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The free vibration of the lattice cylindrical composite shell reinforced with Carbon Nano-tubes 
(CNTs) was studied in this study. The theoretical formulations are based on the First-order Shear 
Deformation Theory (FSDT) and then by enforcing the Galerkin method, natural frequencies are 
obtained. In order to estimate the material properties of the reinforced polymer with nano-tubes, 
the modified Halpin-Tsai equations were used and the results were checked with an experimental 
investigation. Also, the smeared method is employed to superimpose the stiffness contribution of 
the stiffeners with those of the shell in order to obtain the equivalent stiffness of the whole 
structure. The effect of the weight fraction of the CNTs and also the ribs angle on the natural 
frequency of the structure is investigated in two types of length to diameter ratios in the current 
study. Finally, the results which are obtained from the analytical solution are checked with the FEM 
method using ABAQUS CAE software, and a good agreement has been seen between the FEM and the 
analytical results. 
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1. Introduction  

The composite lattice structures have better 
efficiency and higher strength to weight ratio in 
comparison with the conventional metal structures. 
The lattice structures are usually made in the form 
of the thin-walled cylindrical or conical shells and 
consist of a system of  (with respect to the shell 

axis) helical and circumferential ribs [1]. The lattice 
structures are based on the idea of the load carrying 
skin and buckling. Khalili et al. [2] studied the 
transient dynamic response of the initially stressed 
composite circular cylindrical shells under the radial 
impulse load. They find out that if the axial 
compressive load increases up to the critical 
buckling load, the natural frequencies decrease. 
Hemmatnezhad et al. [3] studied the free vibrations 
of the grid-stiffened composite cylindrical shells. 
They worked in both the theoretical and numerical 
method and used first-order shear deformation 

theory for analytical solution. Zhang et al. [4] 
studied the free vibration behaviors of the carbon 
fiber reinforced lattice-core sandwich cylinder with 
lattice cores and uni-axial compression, and the free 
vibration experiments were carried out. The natural 
frequencies and vibration modes of CFRC LSC were 
revealed by the experiments for the first time. They 
find out that the circumferential vibration modes 
turning from oval, triangle to rectangle lobar mode 
are dominant in the low primary frequencies, and 
the beam bending mode appears at higher order. 

In the last two decades, many investigations have 
been conducted into the Carbon Nano-tubes (CNTs). 
They are known to improve the mechanical stiffness 
and strength. However, they also should be 
evaluated in terms of the free vibration of a 
structure. Zhu et al. [5] carried out the bending and 
free vibration analyses of the thin-to-moderately 
thick composite plates reinforced by the single 
walled carbon nano-tubes. The finite element 
method was used. Four types of the distributions of 
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the uniaxial-aligned reinforcement material are 
considered. Their results revealed the influences of 
the volume fractions of the carbon nano-tubes and 
the edge-to-thickness ratios on the bending 
responses, natural frequencies and mode shapes of 
FG-CNTRC plates. Besides, they find the CNTs 
distributed close to the top and bottom surfaces are 
more efficient than those distributed near the mid-
plane for increasing the stiffness of the plates. 
Ramgopal Reddy et al. [6] investigated on the free 
vibration analysis of the carbon nano-tube 
reinforced laminated composite panels. Three types 
of panels such as flat, concave and convex are 
considered and the influence of the boundary 
conditions on the natural frequency of the CNT 
reinforced composite panels was analyzed. Aragh et 
al. [7] worked on the natural frequency analysis of 
the continuously graded carbon nano-tube-
reinforced cylindrical shells based on the third-
order shear deformation theory. The interesting 
finding of their study is that the graded CNT volume 
fractions with symmetric distribution through the 
shell thickness have high capabilities to reduce or 
increase the natural frequency in comparison with 
the uniformly and asymmetric CNT distribution. 

In this study, a new method is introduced for 
estimating the material property of the composites 
reinforced with randomly CNTs. Then, the free 
vibration in both the analytical and FEM analysis is 
calculated for the lattice cylindrical shell. Eventually, 
the results of the FEM and analytical method are 
compared with each other and a good agreement is 
observed between them. 

