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The present article investigates the thermoelastic interaction in a three-dimensional homogene-

ous and isotropic sandwich structure using the dual-phase-lag (DPL) model of generalized ther-

moelasticity. The incorporated resulting non-dimensional coupled equations are applied to a 

specific problem in which a sandwich layer of unidentical homogeneous and isotropic substances 

is subjected to time-dependent thermal loadings; the two outer sides are traction-free. The ana-

lytical expressions for the displacement components, stress, temperature, and strain are ob-

tained in the physical domain using the normal mode analysis. The mathematical difficulties in 

dealing with the hyperbolic heat conduction equation are overcome and the thermophysical 

quantities of the sandwich structure are depicted graphically. The effect that the two phase lags 

have on the studied field are highlighted. The results demonstrate the phenomenon of a finite 

speed of wave propagation in a sandwich structure for each field. 
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1. Introduction 

The conventional dynamic theory of thermoelas-
ticity is based on the hypothesis of Fourier’s law of 
heat conduction in which the temperature distribu-
tion is governed by a parabolic-type partial differen-
tial equation. Thus, the theory predicts that a thermal 
signal is felt instantaneously everywhere in a body. 
This implies that there is an infinite speed of propa-
gation of the thermal signal, which is unrealistic from 
a physical point of view, especially for short-time re-
sponses. It is also well known that heat transmission 
at low temperatures propagates by means of waves. 
These aspects have aroused much interest and activ-
ity in the field of heat propagation and given rise to 
the subject of generalized thermoelasticity. General-
ized thermoelasticity theories involve hyperbolic-
type governing equations and the finite speed of 
thermal signals. Lord and Shulman [1] proposed an 
extended thermoelasticity theory that involves one 

thermal relaxation time. Green and Lindsay [2] pro-
posed a temperature-rate-dependent theory of ther-
moelasticity that includes two relaxation times. 
These generalized models are familiar to many re-
searchers and numerous studies have been done us-
ing these theories. 

Green and Naghdi [3-5] introduced three models, 
which are subsequently referred to as models I, II, 
and III, to provide sufficient basic modifications in 
the constitutive equations in order to permit the 
treatment of a wide class of heat flow problems. The 
Green and Naghdi models include a term called the 
thermal displacement gradient among the independ-
ent constitutive variables. Although the thermal 
wave model can capture the microscale response in 
time, it does not capture the microscale response in 
space [6]. Therefore, the validity of the thermal wave 
model becomes debatable for the fast transient re-
sponses with respect to microstructural interactions 
[7]. To remove the precedence assumption implied 
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by the thermal wave model, the dual-phase-lag (DPL) 
model of heat conduction was developed [8] and ver-
ified [7]. The model accounts for the spatial and tem-
poral effects of both macroscale and microscale heat 
transfer for one temperature formulation with the 

form: ( , ) = ( , ),q Tq P t K T P t      where T  is the 

phase lag of the temperature gradient. In the DPL 
model with >q T  , the temperature gradient within 

the medium induces heat flux; hence, the tempera-
ture gradient is the cause of the energy transport and 
the heat flux is the effect. However, for <q T  , the 

heat flux is the cause of the energy transport and the 
temperature gradient is the effect. For =q T   with a 

homogeneous initial temperature, the DPL model re-
duces to Fourier’s law [9]. 

Prasad, Kumar, and Mukhopadhyay [10] studied 
the propagation of finite thermal waves in the con-
text of the DPL model. El-Karamany and Ezzat [11] 
recently solved some remarkable problems using the 
DPL model. Chiriţă [12] studied the time-differential 
DPL model. Sur, Pal and Kanoria [13–16] produced 
several remarkable works on finite thermal wave 
propagations in generalized thermoelasticity. 

Modern structural elements are often subjected 
to temperature changes of such magnitude that their 
material properties are considered to no longer have 
constant values [17]. Because the thermal and me-
chanical properties of materials vary with tempera-
ture, it must be taken into consideration during the 
thermal stress analysis of these materials [18-22]. 

