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In this article fluid-structure interaction of vibrating composite piezoelectric plates is 
investigated. Since the plate is assumed to be moderately thick, rotary inertia effects and 
transverse shear deformation effects are deliberated by applying exponential shear 
deformation theory. Fluid velocity potential is acquired using the Laplace equation, and fluid 
boundary conditions and wet dynamic modal functions of the plate are expanded in terms of 
finite Fourier series to satisfy compatibility along with the interface between plate and fluid. 
The electric potential is assumed to have a cosine distribution along the thickness of the plate in 
order to satisfy the Maxwell equation. After deriving the governing equations applying 
Hamilton’s principle, the natural frequencies of the fluid-structure system with simply 
supported boundary conditions are computed using the Galerkin method. The model is 
compared to the available results in the literature, and consequently the effects of different 
variables such as depth of fluid, the width of fluid, plate thickness, and aspect ratio on natural 
frequencies and mode shapes are displayed. 

1. Introduction 

Piezoelectric materials such as PZT, ZnO, and 
ZnS are the subset of smart materials which 
convert electrical energy into mechanical energy 
and vice versa. Piezoelectric structures 
extensively are applied as actuators and sensors 
in many branches of engineering thanks to their 
unique properties. These structures are quite 
advantageous in case of ocean engineering. 
Studying vibration characteristics of a structure 
coupled with fluid is generally known as the fluid-
structure interaction (FSI) problem. In recent 
years, the vibration behavior of plates in contact 
with fluid has been in the spotlight  due to the fact 
that having knowledge about vibrational 
characteristics of such structures is required in 
order to design ship structures, reservoirs, 
storage tanks, etc. Many studies have been 
performed to investigate the vibrations of a plate 
in contact with fluid [1-4].  Commonly there are 
three methods dealing with the FSI problems:  
experimental, analytical and numerical methods. 
Numerical methods include boundary element 
method and fluid finite element method, which 
can be employed for a large amount of FSI 

problems while the analytical technique is limited 
to some special cases. 

Lame [5] was the first one who inspected the 
vibration behavior of the plate in contact with 
water. Soon after, many researches attempted to 
operate the effects of interaction between fluid 
and strucure applying various methods. Typically 
effects of fluid on the governing equation of 
structure are treated as additional force or added 
mass [6-12]. Free vibration of simply supported 
and clamped plates in contact with the fluid is 
studied by Khorshidi and Farhadi [13] using the 
Rayleigh-Ritz method. They contemplated 
hydrostatic pressure as initial imperfection in 
their formulation. Vibration analysis of laminated 
composite moderately thick plate for different 
classical boundary conditions in contact with 
bounded water is explored by Canales and 
Mantari [14]. They employed various theories of 
arbitrary order by applying Carrera unified 
formulation. Free vibration of skew and 
trapezoidal plates in contact with bounded fluid 
based on Mindlin theory using moving kriging 
shape functions with the element-free Galerkin 
method is  inspected by Watts et al. [15]. 
Khorshidi et al. [16] did acoustic and modal tests 
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in order to analyze the vibrational characteristics 
of thin plates with clamped supported boundary 
condition in contact with the rigid tank.  

Kutlu et al. [17] mixed the boundary element 
method with finite element formulation to analyze 
vibrating circular and elliptical plates in 
interaction with the quiescent fluid. Add mass 
matrix can be expressed in terms of plate 
deflection based on their formulation. The 
experimental and analytical analysis for a floating 
sandwich plate was operated by Rezvani and 
Kiasat [18]. They applied first order shear 
deformation theory and ideal fluid hypothesis in 
order to derive governing equations.   

Kirchhoff [19] presented classical plate theory 
(CPT) in 1850. Pursuant to Kirchhoff hypothesis 
straight lines normal to the midplane, remains 
straight and normal to the middle surface of the 
plate after deformation. Kirchhoff plate theory 
isn’t appropriate for moderately thick plates since 
it neglects the transverse shear deformation 
stresses. In fact, it is applicable to the thin plates.  
First-order shear deformation theory (FSDT) [20] 
considers constant distribution for transverse 
shear deformation stresses along with the 
thickness of plate, which is contrary to the stress-
free conditions at the bottom and top surfaces of 
the plate. Furthermroe, FSDT requires  a shear 
correction factor to compensate error at top and 
bottom surface of the plate.  

