRCs. In this research, an equivalent continuum 
model based on the Eshelby-Mori-Tanaka approach 
was employed to estimate the effective constitutive 
law of the elastic isotropic medium (i.e., matrix) with 
oriented straight CNTs. The generalized DQM was 
used to solve the governing equations for the sand-
wich plates. 

2. Material properties of CNTRCs 
2.1 Properties of the equivalent fiber  

A virtual equivalent fiber consisting of a nanotube 
and its interphase, perfectly bonded to surrounding 
resin, was used to obtain the mechanical properties 
of a CNT/polymer composite using the multiscale fi-
nite element method (FEM). The equivalent fiber for 
a SWCNT with a chiral index of (10, 10) was a solid 
cylinder with diameter of 1.424 nm. The ROM was 
used inversely to calculate the material properties of 
the equivalent fiber as follows [62]. 

http://journals.sagepub.com/author/Moradi-Dastjerdi%2C+Rasool
http://journals.sagepub.com/author/Moradi-Dastjerdi%2C+Rasool
http://journals.sagepub.com/author/Momeni-Khabisi%2C+Hamed
http://journals.sagepub.com/author/Moradi-Dastjerdi%2C+Rasool
http://journals.sagepub.com/author/Momeni-Khabisi%2C+Hamed
http://journals.sagepub.com/author/Moradi-Dastjerdi%2C+Rasool
http://journals.sagepub.com/author/Malek-Mohammadi%2C+Hosein
http://journals.sagepub.com/author/Malek-Mohammadi%2C+Hosein
http://macs.journals.semnan.ac.ir/?_action=article&au=3666&_au=Saleh++Pouresmaeeli
http://macs.journals.semnan.ac.ir/?_action=article&au=3665&_au=S.+Ahmad++Fazelzadeh
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where ELEF, ETEF, GEF, υEF, ELC, ETC, GC, υC, EM, GM, υM, VEF, 
and VM were the longitudinal modulus of equivalent 
fiber, transverse modulus of equivalent fiber, shear 
modulus of equivalent fiber, Poisson’s ratio of equiv‐
alent fiber, longitudinal modulus of composites, 
transverse modulus of composites, shear modulus of 
composites, Poisson’s ratio of composites, modulus 
of matrix, shear modulus of matrix, Poisson’s ratio of 
matrix, volume fraction of the equivalent fiber, and 
volume fraction of the matrix, respectively. ELC, GC, 
and ETC were obtained using a multiscale FEM or MD 
simulations, respectively. Mechanical properties of 
the developed equivalent fiber are listed in Table 1 
[24]. In [24], material properties of the matrix were 

given as 
32.1 , 1150 /m mE GPa kg m   and 

0.34m  . 

2.2 Effect of CNT agglomeration on the properties of 
composites  

In CNTRCs and due to large aspect ratios (usually > 
1,000), low bending rigidity of CNTs, and van der 
Waals forces, CNTs have a tendency to bundle or 
cluster together. The effect of nanotube agglomera-
tion on the elastic properties of randomly oriented 
CNTRCs is presented in this section. Shi et al. [49] de-
rived a two-parameter micromechanics model to de-
termine the effect of nanotube agglomeration on the 
elastic properties of randomly oriented CNTRCs (Fig-
ure 1). It is assumed that a number of CNTs are uni-
formly distributed (UD) throughout the matrix and 
that other CNTs appear in cluster form because of ag-
glomeration, as shown in Figure 1. The total volume 
of the CNTs in the representative volume element 
(RVE), denoted by Vr, can be divided into the follow-
ing two parts: 

Table 1. Material properties of the equivalent fiber 

Mechanical Properties Equivalent fiber [62] 
Longitudinal Young’s Modulus (GPa) 649.12 
Transverse Young’s Modulus (GPa) 11.27 
Longitudinal Shear Modulus (GPa) 5.13 
Poisson’s Ratio 0.284 
Density (kg/m3) 1400 

 

Figure 1. RVE with the Eshelby inclusion model of agglomera-
tion of CNTs 

cluster m
r r rV V V   (2) 

where 
cluster
rV  represents the volumes of CNTs inside 

a cluster, and 
m

rV  is the volume of CNTs in the matrix 

and outside the clusters. The two parameters used to 
describe the agglomeration are defined as 