2. Governing Elastic Properties 

When the CNTs are added to the composite, the 
elastic properties change. Thus, one way to estimate 
the properties is using modified Halpin-Tsai 
equations. The Cox model is used to modify these 
equations.  is the orientation factor in Eqs. (1) and 

(2) [8]: 
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where Em, Gm, Kw, Eem, Gem, ECNT and GCNT  indicate 
Young’s and shear modulus of matrix, the waviness 
correction factor, Young’s and shear modulus of 
modified polymer, Young’s and shear modulus of 
CNTs respectively. 

If the length of reinforcements (CNTs) is greater 
than the thickness of the specimen, the 
reinforcements are assumed to be randomly 
oriented in two dimensions and the factor 1 3   is 

used. If the length of reinforcements is much smaller 
than the thickness of the specimen, the 
reinforcements are assumed to be randomly 
oriented in three dimensions and the parameter 

1 6  is considered [8]. According to the Eqs. (1) 

and (2), the elastic properties of the polymer which 
is reinforced with random CNTs can be calculated. 
Then, substituting the elastic properties of the 
polymer into the Eqs. (3), (4) and (5), the elastic 
property of the composite reinforced by CNTs and 
continuous fibers can be estimated as what follows: 
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where the constant shape factor C is related to the 
aspect ratio of reinforcement length l and diameter 
d. Also, Er and Gr are the moduli of the reinforcement 
and Vr is the volume fraction of the reinforcement 
respectively. In order to validate the above 
equations, the results are compared with reference 
[9] which is an experimental investigation and is 
shown in Table 1. 

3. Equivalent Stiffness 

In order to calculate the free vibration of the 
lattice cylindrical composite shell, the equivalent 
stiffness should be determined. First, a unit cell of 
the stiffeners which is repeated in the whole of the 
structure is considered as shown in Fig. 1. Then, 
with the help of smeared stiffener method and the 
following refined assumptions, the equivalent 
stiffness can be calculated [10,11]: 
1.  The shear stresses in the cross stiffeners are not 

to be ignored. 
2.  The cross-section dimensions of the stiffeners 

are very small compared to the length. 
3.  A uniform stress distribution is assumed across 

the cross-sectional area of the stiffeners. 
4. The load on the stiffener/shell is transferred 

through shear forces between the stiffeners and 
shell. 
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Table1. The comparison of the results of the material properties of the present sturdy with Ref. [9] 

Density (Kg/m3) Shear modulus  G12 
(GPa)  

Transverse modulus 
E2 (GPa) 

Longitudinal modulus 
E1 (GPa)  

Epoxy-CNT 
modulus (GPa) Type of CNT 

Ref.[9] Present Ref.[9] Present Ref.[9] Present Ref.[9] Present Ref.[9] Present 
1532.0 1539.00 1.36 1.3826 4.29 4.2909 22.80 23.0000 2.00 2.0000 No CNT 
1540.0 1540.32 1.48 1.5079 4.67 4.6678 22.91 23.1315 2.19 2.1878 0.5% MWNT 
1541.5 1541.64 1.60 1.6331 5.04 5.0419 23.02 23.2635 2.37 2.3764 1.0% MWNT 
1543.0 1542.97 1.72 1.7579 5.41 5.4133 23.13 23.3959 2.56 2.5656 1.5% MWNT 
1540.0 1540.32 1.48 1.5102 4.67 4.6745 22.91 23.1339 2.19 2.1912 0.5% SWNT 

 

 
Figure 1. The unit cell and coordinate system for a stiffened 

cylindrical shell [3] 

 
The strains on the interface of the stiffener and 

the shell are given by [12]: 

2

2

2

x x x

x x x

t

t

t

  

  

  

  

  







 
   

 

 
   

 

 
   

 