Torabizade and Fereidoon [21] presented an 
analytical and numerical method for the dynamic 
behavior of laminated composite plates using 
CLPT and FSDT.  They concluded that the shear 
correction factor decreases the frequencies of the 
structure. Soltani et al. [22] investigated the 
vibration of moderately thick FG plates applying 
dynamic stiffness method based on FSDT. They 
acquired uncoupled governing equations using a 
new reference plane instead of the midplane of 
the plate. In order to get more satisfactory results, 
higher order shear deformation theories have 
been developed.  

Reddy [23] was the first one who employed a 
parabolic shear stress distribution along the 
thickness of the plate. This parabolic distribution 
vanishes at the bottom and top surface of the 
plate. Hence, it requires no shear correction 
factor. After reddy, other researchers proposed 
various nonlinear distribution for transverse 
shear stresses along the thickness of the plate [24-
28]. For instance, Sayyad and Ghugal [29, 30] 
devoted trigonometric and exponential 
distribution for capturing shear deformation 
effects. Khorshidi and Khodadadi [31] obtained 
the closed-form solution for transverse vibration 
of thick plates using trigonometric shear 
deformation theory with various boundary 
conditions. Khorshidi et al. [32] examined 
vibrational characteristics of FGM nanoplates 

according to exponential shear deformation 
theory using nonlocal theory. 

Prior researches indicated that the majority of 
the literature dealing with FSI has done with FSDT 
or CPT while in the present paper exponential 
shear theory as a subset of modified shear 
deformation theory is employed. As far as it’s been 
reported, no previous research has investigated 
the piezoelectric plate in contact with the fluid. 
Moreover, no prior studies have examined the 
analytical Galerkin method as a solution to the 
interaction between structure and fluid. In this 
paper, vibration analysis of piezoelectric plate in 
interaction with fluid is investigated. The fluid is 
considered to be incompressible, inviscid and 
irrotational and effects of sloshing are taken into 
account. Governing equations and boundary 
conditions are derived using Hamilton’s principle 
and are solved with Galerkin method. In the result 
section, influences of different variables on wet 
frequencies are displayed. 

2. Geometrical configuration 

If we consider a rectangular piezoelectric plate 
with length a along x- axis (0<x< a), width b along 
y- axis (0<y<b) and thickness h in z- direction 
(0<z<h), in order to represent the motions of the 
fluid and structure, the origin of the Cartesian 
coordinate system is located in the bottom right-
handed corner of the plate. The plate is a part of 
the vertical side of a rigid tank filled with a fluid, 
as protrayed in Fig. 1. depth and width of the fluid 
in the tank are b1 and c, respectively.  

2.1. Exponential shear deformation theory 

 Exponential shear deformation theory as a 
member of the modified shear deformation 
theories considers both rotary inertia and shear 
deformation effects against classical plate theory.  

 

Fig. 1. fluid structure interaction of piezoelectric plate 
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Pursuant to this theory, displacement is in the 
following form [30]: 

𝑢1(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢(𝑥, 𝑦, 𝑡) + 𝑔(𝑧)
𝜕𝑤(𝑥, 𝑦, 𝑡)

𝜕𝑥
+

𝑓(𝑧)𝜉(𝑥, 𝑦, 𝑡)  

𝑢2(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣(𝑥, 𝑦, 𝑡) + 𝑔(𝑧)
𝜕𝑤(𝑥, 𝑦, 𝑡)

𝜕𝑦
+

𝑓(𝑧)𝜓(𝑥, 𝑦, 𝑡)  

𝑢2(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤(𝑥, 𝑦, 𝑦),g(z)= 𝑧 + ℎ/2, 

 𝑓(𝑧) = 𝑧̅e
−2(

𝑧̅

ℎ
)
2

, 𝑧̅ = 𝑧 + ℎ/2 

(1) 

where u1, u2, and u3 are displacements of an 
arbitrary point along x, y and z axis; u and v are in-
plane displacements of the middle surface of the 
plate (z=-h/2); w is the out-plane displacement of 
the mid-plane in the plate; ξ and ψ are shear 
deformations measured at the mid-plane. It is 
clear that by vanishing f(z), classic plate theory is 
achieved. Based on this theory, inplane 
components of the displacement field include two 
parts; the first part which is similar to classical 
plate theory; the second part which is considered 
for counting shear deformation effects. In order to 
gain satisfaction from the Maxwell equation, the 
electric potential is approximated as follows [33] 