,      ,    0, 1
cluster

cluster r

r

V V

V V
        (3) 

where V is the volume of RVE, clusterV  is the volume of 

clusters in the RVE,   is the volume fraction of clus-

ters with respect to the total volume of the RVE, and 
 is the volume ratio of the CNTs inside the clusters 

over the total volume of CNTs inside the RVE. 1   

denotes that all CNTs are uniformly dispersed in the 
matrix, and with the decrease of  , the agglomera-

tion degree of CNTs is more severe. If 1  , all the 

nanotubes are located in the clusters, while    

means that the volume fraction of CNTs inside the 
clusters is the same as that of CNTs outside the clus-
ters (i.e., CNTs are fully dispersed). When   , the 

larger value of   denotes increased heterogeneous 

the spatial distribution of CNTs. Thus, CNTRCs, as a 
system, consist of clusters of sphere shapes embed-
ded in a matrix.  

Effective elastic stiffness of the clusters and the 
matrix should first be estimated before calculating 
the overall properties of the whole composite sys-
tem. The effective bulk modulus inK  and shear mod-

ulus inG  of the cluster and the effective bulk modulus 

outK  and shear modulus outG  of the equivalent ma-

trix outside the cluster can be calculated by [49]: 
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The subscripts m and r stand for the quantities of 
the matrix and the reinforcing phase; Km and Gm are 
the bulk and shear moduli of the matrix, respectively; 
and kr, lr, mr, nr, and pr are the Hill’s elastic moduli for 
the reinforcing phase (i.e., the CNTs), which can be 
found from the equality of the two following matri-
ces. 
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(13) 

Here, EL, ET, EZ, GTZ, GZL, GLT, and ʋLT are material 
properties of the equivalent fiber, which can be de-
termined from the inverse of the ROM. Before the use 
of the ROM, material properties of nanoscale RVEs of 
nanocomposites must be obtained from multiscale 
FEM analysis or MD simulations. The effective bulk 

modulus K and the effective shear modulus G of the 
composite are derived using the MT method as fol-
lows [49]: 
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Finally, the effective Young’s modulus E and Pois-
son’s ratio υ of the composite are given as 

9
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3. Problem description 
Consider a sandwich rectangular plate with length 

a, width b, and thickness h as depicted in Figure 2. 
The deformations defined with reference to a Carte-
sian coordinate system (x, y, z) are u, v, and w in the 
x, y, and z directions, respectively. In the present 
work, Vcnt and Vm are the CNT and matrix volume frac-
tion, respectively. It is assumed that the CNT volume 
fraction varies according to the thickness of the func-
tionally graded carbon nanotube-reinforced(FG-
CNTR) plate based on generalized power-law distri-
bution with four parameters [63]. 

 
Figure 2. Geometry of a FG-CNTR sandwich plate (the origin is 

placed in the middle of the sandwich plate) 
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 (21) 

Here, h and hf are the thicknesses of the plate and 
the face sheets, respectively, and V* is the maximum 
possible amount of the CNT volume fraction in the 

face sheets. The volume fraction index p (0 )p  

and the parameters a, b, and c indicate the CNT vol-
ume fraction profile through the thickness of the 
structure. The values of parameters a, b, and c must 

be chosen so that *(0 )cntV V  . According to the re-

lation (21), the core of the structure does not contain 
CNTs, whereas the lower and upper face sheets are 
made of a mixture of the two constituents. Various 
material profiles through the thickness of the face 
sheets can be illustrated using the four-parameter 
power-law distribution. The through-thickness vari-
ations in the volume fraction for some profiles are il-
lustrated in Figure 3 for different amounts of param-
eters b, c, and p. 

The total volume fractions of CNTs (
total

cntV ) based 

on thickness for different types of material distribu-
tion profiles (Figures 3A, 3B, and 3C) are reported in 
Tables 2, 3, and 4. 