  
(6) 

where , , , , ,
x x x x           are the mid-plane strains 

and curvatures of the shell and t is the shell 
thickness. These strain components should be 
transformed along the stiffener direction l and t. So 
the transformation matrix is as what follows [12]: 

2 2

2 2

2 22 2

l x

t

lt x

c s sc

s c sc

sc sc s c





 

 

 

    
    

     
         

  
(7) 

where cos , sinc s   , and   
is the stiffener 

orientation angle. Fig. 2 shows the force free body 
diagram on the unit cell. The axial and shear forces 
in the stiffener direction are expressed as what 
follows [12]: 
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where 
lE  and 

ltG are the longitudinal and shear 

modulus of the stiffeners, respectively. 
 

 

 
Figure 2. The force distribution on the unit cell [12] 

 
Resolving the axial and shear forces in the x and

directions, we have the following equations [12]: 
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Substituting Eqs. (6) and (8) into Eq. (9) and 
dividing the force expressions by the corresponding 
edge width of the unit cell, the forces per unit length 
are carried out as what follow[12]: 
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(10) 

According to the shear forces between stiffeners 
and shell, the torsion and bending moments are 
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applied to stiffeners and shell. Fig. 3 shows the 
moments free body diagram which is applied to unit 
cell. Then, the same as before, the resultant 
moments can be obtained as what follows [12]: 
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Fig. 4 shows the transverse shear forces, and the 
strain components are as what follows [12]: 
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where ,lz tz  are the transverse shear strains in the 

stiffeners, and ,xz z  are the transverse shear 

strains in the shell. Then, the shear forces resulting 
from the shear strains are given as the following 
expressions [12]: 
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Rewriting these forces in the x and directions, 

we have the following equations [12]: 
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Figure 3. The moments free body diagram on the unit cell [12] 

 
Figure 4. The transverse shear forces [12] 

 
The resultant shear forces per unit length can be 

obtained by dividing the above forces by the 
corresponding length are what follows [12]: 

2
0

2
0

lz

st
s

lz

G Ac

b
A

G As

a

 
 

     
 
  

  
(15) 

Therefore, the , ,st st stA B D matrices for the 

stiffeners are expressed as the following [12]: 
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Also, the resultant force and moments can be 
written as following (due to the shell in terms of the 
strain components of the mid-plane surface of the 
shell) [12]. 
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The total force and moment on the structure are 
the superposition of the forces and moments due to 
the stiffeners and the shell according to their 
volume fractions as what follows [12]: 
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where st and sh are the volume fractions of the 

stiffener and the shell respectively. 

4. Analytical Solution 

In First-order Shear Deformation Theory (FSDT), 
it is assumed that the transverse normal does not 
remain perpendicular to the mid surface after the 
deformation, so the displacement fields are as what 
follows [13]: 
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Based on (FSDT), the equilibrium equations for a 
cylindrical shell are as the following equations [3]: 
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In the above equation, x and  are the slope in 

the plane of  x z and  z  respectively. 

 
 
 
 

1 2 3, ,I I I are defined by the following relation [3]:  

     22
1 2 3

2

, , 1, ,

t

t k
I I I z z dz   (21) 

where  k
 is the density for each layer. Moreover, 

the stiffness of the shell is given by the following 
expressions [2]: 
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(22) 

where , ,A B D and H are the extensional, coupling, 

bending and thickness shear stiffness matrices 
respectively and they are defined as what follows 
[2]: 
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22

2

22
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h

ijij ij ij h
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ijij h

A B D Z Z Q dz i j

H K Z Z Q dz i j



 

 

 





  
(23) 

where K   
is the shear correction factor and equals 

to 2 12  
[2]. The mid plane strain and curvature 

components are given by the following equations 
[2]: 
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(24) 

The boundary conditions for the cylindrical shell 
which are simply supported along its curved edges 
at 0x  and x L are considered as what follows 

[2]: 
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(25) 
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The following functions are assumed to satisfy the 
simply-supported boundary conditions and the 
equations of motion: 
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(26) 

Now, substituting Eq. (24) into Eq. (22) and then 
enforcing the result into Eq. (20), the free vibration 
Eigen-equations yield to what follows: 
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, , , ,
T

mn mn mn mn mn

C M U

U U V W X Y
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(27) 
 

(28) 

where  C and  M are stiffness and mass matrices 

respectively and are shown in appendix. 