𝜙̃(𝑥, 𝑦, 𝑧, 𝑡) = −𝐶𝑜𝑠(𝛾𝑧̅)𝜙(𝑥, 𝑦, 𝑡)  (2) 

where γ=π/h and 𝜙(𝑥, 𝑦, 𝑡) is the electric potential 
in the mid-plane of the piezoelectric plate. 
Components of electric and strain field based on 
compatibility relations can be acquired as: 

𝜀11 =
𝜕𝑢

𝜕𝑥
− 𝑔(𝑧)

𝜕2𝑤

𝜕𝑥2
+ 𝑓(𝑧)

𝜕𝜉

𝜕𝑥
 

𝜀22 =
𝜕𝑣

𝜕𝑦
− 𝑔(𝑧)

𝜕2𝑤

𝜕𝑦2
+ 𝑓(𝑧)

𝜕𝜓

𝜕𝑦
 

𝜀12 =
1

2
((
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
) − 2𝑔(𝑧)

𝜕2𝑤

𝜕𝑥𝜕𝑦
+

𝑓(𝑧) (
𝜕𝜓

𝜕𝑥
+
𝜕𝜉

𝜕𝑦
))  

𝜀13 =
1

2
𝜉
𝜕𝑓(𝑧)

𝜕𝑧
,  𝜀23 =

1

2
𝜓
𝜕𝑓(𝑧)

𝜕𝑧
  

(3) 

𝐸1 = 𝐶𝑜𝑠(𝛾𝑧̅)
𝜕𝜙

𝜕𝑥
  𝐸2 = 𝐶𝑜𝑠(𝛾𝑧̅)

𝜕𝜙

𝜕𝑦
 

𝐸3 = −𝛾𝑆𝑖𝑛(𝛾𝑧̅)𝜙  

(4) 

As mentioned earlier, it can be observed  from 
(3) that transverse shear strains have an 
exponential distribution simultaneously with the 
thickness of the plate. The constitutive relations 
for piezoelectric plates under the hypothesis of 
the plane-stress condition are shown by 

𝜎11 = 𝑐̃11𝜀11 + 𝑐̃12𝜀22 − 𝑒̃31𝐸3 

𝜎22 = 𝑐̃12𝜀11 + 𝑐̃11𝜀22 − 𝑒̃31𝐸3 

𝜎13 = 2𝑐̃44𝜀13 − 𝑒̃15𝐸1 

𝜎23 = 2𝑐̃44𝜀23 − 𝑒̃15𝐸2 

𝜎12 = 2𝑐̃66𝜀12 

(5) 

𝐷1 = 2𝑒̃15𝜀13 + 𝜅̃11𝐸1   

𝐷2 = 2𝑒̃15𝜀23 + 𝜅̃11𝐸2 

𝐷3 = 𝑒̃31𝜀11 + 𝑒̃31𝜀22 + 𝜅̃33𝐸3 

(6) 

where 𝑐̃𝑖𝑗, 𝑒̃𝑖𝑗 and 𝜅̃𝑖𝑗 denote elastic, piezoelectric 

and dielectric constants associated with the plane-
stress condition, respectively and are presented as 

𝑐̃11 = 𝑐11 −
𝑐13

2

𝑐33
, 𝑐̃12 = 𝑐12 −

𝑐13
2

𝑐33
, 𝑐̃66 = 𝑐66  

𝑐̃44 = 𝑐44 𝑒̃31 = 𝑒31 −
𝑐13𝑒33

𝑐33
,  𝑒̃15 = 𝑒15 

𝜅̃11 = 𝜅11,  𝜅̃33 = 𝜅33 +
𝑒33

2

𝑐33
  

(7) 

2.2. Formulation of fluid 

The piezoelectric plate is partially in contact 
with the fluid, which is limited in a rigid tank as 
seen in Fig. 1. Assumptions related to the fluid can 
be written as: 
1. The amplitude vibration of the fluid is small. 
2. The hydrostatic pressure as a result of the fluid 
is not deliberated. 
3. The fluid oscillation is contemplated to be 
harmonic. 
4. The fluid is assumed to be ideal, i.e., 
incompressible, inviscid and irrotational. 