 

 
Figure 3. Variation in the fiber volume fraction (Vcnt) through the thickness of the functionally graded sandwich plate. A: (a=1, b=0, c=2), B: 

(a=1, b=1, c=2), C: (a=1, b=1, c=6) 

Table 2. The total volume percentage of CNTs (
total

cntV ) based on 

plate thickness with different amounts for parameter “P” for a = 
1, b = 0, and c = 2 

P=0.1 P=0.2 P=0.5 P=1 P=2 P=5 P=10 
1.09 2.00 4.00 6.00 8.00 10.00 10.90 

Table 3. The total volume percentage of CNTs (
total

cntV ) based on 

plate thickness with different amounts for parameter “P” for a = 
1, b = 1, and c = 2 

P=0.1 P=0.2 P=0.5 P=1 P=2 P=5 P=10 
0.22 0.44 1.05 2.00 3.60 6.76 9.19 

Table 4. The total volume fraction of CNTs (
total

cntV ) based on 

plate thickness for different amounts of parameter “P” for a = 1, b 
= 1, and c = 6 

P=0.1 P=0.2 P=0.5 P=1 P=2 P=5 P=10 
0.56 1.08 2.47 4.28 6.65 9.45 10.66 
 
 
 
 

4. Governing equations and solution pro-
cedure 
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The mechanical constitutive relations that relate 
stress to strains are as follows [64]. 

2ij kk ij ij      (22) 

Here,   and   are the Lame constants, ij  is the 

infinitesimal strain tensor, and ij  is the Kronecker 

delta. In the absence of body forces, the equations of 
motion are as follows [64]. 
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 (23) 

The infinitesimal strain tensor is related to dis-
placement as follows [64], 
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 (24) 

where u , v , and w  are displacement components 

along the x, y, and z axes, respectively. Upon substi-
tuting (24) into (22) and then into (23), the equations 
of motion in terms of displacement components with 
infinitesimal deformations can be written as given 
below. 
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The related boundary conditions at z=-h/2 and h/2 
are as follows: 
at  z = -h/2: 

0, 0, 0zx zy zz      (26) 

and at  z = h/2: 
0, 0, 0zx zy zz      (27) 

where 
ij  are the components of the stress tensor. 

The stress components are related to the displace-
ment components using 3D constitutive relations as 
Eq. (28). 
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 (28) 

Different types of classical boundary conditions at 
the edges of the plate can be stated as follows. 
Simply supported (S): 

0, 0, 0;yy w u     (29) 

Clamped (C): 
0, 0, 0;u v w    (30) 

Free (F): 
0, 0, 0yy xy yz      (31) 

Here, plates with two opposite edges at x = -a/2 and 
a/2 are simply supported, and arbitrary conditions at 
edges y = -b/2 and b/2 are considered. For free vibra-
tion analysis, adopting the following form for the dis-
placement components allows the boundary condi-
tions at edges x = -a/2 and a/2 to be satisfied. 

( , , , ) ( , , ) cos( ( 2) ) ,

( , , , ) ( , , )sin( ( 2) ) ,
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 (32) 

Here, m is the wave number along the x-direction, 

  is the natural frequency, and i (= 1 ) is the im-

aginary number. Substituting displacement compo-
nents from (32) into the equations of motion for dis-
placement components, the coupled partial differen-
tial equations are reduced to a set of coupled ordi-
nary differential equations. The geometric and natu-
ral boundary can also be simplified; however, for 
brevity, this is not shown here. 

It is necessary to develop appropriate methods to 
investigate the mechanical responses of functionally 
graded nanocomposite sandwich plates. Due to the 
complexity of the problem caused by inhomogeneity, 
it is difficult to obtain an exact solution. In this paper, 
the generalized DQM was used to solve the governing 
equations of rectangular plates. 
Substituting displacement components from (32) in 
(25), allows for the use of the generalized DQM to dis-
cretize the equations of motion. The main difference 
between this method and others is how governing 
equations are discretized. In the DQM, governing 
equations and boundary conditions are directly dis-
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cretized; thus, elements of stiffness and mass matri-
ces are evaluated directly. In contrast, in the Ray-
leigh-Ritz method and FEM, the weak form of the 
governing equations should be developed and the 
boundary conditions satisfied in the weak form. By 
doing this, larger numbers of integrals with increas-
ing amounts of differentiation should be obtained to 
arrive at the element matrices. Also, the number of 
degrees of freedom must increase to obtain accepta-
ble accuracy. A brief review of this is given in Shu [65] 
and Shu and Richards [66]), and the following equa-
tions can be given in the x-direction: 
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in the y-direction: 
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and in the z-direction: 
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(35) 

where y
ijA , z

ijA , and y
ijB , z

ijB  are the first- and second-

order DQ weighting coefficients in the y- and z-direc-
tions, respectively.  