5. Results 

The geometry of the structure is shown in Table 2. 
Two types of L/D are considered. The cylindrical 
shell is assumed to be [45/-45/45/-45/45] stacking 
sequence, while in the stiffener structure, the fibers 
are considered to be oriented in the ribs’ directions. 
It is supposed that the CNTs have randomly 
orientation for both the single-wall and multi-wall 
CNTs. The material properties of the glass fiber, 
carbon nano-tubes and epoxy resin are given as 
what follows: 

72fE Gpa  900CNTE Gpa  30.1fG Gpa  

23 1.34G Gpa  0.3m   0.2f   
31110 /m Kg m   32540 /f Kg m   31680 /CNT Kg m   

15MWNTd nm  2.5SWNTd nm  0.4wK   

% 0,1,2,3CNTW   2mE Gpa  0.5fV   

1/ 6   10l m
  

The boundary conditions are applied in both 
edges of the cylinder in the ABAQUS software. The 
structure is fixed in both the circumferential and 
thickness directions and is free in the longitudinal 
direction. Also, the Mx is fixed, too. The number of 
the elements is about 475395 and their types are 
structured ones for the lattice cylinder and the shell 
sweep for the cylindrical shell. Table 3 and Table 4 
show a comparison of the first five natural 
frequencies got via analytical solution and FEM 
approach in two types of the length to diameter 
ratio (L/D = 1 and 2) and the carbon nano-tubes 
(MWNT and SWNT).  

A good agreement has been seen among the 
results and the maximum error is less than 10%. As 
shown in Fig. 5, it is clear that with an increase in 
the weight fraction of the CNTs, the natural 
frequency of the structure increases linearly.  

Figs. 6 and 7 give the first five mode shapes of the 
lattice cylindrical shell in L/D = 1 and 2 ratios, 
respectively.  

Tables 5, 6 and 7 give a comparison of different 
rib angles. Three kinds of the rib angle are chosen 
(30°, 35° and 40°) to investigate the effect of the rib 
orientation on the natural frequency of the 
structure.  

Fig. 8 shows the natural frequency decreases at 
first and then by enhancing the amount of rib angle, 
it increases.  
 

Table 2. Geometrical parameters of the lattice cylindrical shell 

Shell height (mm) 
For L/D = 1, L = 240 
For L/D = 2, L = 480 

Diameter (mm) 
For L/D = 1, D = 240 

For L/D = 2, D = 242.584 
Shell thickness (mm) 3 

Helical rib distance, ak (mm)  60 
Stiffener orientation (ϕ°) ±30 

Stiffener thickness (mm) 3 
Stiffener width (mm) 5 

 
 

(a) 

 
(b) 

 
Figure 5. Variations of the natural frequencies with different 

weight fractions of the CNTs; (a) L/D = 1 and (b) L/D = 2 
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Table 3. Natural frequencies of the lattice cylindrical shell reinforced with the glass fiber and MWNT 

 

 
 m n 

                
Analytical (Hz) FEM (Hz) Difference % Analytical (Hz) FEM (Hz) Difference % 

1 

1 
1 
1 
1 
1 

4 
5 
3 
6 
7 

614.05 
737.56 
743.94 
974.71 

1275.89 

656.58 
793.78 
801.15 

1050.30 
1373.40 

6.92 
7.62 
7.69 
7.76 
7.64 

636.37 
758.43 
776.34 

1000.73 
1310.39 

681.23 
819.58 
832.58 
1084.4 
1419.5 

7.05 
8.06 
7.24 
8.36 
8.33 

2 

1 
1 
1 
2 
1 

3 
2 
4 
4 
5 

273.72 
366.17 
397.72 
606.09 
614.05 

292.12 
401.44 
430.49 
656.71 
658.73 

6.72 
9.63 
8.24 
8.35 
7.28 

284.65 
386.81 
409.34 
623.29 
636.37 

304.38 
421.75 
445.05 
679.43 
683.69 

6.93 
9.03 
8.72 
9.01 
7.44 

 
 