In agreement with the assumptions above, the 
motion of the fluid is governed by the Laplace 
equation. Pursuant to the superposition principle, 
the fluid velocity potential Φ0 contains two parts; 
the first part, which is related to the bulging 
modes, and the second one, which includes 
sloshing of fluid. 

Φ0 = Φ𝐵 +Φ𝑆  (8) 

The fluid velocity potential applying the 
separation of variables method can be written as 

Φ0(x,y,z,t) = 𝜙0(x,y,z)exp (𝑖𝜔𝑡) (9) 

where 𝜙0(x,y,z) is spatial velocity potential. 
According to the continuity equation, the fluid 
velocity potential must satisfy the Laplace 
equation [4] 

∇2𝜙𝐵 + ∇
2𝜙𝑆 = 0 → ∇

2𝜙𝐵 = 0, ∇2𝜙𝑆 = 0 (10) 
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The boundary conditions related to the fluid 
are presented by 

𝑎𝑡 𝑥 = 0 ⇒
𝜕𝜙𝐵
𝜕𝑥

=
𝜕𝜙𝑆
𝜕𝑥

= 0 

𝑎𝑡 𝑥 = 𝑎 ⇒
𝜕𝜙𝐵
𝜕𝑥

=
𝜕𝜙𝑆
𝜕𝑥

= 0 

𝑎𝑡 𝑦 = 0 ⇒
𝜕𝜙𝐵
𝜕𝑦

=
𝜕𝜙𝑆
𝜕𝑦

= 0 

𝑎𝑡 𝑦 = 𝑏1  ⇒
𝜕𝜙𝐵
𝜕𝑡

= 0 

𝑎𝑡 𝑧 = 0 ⇒
𝜕𝜙𝐵
𝜕𝑧

=
𝜕𝑤

𝜕𝑡
 , 
𝜕𝜙𝑆
𝜕𝑧

= 0  

(11) 

Applying the above boundary conditions and 
Eq. (10), general solution for 𝜙𝐵   and 𝜙𝑆 can be 
written as [8] 

(12) 

𝜙𝐵(𝑥, 𝑦, 𝑧, 𝑡) = ∑ ∑ 𝐴𝑙1,𝑘1
(𝑡)∞

𝑘1=0
∞
𝑙1=0

  

cos (
𝑙1𝜋𝑥

𝑎
) (

(2𝑘1+1)𝜋𝑦

2𝑏1
) (𝑒𝑆1𝑧 + 𝑒𝑆1(2𝑐−𝑧))  

(𝑙1 = 𝑘1 = 0, 1, 2, …) 

(13) 

𝜙𝑆(𝑥, 𝑦, 𝑧, 𝑡) = ∑ ∑ 𝐵𝑖1,𝑗1
(𝑡)

𝑀1
𝑗1=0

𝑁1
𝑖1=0

  

cos (
𝑖1𝜋𝑥

𝑎
) cosh (𝑆2𝑦)cos (

𝑗1𝜋𝑧

𝑐
)  

(𝑖1 = 𝑗1 = 0, 1, 2,..., 𝑁1, 𝑀1) 

𝑆1 = 𝜋√(𝑙1/𝑎)
2 + (2𝑘1 + 1/(2𝑏1))

2 

𝑆2 = 𝜋√(𝑖1/𝑎)
2 + (𝑗1/𝑐)

2 

where 𝐴𝑙1,𝑘1
(𝑡) obtains, after implementing the 

fifth relation in Eq. (11) 

(14) 
 

𝐴𝑙1,𝑘1
(𝑡) = 

𝑐𝑜𝑓𝑓
𝑎𝑏1

∫ ∫

(

  
 

𝜕𝑤(𝑥, 𝑦, 𝑡)
𝜕𝑡 ×

cos(
𝑙1𝜋𝑥
𝑎
) ×

cos (
(2𝑘1 + 1)𝜋𝑦

2𝑏1
) )

  
 
𝑑𝑦𝑑𝑥

𝑏1

0

𝑎

0

𝑆1(1 − 𝑒𝑆1
(2𝑐))

 

𝑐𝑜𝑓𝑓 = {
1   𝑖𝑓  𝑙1 = 𝑘1 = 0
2   𝑖𝑓  𝑙1𝑜𝑟 𝑘1 = 0
4 𝑖𝑓 𝑙1 𝑎𝑛𝑑 𝑘1 = 0

 