One of the major subjects of the mechanics of mul-
tilayered composites is the elaboration of the mathe-
matical modeling, methods, and algorithms used for 
the numerical solutions of engineering problems. 
One class of interesting elastodynamic problems has 
a wide range of applications not only in the mechan-
ics of composite materials, but also in other branches 
of modern engineering. Therefore, a large number of 
theoretical and computational investigations have 
been reported in this field, and a systematic review 
of the obtained results is available in a series of mon-
ographs [23–25]. 

It is widely accepted that an inappropriate selec-
tion of interface elements can lead to regions of un-
realistically high stress gradients and erroneous re-
sults. Considering the fact that many media are natu-
rally layered, some researchers have shifted their fo-
cus to the study of thermoelastic problems in a mul-
tilayered medium. Vishwakarma [26] reported on 
the torsional wave propagation in a reinforced sand-
wich medium. Tokovyy and Ma [27] presented an an-
alytical solution for the axisymmetric and transient-
thermoelastic problem of body forces and a heat 
source in vertically inhomogeneous media. Wu [28] 

proposed an analytical theory of the nonlinear unsta-
ble pavement temperature fields for a 2D layered 
composite structure; the theory was based on the 
fundamental principles of meteorology thermody-
namics. The exact solution of the transient analysis of 
a multilayered magneto-electro-thermoelastic strip 
subjected to a nonuniform heat supply has also been 
reported [29]. Zhong and Geng [30] demonstrated 
the solutions of thermal stress problems of a multi-
layered elastic half-space using the transfer matrix 
method. Sur and Kanoria [31] studied the problem of 
generalized thermoelasticity for different composite 
structures.  

The objective of this paper is to consider three-di-
mensional thermoelastic layers of unidentical sub-
stances, each of which is homogeneous and isotropic. 
The outer surfaces of the medium are free of trac-
tions and are subjected to time-dependent thermal 
loadings. The heat conduction equation has been for-
mulated to incorporate the DPL model of heat con-
duction. Using the normal mode analysis, the govern-
ing equations have been expressed in Cartesian coor-
dinates and are applied to a thermal shock problem 
in a composite structure that fills the half-space. The 
numerical estimates of the thermophysical quanti-
ties have been computed for copper and stainless 
steel, and are depicted graphically. To the best of the 
authors’ knowledge, this is the first time that a prob-
lem based on DPL heat conduction has been modeled. 
Excellent predictive capability is demonstrated in the 
layered composite structure due to the DPL heat con-
duction model. 

2. Basic Equations 

The stress-strain-temperature relations are as 
follows: 

= 2 [ ] , , =1,2,3ij ij ije i j       (1) 

where ij  is the stress tensor,   is the temperature 

field, ∆ the cubical dilation,   and   are Lamé's con-

stants, = (3 2 ) t    , t  is the coefficient of linear 

thermal expansion, and ij  is the Kronecker delta. In 

addition, = iie  and ije  is the strain tensor given by: 

 , ,

1
= .

2
ij i j j ie u u  (2) 

The stress equation of motion in the absence of 
body force is  

, = , , =1,2,3ij j iu i j   (3) 

The heat equation for the dynamic coupled gener-
alized thermoelasticity based on the DPL thermoe-
lasticity model is given by: 
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where  ( =1,2,3)iu i  is the displacement components, 

  is the density, and c  is the specific heat at con-

stant strain. 

3. Formulation of the Problem  

We now consider an isotropic, homogeneous, and 
thermoelastic layered medium of a sandwich struc-
ture with a three-dimensional space that fills the re-

gion  , which is defined as 
= {( , , ) : 2 2 , < < , < < }x y z l x l y z         

where layers I and III are made from same material 
and layer II is a different material. Layer II is in the 
middle of the space and its thickness is half of the en-
tire thickness. We consider that the outer sides of the 
medium are thermally shocked and traction-free. 
The rectangular Cartesian system ( , , )x y z  is used in 

which the origin is on the surface = 0x . The compo-

nents of the displacement vector u  are given as 

( , , )u v w . 