In a similar manner, boundary conditions can be 
discretized. To carry out an eigenvalue analysis, the 
domain and boundary nodal displacements should be 
separated. In vector forms, they are denoted as {d} 
and {b}, respectively. Based on this definition, the dis-
cretized form of the equations of motion and the re-
lated boundary conditions can be represented in the 
matrix form as equations of motion: 

 

 
    2 0db dd

b
K K M d

d


  
          
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 (36) 

and as boundary conditions: 

     0bd bbK d K b         (37) 

Eliminating the boundary degrees of freedom in 
(36) using (37), this equation becomes,  

      2- 0K M d   (1) 

where         
-1

-dd db bb bdK K K K K . The above ei-
genvalue system of equations can be solved to find 
the natural frequencies and mode shapes of the 
plates. 

5. Numerical results and discussion  

The study results were compared to those for 1-D 
conventional functionally graded rectangular plates, 
and presented formulations are given in the form of 

convergence studies with respect to 
zN  and 

yN , 

which refer to the number of discrete points distrib-
uted along the thickness and width of the plate, re-
spectively. The boundary conditions of the plate are 
specified by letters; for example, S-C-S-F denotes a 
plate with edges x=-a/2 and a/2 simply supported 
(S), edge y=-b/2 clamped (C), and edge y=b/2 free (F).  
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The properties of the plate were assumed to vary 
through the thickness of the plate with a desired var-
iation of the volume fractions of the two materials in 
between the two surfaces. The modulus of elasticity 
E  and mass density   were assumed to follow a 

simple power law distribution, and Poisson’s ratio 
  

was assumed to be a constant, as follows: 
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 (39) 

where 22 hzh   
and p is the power law index 

that takes values greater than or equal to zero. Sub-
scripts M and C refer to the metal and ceramic con-
stituents that denote the material properties of the 
bottom and top surface of the plate, respectively. The 
mechanical properties are as follows: 
Metal (Aluminum, Al): 

9 2 370*10 , 0.3, 2702M ME N m kg m      

Ceramic (Alumina, Al2O3): 
9 2 3380*10 , 0.3, 3800C CE N m kg m      

In Table 5, the first seven non-dimensional natural 
frequency parameters of simply supported thick 
functionally graded plates are compared to those of 
Matsunaga [15] and Yas and Sobhani [14]. Ny and Nz 
are the number of discretised point in the y- and z- 
directions, and p is the exponent parameter in Table 
5. 

According to these data, excellent solution agree-
ments can be observed between the present method 

and others. A numerical value of 13z yN N   was 

used, and the variation in CNT distribution through 
the plate was assumed to be as follows (Figure 4), 
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where *
CNTV  is the CNT volume fraction. It should be  

noted that, for both UD and functionally graded cases, 
the values of mass fractions of CNTs are the same. 

After demonstrating the convergence and accuracy 
of the method, parametric studies for 3-D vibration 
analysis of functionally graded nanocomposite sand-
wich plates with various length-to-width ratios (a/b) 
and combinations of free, simply supported, and 
clamped boundary conditions at the edges were com-
puted. A comprehensive study was also carried out to 

investigate the effect of CNT agglomeration on the vi-
brational response of sandwich structures. 

Before analyzing the free vibration of functionally 
graded nanocomposite sandwich plates, the effects of 
agglomeration degree (   and  ) on the effective 

longitude Young’s modulus and Poisson’s ratio of UD-
CNTRC plates were investigated (Figure 5.) Figure 5A 
represents the highest value for Young’s moduli at-
tained for the agglomeration state of   (i.e., full 

dispersion), where the volume fraction of CNTs in the 
cluster and the matrix were equal. When   was less 

than  (   ), the effective Young’s modulus in‐

creased as the value of  increased, reaching a maxi-

mum value when the CNTs were uniformly dispersed 
in the composite (i.e.,   and for   ); the effec-

tive stiffness decreased with the increase of  . The 

effect of agglomeration degree on the Poisson’s ratio 
for UD plates is plotted in Figure 5B. In contrast to 
Young’s modulus behavior, with the increase of  , 

Poisson’s ratio decreased for   and increased for 

   due to the fact that the Poisson’s ratio of the 

equivalent fiber described properties of the equiva-
lent fiber section less than the Poisson’s ratio of the 
matrix. 