Since the fluid is assumed to be ideal, the 
kinetic energies related to the bulging modes (TfB) 
and sloshing modes (TfS) can be written as [8] 

(15) 

𝑇𝑓𝐵 =

      −
1

2
𝜌𝐹 ∫ ∫ Φ𝐵(𝑥, 𝑦, 0, t)

𝜕w(x, 𝑦, t)

𝜕𝑡
𝑑𝑦𝑑𝑥

𝑏1

0

𝑎

0
  

𝑇𝑓𝑆 = −
1

2
𝜌𝐹 ∫ ∫ Φ𝑆(𝑥, 𝑦, 0, t)

𝜕w(x, 𝑦, t)

𝜕𝑡
𝑑𝑦𝑑𝑥

𝑏1

0

𝑎

0
  

The linearized sloshing equation at the fluid 
free surface can be expressed as [34] 

(16) 
𝜕Φ𝐵

𝜕𝑦
|
𝑦=𝑏1

+
𝜕Φ𝑆

𝜕𝑦
|
𝑦=𝑏1

=
𝜔2

𝑔
Φ𝑆|

𝑦=𝑏1

  

where g is the gravity acceleration and is 
considered to be g = 9.81 m/s2 in all calculations. 
Multiplying above equation by 𝜌𝑓𝜙𝑆 and 

integrating over the fluid surface, one can obtain: 

(17) 𝑈𝜙𝐵 +𝑈𝜙𝑆 = 𝜔
2𝑇𝜙𝑆 

in which 

(18)  

𝑈𝜙𝐵 = 𝜌𝑓 ∫ ∫ (Φ𝑆
𝜕Φ𝐵

𝜕𝑦
)|
𝑦=𝑏1

𝑑𝑧𝑑𝑥
𝑐

0

𝑎

0
  

𝑈𝜙𝑆 = 𝜌𝑓 ∫ ∫ (Φ𝑆
𝜕Φ𝑆

𝜕𝑦
)|
𝑦=𝑏1

𝑑𝑧𝑑𝑥
𝑐

0

𝑎

0
  

𝑇𝜙𝑆 =
𝜌𝑓

𝑔
∫ ∫ Φ𝑆

2|
𝑦=𝑏1

𝑑𝑧𝑑𝑥
𝑐

0

𝑎

0
  

3. Governing equations 

Strain energy (U) and kinetic energy (T) in the 
piezoelectric plate can be acquired as follows 

𝑈 =
1

2
∫ ∫ ∫ (𝜎11𝜀11 + 𝜎22𝜀22 + 2𝜎12𝜀12 +

0

−ℎ

𝑏

0

𝑎

0

2𝜎13𝜀13 + 2𝜎23𝜀23 −𝐷1𝐸1 −𝐷2𝐸2 −
𝐷3𝐸3)𝑑𝑧 𝑑𝑦𝑑𝑥  

(19) 

𝑇 =
1

2
𝜌 ∫ ∫ ∫ ((

𝜕𝑢1

𝜕𝑡
)2 + (

𝜕𝑢2

𝜕𝑡
)2 +

0

−ℎ

𝑏

0

𝑎

0

     (
𝜕𝑢3

𝜕𝑡
)2)𝑑𝑧𝑑𝑦𝑑𝑥  

Now governing equations of the system are 
derived applying Hamilton’s principle  

∫ (𝛿𝑇 + 𝛿𝑇𝑓𝐵 + 𝛿𝑇𝑓𝑆 − 𝛿𝑈)𝑑𝑡 = 0
𝑡

0
  (20) 

where 𝛿 denotes the first variation. Through 
applying Eqs. (15) and (19) and integrating by 
parts, the following equations are obtained: 

𝐴1
𝜕2𝑢

𝜕𝑥2
+𝐴3

𝜕2𝜁

𝜕𝑥2
+𝐴4

𝜕2𝑣

𝜕𝑥𝜕𝑦
+𝐴6

𝜕2𝜓

𝜕𝑥𝜕𝑦
+

𝐴7
𝜕2𝑢

𝜕𝑦2
+𝐴9

𝜕2𝜁

𝜕𝑦2
+𝐴7

𝜕2𝑣

𝜕𝑥𝜕𝑦
+𝐴9

𝜕2𝜓

𝜕𝑥𝜕𝑦
−

𝐴2
𝜕3𝑤

𝜕𝑥3
−𝐴5

𝜕3𝑤

𝜕𝑥𝜕𝑦2
+𝐵1

𝜕𝜙

𝜕𝑥
− 2𝐴8

𝜕3𝑤

𝜕𝑦2𝜕𝑥
=

(𝐼1
𝜕2𝑢

𝜕𝑡2
+ 𝐼4

𝜕2𝜁

𝜕𝑡2
− 𝐼2

𝜕3𝑤

𝜕𝑥𝜕𝑡2
)  