The constitutive relations are as follows: 

= 2 ,xx

u
e

x
   


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
 (5) 

= 2 ,yy

v
e

y
   


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
 (6) 

= 2 ,zz

w
e

z
   


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
 (7) 

= ,xy

u v

y x
 

  
 

  
 (8) 

= ,yz

v w

z y
 

  
 

  
 (9) 

= ,zx

u w

z x
 

  
 

  
 (10) 

The equations of motion in the absence of body 
forces are  

2 2 2

2 2 2

2 2

( 2 ) ( )

= ,

u u u

x y z

v w
u

x y x z x

    


 

   
         

   
          

(11) 

2 2 2

2 2 2

2 2

( 2 ) ( )

= ,

v v v

y x z

u w
v

x y y z y

    


 

   
         

   
          

(12) 

2 2 2

2 2 2

2 2

( 2 ) ( )

= ,

w w w

z x y

u v
w

x z y z z

    


 

   
         

   
          

(13) 

The heat conduction equation for the DPL model is 
given by:  
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    

 (14) 

where = 0T . Neglecting the term 

2

2

q
, we have the 

Lord–Shulman (LS) heat conduction model. 
Equations (11)–(13) can be rewritten in the fol-

lowing form:  

 

2 2
2

2 2
= ( ) ,

u u e

x x x x


    
   

   
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(15) 

2 2
2

2 2
= ( ) ,

v v e

y y y y


    
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 (16) 

2 2
2

2 2
= ( ) ,

w w e

z z z z


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 (17) 

The nondimensional variables are as follows: 

0 0 0

2
0 0 0 0

= , = , = ,

= , = , = , = ,

x c x y c y z c z

u c u v c v w c w t c t

  

   

  

   
 

2 2
0 0

2 2
0 0

= , = ,

= , ' = ,

q q T T

ije
ij

c c

c c

   

 
 

 

 


 

where  
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After removing the primes, the equations can be 
written in a nondimensional form as follows:  

2 2
2

2 2
= (1 ) ,

u u e

x x x x


 
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2
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( 2 ) 2c

  
 
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In a similar manner, we can transform the consti-
tutive relations into nondimensional forms. The di-
mensionless expressions for the constitutive are ob-
tained by summation of Equations (18) – (20) as fol-
lows:  

2 2= ,e e    (22) 

We shall consider the invariant stress   to be the 

mean value of the normal stresses as follows: 

=
3

xx yy zz  


 

 

Substituting the expressions for xx , yy , and 

zz  into the above expressions, we obtain  

1 1

3 4
= ,  where = .

3
e


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
  (23) 

4. Normal Mode Analysis  

In this method, the solutions of the physical vari-
ables can be decomposed in terms of the normal 
modes in the following form:  

* * * * * *

[ ( )]

[ , , , , , ]( , , , ) = [ , , , , , ]

( )e ,

ij ij

t i my nz

u v w e x y z t u v w e

x 

   

   
(24) 

where *( )u x , *( )v x , *( )w x , *( )e x , *( )x  and * ( )ij x  

are the amplitudes of the functions = 1i  ,   is the 

angular frequency, and m  and n  are the wave num-

bers in the y  and z  directions, respectively. 