Continued Table 4 Natural frequencies of the lattice cylindrical shell reinforced with the glass fiber and MWNT 

 

 
 m n 

                

Analytical (Hz) FEM (Hz) Analytical (Hz) FEM (Hz) 
Analytical 

(Hz) 
FEM 
(Hz) 

1 

1 
1 
1 
1 
1 

4 
5 
3 
6 
7 

656.69 
778.02 
804.74 

1025.36 
1343.12 

703.56 
843.36 
860.36 
1116 
1462 

656.69 
778.02 
804.74 

1025.36 
1343.12 

703.56 
843.36 
860.36 
1116 
1462 

656.69 
778.02 
804.74 

1025.36 
1343.12 

703.56 
843.36 
860.36 
1116 
1462 

2 

1 
1 
1 
2 
1 

3 
2 
4 
4 
5 

294.71 
405.05 
420.31 
639.63 
656.69 

315.57 
439.76 
458.55 
700.46 
706.27 

294.71 
405.05 
420.31 
639.63 
656.69 

315.57 
439.76 
458.55 
700.46 
706.27 

294.71 
405.05 
420.31 
639.63 
656.69 

315.57 
439.76 
458.55 
700.46 
706.27 

 
 

Table 5. Natural frequencies of the lattice cylindrical shell reinforced with the glass fiber and SWNT 

 

 
 m n 

                
Analytical (Hz) FEM (Hz) Analytical (Hz) FEM (Hz) Analytical (Hz) FEM (Hz) 

1 

1 
1 
1 
1 
1 

4 
5 
3 
6 
7 

614.05 
737.56 
743.94 
974.71 

1275.89 

656.58 
793.78 
801.15 

1050.30 
1373.40 

614.05 
737.56 
743.94 
974.71 

1275.89 

656.58 
793.78 
801.15 

1050.30 
1373.40 

614.05 
737.56 
743.94 
974.71 

1275.89 

656.58 
793.78 
801.15 

1050.30 
1373.40 

2 

1 
1 
1 
2 
1 

3 
2 
4 
4 
5 

273.72 
366.17 
397.72 
606.09 
614.05 

292.12 
401.44 
430.49 
656.71 
658.73 

273.72 
366.17 
397.72 
606.09 
614.05 

292.12 
401.44 
430.49 
656.71 
658.73 

273.72 
366.17 
397.72 
606.09 
614.05 

292.12 
401.44 
430.49 
656.71 
658.73 

 
 

Continued Table 6. Natural frequencies of the lattice cylindrical shell reinforced with the glass fiber and SWNT 

 

 
 m n 

                
Analytical (Hz) FEM (Hz) Analytical (Hz) FEM (Hz) Analytical (Hz) FEM (Hz) 

1 

1 
1 
1 
1 
1 

4 
5 
3 
6 
7 

657.39 
778.70 
805.69 

1026.23 
1344.27 

704.32 
844.19 
861.31 

1117.10 
1463.50 

657.39 
778.70 
805.69 

1026.23 
1344.27 

704.32 
844.19 
861.31 

1117.10 
1463.50 

657.39 
778.70 
805.69 

1026.23 
1344.27 

704.32 
844.19 
861.31 

1117.10 
1463.50 

2 

1 
1 
1 
2 
1 

3 
2 
4 
4 
5 

295.05 
405.67 
420.69 
640.20 
657.39 

315.95 
440.37 
459.02 
701.19 
707.04 

295.05 
405.67 
420.69 
640.20 
657.39 

315.95 
440.37 
459.02 
701.19 
707.04 

295.05 
405.67 
420.69 
640.20 
657.39 

315.95 
440.37 
459.02 
701.19 
707.04 
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(b) 2nd Mode (m=1,n=5) 