(21) 

𝐴1
𝜕2𝑣

𝜕𝑦2
+𝐴3

𝜕2𝜓

𝜕𝑦2
+𝐴4

𝜕2𝑢

𝜕𝑥𝜕𝑦
+𝐴6

𝜕2𝜁

𝜕𝑥𝜕𝑦
+

𝐴7
𝜕2𝑣

𝜕𝑥2
+𝐴9

𝜕2𝜓

𝜕𝑥2
+𝐴7

𝜕2𝑢

𝜕𝑥𝜕𝑦
+𝐴9

𝜕2𝜁

𝜕𝑥𝜕𝑦
−

𝐴2
𝜕3𝑤

𝜕𝑦3
−𝐴5

𝜕3𝑤

𝜕𝑦𝜕𝑥2
+ 𝐵1

𝜕𝜙

𝜕𝑦
− 2𝐴8

𝜕3𝑤

𝜕𝑥2𝜕𝑦
=

(𝐼1
𝜕2𝑣

𝜕𝑡2
+ 𝐼4

𝜕2𝜓

𝜕𝑡2
− 𝐼2

𝜕3𝑤

𝜕𝑦𝜕𝑡2
)  

 

 

(22) 
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−𝐴10
𝜕4𝑤

𝜕𝑥4
+𝐴11

𝜕3𝜁

𝜕𝑥3
−𝐴12

𝜕4𝑤

𝜕𝑦2𝜕𝑥2
+

𝐴13
𝜕3𝜓

𝜕𝑥2𝜕𝑦
+𝐵3

𝜕2𝜙

𝜕𝑥2
− 𝐴12

𝜕4𝑤

𝜕𝑦2𝜕𝑥2
+

𝐴13
𝜕2𝜁

𝜕𝑦2𝜕𝑥
−𝐴10

𝜕4𝑣

𝜕𝑦4
+𝐴11

𝜕3𝜓

𝜕𝑦3
+𝐵3

𝜕2𝜙

𝜕𝑦2
+

2𝐴15
𝜕3𝜁

𝜕𝑦2𝜕𝑥
− 4𝐴14

𝜕4𝑤

𝜕𝑦2𝜕𝑥2
+

2𝐴15
𝜕3𝜓

𝜕𝑥2𝜕𝑦
+𝐴2

𝜕3𝑢

𝜕𝑥3
+ 𝐴5

𝜕3𝑣

𝜕𝑥2𝜕𝑦
+ 𝐴5

𝜕3𝑢

𝜕𝑦2𝜕𝑥
+

𝐴2
𝜕3𝑣

𝜕𝑦3
+ 2𝐴8

𝜕3𝑢

𝜕𝑦2𝜕𝑥
+ 2𝐴8

𝜕3𝑣

𝜕𝑥2𝜕𝑦
=

(−
1

2
𝜌𝑓 (Φ𝐵(𝑥, y, 0, t) + Φ𝑆(𝑥, y, 0, t)) +

𝐼1
𝜕2𝑤

𝜕𝑡2
+ 𝐼5

𝜕3𝜓

𝜕𝑦𝜕𝑡2
+ 𝐼2

𝜕3𝑣

𝜕𝑦𝜕𝑡2
− 𝐼3

𝜕4𝑤

𝜕𝑦2𝜕𝑡2
+

𝐼5
𝜕3𝜁

𝜕𝑥𝜕𝑡2
+ 𝐼2

𝜕3𝑢

𝜕𝑥𝜕𝑡2
− 𝐼3

𝜕4𝑤

𝜕𝑥2𝜕𝑡2
)  

(23) 