By rewriting Equations (21) - (23) based on the 

normal modes and eliminating *( )e x  from the re-

sulting expressions, we obtain a system of ordinary 
differential equations:  
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 (25) 

 2 2 2 * * *
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Eliminating *( )x  from Equations (25) and (26) 

yields the following fourth-order differential equa-
tion:  

4 2 *( ) ( ) = 0,D LD M x   (27)  

where  

1 2

1 2 2 1 0

2 2
1 1

2 2
2 0 1 1

= ,

= ,

= ,

= ( ) .
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
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
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We consider the layered plates in a sandwich struc-
ture in which layers I and III are made from the same 
material and layer II is a different material. Layer II is 
placed in the middle of the plane; its thickness is 
equal to half thickness of the plate. We consider that 
the two outer sides of the sandwich structure are 
subjected to thermal loading and are traction-free. 
(i) Region I ( 2 )l x l    : The solutions of Equations 

(25) and (26) take the following form:  

* 2 2 2 2
1 1 1 2 2 2= ( )cosh( ) ( )cosh( ),I A k p k x A k p k x   

 
(28) 

*
2 1 1 2 2 2= cosh( ) cosh( ),I a A k x a A k x   

(29) 

where 2 2 2
1=p m n a   and 1k  and 2k  are the roots 

of the equation  

4 2 = 0,I Ik L k M    (30) 
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(ii) Region II ( )l x l   : The solutions of Equations 

(25) and (26) take the following form:  

* 2 2 2 2
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(31) 
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(32) 

where 1p  and 2p  are the roots of the equation  

4 2 = 0,II IIP L P M 
 

(33) 

(iii) Region III ( 2 )l x l  : The solutions of Equations 

(25) and (26) take the following form:  
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(35) 

5. Boundary Conditions 

5.1. Thermal Boundary Condition 

We suppose that a thermal load is applied to the 
medium in the two outer sides:  

0( , , , ) = on = 2 ,x y z t x l  
 

(36) 

 5.2 Mechanical Boundary Condition 

We consider that the normal stresses disappear 
on the two sides of the medium. For example, 

( , , , ) = 0 on = 2 .x y z t x l  (37) 

 5.3 Continuity Conditions of Heat Flux  

The continuity conditions of heat flux are given as  

= on = , = on = ,I II II IIIq q x l q q x l  (38) 

The conditions in Equation (38) can take the follow-
ing form:  
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where the heat flux is subjected to the DPL model of 
heat conduction. For example,  
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Employing the normal mode analysis, heat flux takes 
the following form:  
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where  
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5.4 Continuity Conditions of Stresses 

The continuity conditions of stresses are given as  

= on = , = on = .I II II IIIx l x l     (39) 

Applying the above conditions, the stress and tem-
peratures in regions I, II, and III are obtained as fol-
lows: 
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where  
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Using Equation (23), we can determine the strain 
component as follows:  
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Furthermore, using Equation (18), we can determine 
the displacement component as follows:  
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6. Numerical Results and Discussions  

The aim of this section is to illustrate the results 
obtained in the preceding sections. First, we present 
the analytical numerical results. For the numerical 
computations, we have considered a copper-like ma-
terial for layers I and III, and stainless steel for layer 

II. Since   is the complex time constant, we have 

0= i   then 0= (cos sin )
tte e t i t

   . The val-

ues of the material constants for the copper (layers I 
and III) are  
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The values of the material constants for stainless 
steel (layer II) are  

6 -1 -3 2 -1 -2
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17.7 10  K , 7970  kg.m , 561 m .K m ,
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Furthermore, the values of the other non-dimen-
sional parameters are 

*
0 0=1, =1.2, =1.3, =1.0, = 0.2.m n    Fig-

ures 1–4 have been plotted to study the variation of 
the temperature, stress, strain, and displacement 

against the distance x  for the DPL model at 

0.1 s and 0.4 st   when the depths of the layer are at 

= = 0.1y z  and = = 0.5y z , respectively. In the fig-

ures, the continuous lines correspond to = = 0.1y z , 

while the dotted lines correspond to = = 0.5y z . 