 
(d) 4th Mode (m=1,n=6) 

(a) 1st Mode (m=1,n=4) 

 
(c) 3rd Mode (m=1,n=3) 

  
(e) 5th Mode (m=1,n=7) 

 
Figure 6. The mode shapes of the lattice cylindrical shell with L/D = 1 
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(b) 2nd Mode (m=1,n=2) 

 
(d) 4th Mode (m=2,n=4) 

(a) 1st Mode (m=1,n=3) 

 
(c) 3rd Mode (m=1,n=4) 

  
(e) 5th Mode (m=1,n=5) 

 
Figure 7. The mode shapes of the lattice cylindrical shell with L/D = 2 
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Table 7. Non-dimension natural frequencies of the lattice cylindrical shell reinforced with the multi-wall CNTs and rib angle of 30  

 

 
 m n 

                
Analytical (Hz) FEM (Hz) Analytical (Hz) FEM (Hz) Analytical (Hz) FEM (Hz) 

2 

1 
1 
1 
2 
1 

3 
2 
4 
4 
5 

0.0463 
0.0620 
0.0673 
0.1026 
0.1039 

0.0494 
0.0679 
0.0729 
0.1112 
0.1115 

6.70 
9.52 
8.32 
8.38 
7.31 

0.0481 
0.0653 
0.0691 
0.1053 
0.1075 

0.0514 
0.0712 
0.0752 
0.1148 
0.1155 

6.86 
9.04 
8.83 
9.02 
7.44 

 
Continued Table 8. Non-dimension natural frequencies of the lattice cylindrical shell reinforced with the multi-wall CNTs and rib angle of 30  

 

 
 m n 

                
Analytical (Hz) FEM (Hz) Analytical (Hz) FEM (Hz) Analytical (Hz) FEM (Hz) 

2 

1 
1 
1 
2 
1 

3 
2 
4 
4 
5 

0.0497 
0.0683 
0.0709 
0.1078 
0.1107 

0.0532 
0.0741 
0.0773 
0.1181 
0.1191 

7.04 
8.49 
9.03 
9.55 
7.59 

0.0511 
0.0709 
0.0725 
0.1102 
0.1136 

0.0548 
0.0767 
0.0793 
0.1211 
0.1223 

7.24 
8.18 
9.38 
9.89 
7.66 

 
Table 9. Non-dimension natural frequencies of the lattice cylindrical shell reinforced with the multi-wall CNTs and rib angle of 35  

 

 
 m n 

                
Analytical (Hz) FEM (Hz) Analytical (Hz) FEM (Hz) Analytical (Hz) FEM (Hz) 

2 

1 
1 
1 
2 
1 

3 
2 
4 
4 
5 

0.0435 
0.0578 
0.0636 
0.0972 
0.0972 

0.0465 
0.0623 
0.0697 
0.1045 
0.1066 

6.90 
7.79 
9.59 
7.51 
9.67 

0.0452 
0.0611 
0.0654 
0.0998 
0.1006 

0.0483 
0.0656 
0.0718 
0.1084 
0.1100 

6.86 
7.36 
9.79 
8.62 
9.34 

 
Continued Table 10. Non-dimension natural frequencies of the lattice cylindrical shell reinforced with the multi-wall CNTs and rib angle of 

35  

 

 
 m n 

                
Analytical (Hz) FEM (Hz) Analytical (Hz) FEM (Hz) Analytical (Hz) FEM (Hz) 

2 

1 
1 
1 
2 
1 

3 
2 
4 
4 
5 

0.0467 
0.0639 
0.0670 
0.1022 
0.1037 

0.0500 
0.0685 
0.0738 
0.1118 
0.1131 

7.07 
7.20 

10.15 
9.39 
9.06 

0.0481 
0.0664 
0.0685 
0.1044 
0.1065 

0.0516 
0.0710 
0.0756 
0.1149 
0.1160 

7.28 
6.93 

10.36 
10.06 
8.92 

 
Table 11. Non-dimension natural frequencies of the lattice cylindrical shell reinforced with the multi-wall CNTs and rib angle of 40  