Using the relations presented in material proper-
ties of CNTRCs and problem description sections,  
variations in the effective material properties 
through the thickness of the FGS-CNTR plate for dif-
ferent agglomeration parameters were observed. For 
instance, by considering hf/h=0.25, a=1, b=0, p=1, 
and V*=20%, the variations in Young’s moduli and 
Poisson’s ratios for functionally graded sandwich 
plates with respect to the different agglomeration pa-
rameters  and 1  are illustrated in Figures 6 and 

7. As expected, at a constant z/h ratio, increases in 
parameter   increased the effective Young’s modu‐

lus and decreased the Poisson’s ratio because
1   . 

The agglomeration parameters had significant ef-
fects on the material properties. Therefore, it is con-
cluded that CNTs agglomeration plays an important 
role in vibrational characteristics of FGS-CNTR 
plates. 

The free vibrational characteristics of FGS-CNTR 
plates was studied using an MT approach based on 
the equivalent fiber discussed in the properties of the 
equivalent fiber section and Table 1. 

The non-dimensional natural frequency and Win-
kler and shearing layer elastic coefficients are as fol-
lows [67]. 
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Table 5. Convergence behavior and accuracy of the first seven non-dimensional natural frequencies )( CC Eh   of a simply sup-

ported functionally graded plate against the number of DQ grid points (b/h = 2) 

P Nz Ny 1  
2  

3  
4  5  

6  
7  

0 7 7 0.5569 0.9395 0.9735 1.3764 1.5072 1.6064 1.7384 
  9 0.5570 0.9396 0.9741 1.3771 1.5083 1.6071 1.7401 
  13 0.5570 0.9396 0.9740 1.3774 1.5088 1.6076 1.7407 
 9 7 0.5573 0.9398 0.9735 1.3771 1.5087 1.6074 1.7403 
  9 0.5572 0.9400 0.9742 1.3777 1.5090 1.6079 1.7406 
  13 0.5572 0.9400 0.9741 1.3778 1.5096 1.6086 1.7405 
 13 7 0.5571 0.9401 0.9735 1.3779 1.5094 1.6083 1.7411 
  9 0.5572 0.9400 0.9742 1.3777 1.5090 1.6078 1.7405 
  13 0.5572 0.9400 0.9742 1.3777 1.5090 1.6078 1.7406 
  [15]  0.5572 0.9400 0.9742 1.3777 1.5090 1.6078 1.7406 
  [14] 0.557243 0.940041 - - 1.508987 - 1.740602 

0.5 7 7 0.4829 0.8222 0.8700 1.2250 1.3332 1.4364 1.5401 
  9 0.4828 0.8229 0.8707 1.2258 1.3337 1.4367 1.5429 
  13 0.4830 0.8224 0.8706 1.2254 1.3338 1.4370 1.5424 
 9 7 0.4833 0.8225 0.8701 1.2251 1.3335 1.4365 1.5402 
  9 0.4835 0.8240 0.8708 1.2257 1.3340 1.4370 1.5431 
  13 0.4836 0.8233 0.8707 1.2258 1.3340 1.4369 1.5426 
 13 7 0.4836 0.8227 0.8701 1.2251 1.3334 1.4366 1.5402 
  9 0.4835 0.8231 0.8708 1.2259 1.3338 1.4370 1.5431 
  13 0.4835 0.8233 0.8709 1.2259 1.3339 1.4370 1.5425 
  [15] 0.4835 0.8233 0.8709 1.2259 1.3339 1.4370 1.5425 
  [14] 0.482849 0.822358 - - 1.332605 - 1.541085 

1 7 7 0.4367 0.7476 0.7997 1.1158 1.2154 1.3085 1.4059 
  9 0.4374 0.7477 0.8001 1.1165 1.2159 1.3090 1.4075 
  13 0.4373 0.7478 0.8005 1.1163 1.2162 1.3088 1.4077 
 9 7 0.4368 0.7477 0.7998 1.1159 1.2157 1.3088 1.4068 
  9 0.4374 0.7477 0.8003 1.1165 1.2161 1.3090 1.4076 
  13 0.4374 0.7478 0.8006 1.1165 1.2162 1.3090 1.4078 
 13 7 0.4368 0.7477 0.7999 1.1159 1.2158 1.3088 1.4070 
  9 0.4375 0.7478 0.8003 1.1165 1.2162 1.3091 1.4076 
  13 0.4375 0.7478 0.8005 1.1165 1.2163 1.3091 1.4077 
  [15] 0.4375 0.7477 0.8005 1.1166 1.2163 1.3091 1.4078 
  [14] 0.437396 0.747514 - - 1.216035 - 1.407459 