𝐴3
𝜕2𝑢

𝜕𝑥2
+ 𝐴16

𝜕2𝜁

𝜕𝑥2
+ 𝐴6

𝜕2𝑣

𝜕𝑥𝜕𝑦
+𝐴17

𝜕2𝜓

𝜕𝑥𝜕𝑦
+

𝐴9
𝜕2𝑢

𝜕𝑦2
+𝐴18

𝜕2𝜁

𝜕𝑦2
+ 𝐴9

𝜕2𝑣

𝜕𝑥𝜕𝑦
+ 𝐴18

𝜕2𝜓

𝜕𝑥𝜕𝑦
−

𝐴11
𝜕3𝑤

𝜕𝑥3
−𝐴13

𝜕3𝑤

𝜕𝑥𝜕𝑦2
+𝐵5

𝜕𝜙

𝜕𝑥
− 2𝐴15

𝜕3𝑤

𝜕𝑦2𝜕𝑥
−

𝐴19𝜁 + 𝐵7
𝜕𝜙

𝜕𝑥
= (𝐼6

𝜕2𝜁

𝜕𝑡2
+ 𝐼4

𝜕2𝑢

𝜕𝑡2
− 𝐼5

𝜕3𝑤

𝜕𝑥𝜕𝑡2
)  

(24) 

𝐴3
𝜕2𝑣

𝜕𝑦2
+𝐴16

𝜕2𝜓

𝜕𝑦2
+ 𝐴6

𝜕2𝑢

𝜕𝑥𝜕𝑦
+𝐴17

𝜕2𝜁

𝜕𝑥𝜕𝑦
+

𝐴9
𝜕2𝑣

𝜕𝑥2
+𝐴18

𝜕2𝜓

𝜕𝑥2
+ 𝐴9

𝜕2𝑢

𝜕𝑥𝜕𝑦
+𝐴18

𝜕2𝜁

𝜕𝑥𝜕𝑦
−

𝐴11
𝜕3𝑤

𝜕𝑦3
−𝐴13

𝜕3𝑤

𝜕𝑦𝜕𝑥2
+𝐵5

𝜕𝜙

𝜕𝑦
− 2𝐴15

𝜕3𝑤

𝜕𝑥2𝜕𝑦
−

𝐴19𝜓+ 𝐵7
𝜕𝜙

𝜕𝑦
= (𝐼4

𝜕2𝑣

𝜕𝑡2
+ 𝐼6

𝜕2𝜓

𝜕𝑡2
− 𝐼5

𝜕3𝑤

𝜕𝑦𝜕𝑡2
)  

(25) 

−𝐵3 (
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
) + 𝐵5 (

𝜕𝜁

𝜕𝑥
+
𝜕𝜓

𝜕𝑦
) +

𝐵7 (
𝜕𝜁

𝜕𝑥
+
𝜕𝜓

𝜕𝑦
) + 𝐵3 (

𝜕2𝜙

𝜕𝑥2
+
𝜕2𝜙

𝜕𝑦2
) +

𝐵1 (
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
) − 𝐵9𝜙 −𝐵10 = 0  

(26) 

where 𝐴𝑖𝑗 , 𝐵𝑖𝑗 and 𝐼𝑖are given as 

(27) 

{𝐴1, 𝐴4, 𝐴7} = ∫ {𝑐̃11, 𝑐̃12, 𝑐̃66}
0

−ℎ
𝑑𝑧  

{𝐴2, 𝐴5, 𝐴8} = ∫ {𝑐̃11, 𝑐̃12, 𝑐̃66}
0

−ℎ
𝑔(𝑧)𝑑𝑧  

{𝐴3, 𝐴6, 𝐴9} = ∫ {𝑐̃11, 𝑐̃12, 𝑐̃66}
0

−ℎ
𝑓(𝑧)𝑑𝑧  

{𝐴10, 𝐴12, 𝐴14} = ∫ {𝑐̃11, 𝑐̃12, 𝑐̃66}
0

−ℎ
𝑔(𝑧)2𝑑𝑧   

{𝐴11, 𝐴13, 𝐴15} = ∫ {𝑐̃11, 𝑐̃12, 𝑐̃66}
0

−ℎ
𝑔(𝑧)𝑓(𝑧)𝑑𝑧  

{𝐴16, 𝐴17, 𝐴18} = ∫ {𝑐̃11, 𝑐̃12, 𝑐̃66}
0

−ℎ
𝑓(𝑧)2𝑑𝑧  

{𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5, 𝐼6} =

∫ 𝜌{1, 𝑔(𝑧), 𝑔(𝑧)2, 𝑓(𝑧), 𝑔(𝑧)𝑓(𝑧), 𝑓(𝑧)2}
0

−ℎ
𝑑𝑧  

{𝐵1, 𝐵3, 𝐵5} = ∫ {1𝑔(𝑧), 𝑓(𝑧)}𝑒̃31𝛾𝑆𝑖𝑛(𝛾𝑧̅)𝑑𝑧
0

−ℎ
  

𝐵9 = ∫ 𝜅̃33(𝛾𝑆𝑖𝑛(𝛾𝑧̅))
2𝑑𝑧

0

−ℎ
  

𝐴19 = ∫ 𝑐̃44 (
𝜕𝑓(𝑧)