Figure 2 depicts the variation of the temperature 

  versus distance x  for different depths at = 0.1t  

and 0.4 . As the temperature attains its maximum 

magnitude on the two outer sides of the sandwich 
structure to satisfy the thermal boundary conditions 

of the problem, the magnitude of   decreases 

sharply toward layer II of the sandwich structure at 

= = 0.1y z . In addition, the magnitude of   for re-

gions I and III (copper) is greater than the magnitude 

of   in region II (stainless steel). Furthermore, at 

depth = = 0.5y z , the magnitude of   decreases 

slowly compared with the rate at = = 0.1y z . As time 

t  increases, the magnitude of the temperature also 

increases; however, as the depth of the composite 

medium increases, the magnitude of   decreases. 

 
Figure 1. Geometry of the Problem 

 
Figure 2. Variation of temperature   against x for the DPL 

model at 0.1 and 0.4t   

 

 
Figure 3. Variation of stress   against x for the DPL model at 

0.1 and 0.4t   
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Fig. 3 shows the variation of the stress   against 

the distance x  at = 0.1 and 0.4t  and for different 

depths of the sandwich structure ( = = 0.1y z  and 

= = 0.5y z , respectively). The stress   has a value 

of zero on both outer sides of the sandwich structure, 
which satisfies the mechanical boundary condition of 
the problem given in Equation (37). Furthermore, the 

stress   is compressive in nature near the two 

planes of application of thermal loading for different 
depths of the medium. For different y  and z , the 

magnitude of   for stainless steel is less than the 

of the copper. As the depth of the layer increases, the 

magnitude of   decreases throughout the body. In 

addition, an increase in time also increases the mag-

nitude of  . 

Fig. 4 shows the variation of the strain e  against 

distance x  for different values of depth at 

= 0.1 and 0.4t . The magnitude of e  is greater for 

copper than for stainless steel. In addition, the strain 
is maximum near the two outer boundaries of the 
sandwich structure. The magnitude decreases 
sharply as we move toward layer II. With an increase 
in depth, the magnitude of elongation decreases. 

Fig. 5 shows the variation of displacement u  

against the distance x  for 0.1 and 0.4t  . The mag-

nitude of the displacement increases at intervals 

2 < < 1.9x   and 1.9 < < 2x  to attain the maximum 

magnitude near = 1.9x  . The magnitude then de-

creases sharply as we move toward layer II when 
= = 0.1y z . Furthermore, the displacement magni-

tude almost negligible near the two outer surfaces of 

the sandwich structure at the interval 0.5 < < 0.5.x  

The figures show that x l   at the interfaces of 

the composite structure because the medium satis-
fies the continuity conditions of heat flux and stress 
as given in Equations (38) and (39), respectively. 
Thus, the graphical representations of the thermo-
physical quantities are compatible with the continu-
ity conditions at the interfaces.  

Figs. 6–9 have been plotted to study the profile of 
variation of the thermophysical quantities for 

2 < < 2x  and = 0.1 ... 0.5t at depth = = 0.1y z . The 

figures show that as time increases, the profile of the 
thermophysical quantities also increase, which is 
quite plausible. 

Figs. 10–13 show the variation of the thermo-
physical quantities for the same set of parameters as 
mentioned earlier at 0.2y z  . The 

figures show 
that as the depth increases, the magnitudes of the 
thermophysical quantities decrease. However, as 
time increases, the magnitudes increase.

 

Figs. 14 and 15 show the variation of the stress 
( )  and displacement ( )u , respectively, against the 

thickness of the sandwich structure at depth 
= = 0.1y z  and time = 0.1 and 0.4t  for both the LS 

and the DPL models. 
Fig. 14 shows that for both the LS and the DPL 

models, the   value become zero on the two outer 

sides of the sandwich structure, which satisfies the 
mechanical boundary condition of the problem. Fur-

thermore, for = 0.1t  and 0.4 , the magnitude of   for 

the LS model is greater than in the DPL model.  