4 7 7 0.3565 0.5988 0.6249 0.8724 0.9589 1.0000 1.1029 
  9 0.3577 0.5995 0.6355 0.8729 0.9589 1.0007 1.1038 
  13 0.3577 0.5996 0.6349 0.8728 0.9589 1.0003 1.1030 
 9 7 0.3569 0.5989 0.6250 0.8726 0.9589 1.0001 1.1032 
  9 0.3579 0.5997 0.6357 0.8731 0.9589 1.0008 1.1040 
  13 0.3578 0.5997 0.6351 0.8730 0.9589 1.0005 1.1032 
 13 7 0.3571 0.5991 0.6252 0.8727 0.9589 1.0001 1.1033 
  9 0.3579 0.5997 0.6357 0.8731 0.9589 1.0008 1.1040 
  13 0.3579 0.5997 0.6352 0.8731 0.9589 1.0008 1.1040 
  [15] 0.3579 0.5997 0.6352 0.8731 0.9591 1.0008 1.1040 
  [14] 0.357758 0.599494 - - 0.958764 - 1.103674 

10 7 7 0.3306 0.5454 0.5657 0.7866 0.8588 0.9043 0.9838 
  9 0.3311 0.5460 0.5662 0.7890 0.8588 0.9047 0.9841 
  13 0.3310 0.5459 0.5661 0.7881 0.8588 0.9050 0.9846 
 9 7 0.3308 0.5455 0.5659 0.7870 0.8588 0.9044 0.9840 
  9 0.3313 0.5461 0.5664 0.7892 0.8588 0.9048 0.9842 
  13 0.3312 0.5460 0.5663 0.7883 0.8588 0.9051 0.9846 
 13 7 0.3309 0.5455 0.5660 0.7871 0.8588 0.9045 0.9840 
  9 0.3313 0.5461 0.5664 0.7892 0.8588 0.9049 0.9844 
  13 0.3313 0.5461 0.5664 0.7884 0.8588 0.9051 0.9847 
  [15] 0.3313 0.5460 0.5664 0.7885 0.8588 0.9050 0.9847 
  [14] 0.331146 0.545833 - - 0.858445 - 0.984365 

 

To compare vibrational responses from a single-
layer functionally graded plate and a functionally 
graded laminated plate, a special case was consid-
ered: hf/h=0.3, a=1, b=0, p=1, and V*=20%. The vari-
ations in CNT volume fractions through the thickness 
of the FGS-CNTR plate can be found in Figure 8. 

The effect of agglomeration on vibrational re-
sponse of functionally graded plates for different 

boundary conditions are depicted in Figure 9. The 
lowest magnitude frequency parameter was ob-
tained using a type 4 functionally graded plate, fol-
lowed by types 3, 2, 1, and the functionally graded 
sandwich plate. For many  , for instance 1  , and 

for small amounts of  , the functionally graded 

sandwich plates had lower frequency amounts than 
functionally graded type 1 plates. 
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Figure 4. Schematic configuration of a CNT-reinforced composite 
plate with four types of CNT distribution 

 

 
Figure 5. Influence of CNT agglomeration parameters.  .and 

on the (A) effective Young’s modulus and (B) Poisson’s ratio of 
the UD nanocomposite plate 

According to Figure 9, for all types of CNT distribu-
tion, with the increase of , the frequency parame-

ters increased. Discrepancies between frequencies 
for the plates with type 3 and type 2 material distri-
bution of CNTs remained almost unaltered with in-
creases in  . 

Figure 10 shows that for lower amounts of   the 

frequency response of plates with different types of 
material distribution changed. This figure reveal that 

with increases in , the natural frequency in-

creased, but when   was more than 0.5, the fre-

quency parameters tended to decrease. 