 

 
 m n 

                
Analytical (Hz) FEM (Hz) Analytical (Hz) FEM (Hz) Analytical (Hz) FEM (Hz) 

2 

1 
1 
1 
2 
1 

3 
2 
4 
4 
5 

0.0469 
0.0560 
0.0701 
0.1048 
0.1074 

0.0504 
0.0639 
0.0772 
0.1133 
0.1182 

7.46 
14.11 
10.13 
8.11 

10.06 

0.0487 
0.0633 
0.0720 
0.1083 
0.1102 

0.0524 
0.0674 
0.0796 
0.1172 
0.1219 

7.60 
6.48 
10.5 
8.22 
10.6 

 
Continued Table 12. Non-dimension natural frequencies of the lattice cylindrical shell reinforced with the multi-wall CNTs and rib angle of 

40  

 

 
 m n 

                
Analytical (Hz) FEM (Hz) Analytical (Hz) FEM (Hz) Analytical (Hz) FEM (Hz) 

2 

1 
1 
1 
2 
1 

3 
2 
4 
4 
5 

0.0503 
0.0663 
0.0737 
0.1116 
0.1128 

0.0541 
0.0705 
0.0817 
0.1208 
0.1252 

7.55 
6.33 
10.8 
8.24 
10.9 

0.0518 
0.0689 
0.0754 
0.1145 
0.1152 

0.0558 
0.0732 
0.0837 
0.1240 
0.1284 

7.72 
6.24 

11.01 
8.30 

11.46 

 

Since the design of the lattice cylindrical shell with 
different rib angles in a specific length to diameter 
ratio has some limitations, the effect of weight 
should be omitted using Eq. (27) [14]. The main 

reason of this behavior can only be described in 
changing the structure stiffness. 
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1

ω R
E


   

(27) 

 
Figure 8. Variations of the non-dimensional natural frequency of 
the lattice cylindrical shell reinforced with the MWNT nano-tubes 

in different rib angles of 30°, 35° and 40° 

6. Conclusion 

The free vibrations of the lattice cylindrical shell 
reinforced with the carbon nano-tubes are 
investigated. The analytical method is based on 
First-order Shear Deformation Theory (FSDT). 
According to the smeared method, the equivalent 
stiffness of the structure was calculated and then it 
was entered into the analytical procedure to find the 
natural frequencies. In order to find out the material 
properties of a composite reinforced with CNTs, the 
modified Halpin-Tsai equations were used. The 
analytical results are validated by the FEM results 
and a good agreement has been observed. It can be 
understood from the results that adding CNTs 
increases the natural frequency linearly. Besides, by 
changing the rib angle, the stiffness of the structure 
changes, too. First, the natural frequency decreases 
and then it increases. 

Nomenclature 

,em emE G  
Young’s and shear modulus of 
modified polymer reinforced with 
CNTs 

wK  Waviness factor 
  Orientation parameter  

 , ,i i x x    Mid plane strains 

 , ,i i x x    Mid plane curvatures 

 ,i i xz z   Transverse shear strain 

x  Slope in the plane of x z  

  Slope in the plane of z   

1 2 3, ,I I I  Mass inertia 

CNTW  Weight fraction of CNTs 

K   Shear correction factor 

   Volume fraction of fiber 

, ,f m CNT    Density of fiber, polymer and 
carbon nano-tubes  

, ,f m CNTE E E  Young modulus of fiber, polymer 
and carbon nano-tubes 

,f m   Poisson ratio of fiber and polymer  

l  Length of CNT 

,SWNT MWNTd d  Diameter of single wall and multi 
wall nano-tubes 

  Rib angle 
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Stiffness Coefficients: 
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Mass Coefficients: 
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