 
Fig. 4. Variation of strain e  against x for the DPL model at

0.1 and 0.4t   

 

 

Figure 5. Variation of displacement u  against x for the DPL 

model when 0.1 and 0.4t   

 
Figure 6. Profile of temperature   for the DPL model for differ-

ent  andx t  at 0.1y z   
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Figure 7. Profile of stress   for the DPL model for different x 

and t at 0.1y z   

 

Figure 8. Profile of strain e  for the DPL model for different x and 

t when 0.1y z   

 

Figure 9. Profile of displacement u  for the DPL model for differ-

ent x and t at 0.1y z   

 

Figure 10. Profile of temperature   for the DPL model for differ-

ent x and t at 0.2y z   

 

Figure 11. Profile of stress   for the DPL model for different x 

and t at 0.2y z   

 
Figure 12. Profile of strain e  for the DPL model for different x 

and t at 0.2y z   

Fig. 15 shows the variation of the displacement u  

for the same set of parameters as mentioned earlier. 

The magnitude of u  for the LS model is greater than 

in the DPL model for both earlier situations and later 
on.  

 

 

Figure 13. Profile of displacement u  for the DPL model for dif-

ferent x and t at 0.2y z  . 
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Figure 14. Variation of stress   against x for the DPL and LS 

models at 0.1 and 0.4t   

 
Figure 15. Variation of displacement u  against x for the DPL 

and LS models at 0.1 and 0.4t   

Fig. 16 shows the variation of the stress component 

xx against the distance x for the DPL model for 

= = 0.5 and = = 0.1y z y z . The temperature on both 

sides of the structure is considered to be constant. 
The stresses have a significant effect on the structure 
as observed in Fig. 11. The magnitude of the stress 
component is the same on both boundaries of the 
structure. The magnitude of the profile of the stress 
component increases as we move within the me-
dium. 

 
Figure 16. Variation of stress xx  against x for the DPL and LS 

models at 0.4t   

 

7. Conclusions  

In this paper, a mathematical treatment has been 
presented to explore the wave propagation in a 
three-dimensional isotropic thermoelastic medium 
based on the DLP model. The LS model can be ob-
tained as a particular case. The problem has been 
solved theoretically and exemplified through the use 
of the LS and DPL models. All the figures exhibit the 
different peculiarities that occur during the propaga-
tion of waves. The conclusions may be summarized as 

follows. 
1. Significant differences in the variation of the 

thermophysical quantities for the LS and DPL models 
can be observed. In the case of generalized thermoe-
lasticity, for a high heat flux over a very short time, 
the heat conduction calculation based on the DPL 
model is more advantageous than the LS model in en-
gineering problems. 

2. The DPL thermoelastic model has significant 
advantages compared with the single phase lag ther-
moelastic model where T  is the phase lag of the 

temperature gradient. In the DPL model with >q T 

, the temperature gradient within the medium in-
duces heat flux; hence, the temperature gradient is 
the cause of the energy transport and the heat flux is 
the effect. However, for <q T  , heat flux is the cause 

of the energy transport and the temperature gradient 
is the effect. For =q T   with a homogeneous initial 

temperature, the DPL model reduces to Fourier’s law. 
While heat flux appears for a very small time interval 
in an elastic body, it is more advantageous to con-
sider the DPL model rather than the LS model be-
cause the stability in the variation of the thermophys-
ical quantities are more prominent in the DPL model. 

3. The magnitude of the thermophysical quan-
tities are greater for copper (layers I and III) than for 
stainless steel (layer II). 
 
 

4. The magnitudes of the thermophysical 

quantities increase with the increase of time .t  

5. The magnitudes of the thermophysical 
quantities are greater for the LS model than the DPL 
model for both the earlier situation and later on. 

6. The present work can be considered as a of 
generalized thermoelasticity problem in the context 
of the DPL thermoelastic model. It can also be consid-
ered to be an application of a problem that occurs in 
several engineering fields in which a high heat flux 
appears in an elastic body for a very short time inter-
val.  
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