 
Figure 6. The variation in Young’s moduli along the thickness of 

the FGS-CNTR plate with the agglomeration effect 

 
Figure 7. The variation of Poisson’s ratio along the thickness of 

the FGS-CNTR plate with the agglomeration effect 

 
Figure 8. Variations in CNT volume fractions through the thick-

ness of FGS-CNTR plates 
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Figure 9. The variation of frequency parameters versus agglomeration parameters for different types of CNTRC plates and boundary condi-

tions ( 1  , a/b=1, b/h=2) 

 
Figure 10. The variation of frequency parameters versus agglomeration parameters for different types of CNTRC plates and boundary condi-

tions (η=0.5, a/b=1, b/h=2) 
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The effect of material distributions and total vol-
ume percentage of CNTs ( total

cntV ) on the vibrational re-

sponse of sandwich plates were investigated. It 
should be noted that various material profiles can be 
obtained by considering different amounts for pa-
rameters a, c, and p. 

The influence of index p and parameter a on the 
fundamental frequency parameters of FGS-CNTR 
plates is shown in Figure 11 for S-F-S-F, S-F-S-C, and 
S-C-S-C boundary conditions. The figure shows the 
fundamental frequency parameters of the FGS-CNTR 

plate versus the power-law index p for various values 
of the parameter a, when b = 0.3 and c = 3. Increases 
in parameter p caused the frequency parameter of 
sandwich plates to also increase. For small amounts 
of a, the frequency parameter steadily increased, but 
for greater amounts of this parameter, the increase in 
frequency parameters was more significant. To have 
a better understanding, the material distribution 
profiles in Figure 11 are provided in Figures 12, 13, 
and 14 for different amounts of parameters a and p. 

 

 
Figure 11. Variation of the fundamental frequency parameter of CNTR plates for different types of boundary conditions versus the power-law 

exponent p (a/b = 1, b/h = 2) 

 
Figure 12. The material distribution profiles for thickness of 

sandwich plates (a = 0.25, b = 0.2, c = 2). 

 
Figure 13. The material distribution profiles for thickness of 

sandwich plates (a = 0.5, b = 0.2, c = 2). 
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Figure 14. The material distribution profiles for thickness of 
sandwich plates (a = 1, b = 0.2, c = 2). 

The influence of parameter c on the free vibration 
of sandwich plates with FG-CNTR face sheets was in-
vestigated and is presented in Figure 15. Parameter c 
varied from 2 to 12, and as it increased, the funda-
mental frequency increased due to the CNT volume 
fraction and, therefore, the frequency parameters 
also increasing. This behavior was observed for two 
types of boundary conditions that are not shown 
here for brevity’s sake. The material distribution pro-
files for the results in Figure 15 are provided in Fig-
ures 16, 17, 18, and 19. 

 
Figure 15. Variation in the fundamental frequency parameter of 
FGS-CNTR plates versus the power-law exponent p (a/b = 1, b/h 

= 2) 

 
Figure 16. The material distribution profiles for thickness of 

sandwich plates (a = 0.2, b = 0.2, c = 2). 

 
Figure 17. The material distribution profiles for thickness of 

sandwich plates (a = 0.2, b = 0.2, c = 4). 

 
Figure 18. The material distribution profiles for thickness of 

sandwich plates (a = 0.2, b = 0.2, c = 8). 
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Figure 19. The material distribution profiles for thickness of 

sandwich plates (a = 0.2, b = 0.2, c = 12). 

6. Conclusion  

In this research, the 2-D generalized DQM was em-
ployed to obtain a highly accurate semi-analytical so-
lution for free vibration of functionally graded nano-
composite sandwich plates under various boundary 
conditions. The study was carried out based on the 3-
D, linear, and small strain elasticity theories. The MT 
approach was implemented to estimate the effective 
material properties of the nanocomposite sandwich 
plates. The agglomeration effect of single-walled 
CNTs was and was shown to significantly affect the 
natural frequencies of structures, as well as mechan-
ical properties and, therefore, free vibrations of FGS-
CNTR plates. It was found that, except in some states, 
functionally graded structures improve the vibra-
tional characteristics of CNTRCs. The effects of differ-
ent boundary conditions, various geometric parame-
ters, and different material profiles along the thick-
ness of sandwich rectangular plates were also inves-
tigated. 
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