𝜕𝑧
)
2

𝑑𝑧
0

−ℎ
  

𝐵7 = ∫ 𝑒̃15
𝜕𝑓(𝑧)

𝜕𝑧
 𝐶𝑜𝑠(𝛾𝑧̅)𝑑𝑧

0

−ℎ
  

4. Galerkin approach 

The weighted residual expressions related to 
the Eqs. (21) -(26) can be acquired as follows 

∫ ∫ 𝑒𝑞(21)𝜒1
𝑎

0
𝑑𝑥𝑑𝑦

𝑏

0
= 0  

∫ ∫ 𝑒𝑞(22)𝜒2
𝑎

0
𝑑𝑥𝑑𝑦

𝑏

0
= 0  

∫ ∫ 𝑒𝑞(23)𝜒3
𝑎

0
𝑑𝑥𝑑𝑦

𝑏

0
= 0  

∫ ∫ 𝑒𝑞(24)𝜒4
𝑎

0
𝑑𝑥𝑑𝑦

𝑏

0
= 0  

∫ ∫ 𝑒𝑞(25)𝜒5
𝑎

0
𝑑𝑥𝑑𝑦

𝑏

0
= 0  

∫ ∫ 𝑒𝑞(26)𝜒6
𝑎

0
𝑑𝑥𝑑𝑦

𝑏

0
= 0  

(28) 

where 𝜒𝑖  denotes the trial functions and  are 
chosen in order to satisfy at least geometric 
boundary conditions. 

Since four edges of piezoelectric are assumed to 
be simply supported, the mid-plane displacements 
(𝑢, 𝑣, 𝑤), electric potential (𝜙) and rotations 𝜁 and 
𝜓 are expanded by using the following 
expressions: 

𝑢(𝑥,y) = ∑ ∑ 𝑢𝑚,n 𝜒1
𝑀
𝑚=1

𝑁
𝑛=1   

(29) 

𝑣(𝑥,y) = ∑ ∑ 𝑣𝑚,n 𝜒2
𝑀
𝑚=1

𝑁
𝑛=1   

𝑤(𝑥,y) = ∑ ∑ 𝑤𝑚,n 𝜒3
𝑀
𝑚=1

𝑁
𝑛=1   

𝜓(𝑥,y) = ∑ ∑ 𝜓𝑚,n 𝜒4
𝑀
𝑚=1

𝑁
𝑛=1   

𝜁(𝑥,y) = ∑ ∑ 𝜁𝑚,n 𝜒5
𝑀
𝑚=1

𝑁
𝑛=1   

𝜙(𝑥,y) = ∑ ∑ 𝜙𝑚,n 𝜒6
𝑀
𝑚=1

𝑁
𝑛=1   

where 𝑢𝑚,n, 𝑣𝑚,n, 𝑤𝑚,n, 𝜓𝑚,n , 𝜁𝑚,n and 𝜙𝑚,n  are 
unknown coefficients. 𝜒𝑖  for simply supported 
boundary condition is presented as: 

𝜒1 = 𝜒4 = sin(
𝑚𝜋𝑥

𝑎
) cos (

𝑛𝜋𝑦

𝑏
) 

𝜒2 = 𝜒5 = cos(
𝑚𝜋𝑥

𝑎
) sin(

𝑛𝜋𝑦

𝑏
) 

𝜒3 = 𝜒6 = sin(
𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑏
) 

(30) 

It’s likely possible to solve the system of linear 
equations (28) except that expression for 𝐵𝑖1, 𝑗1 is 

calculated. Hence, linearized sloshing relation, i.e. 
Eq. (17) is added to Eq. (28). After solving theses 
seven equations, i.e. Eqs. (17) and (28), 
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eigenvalues and eigenfunctions which are related 
to natural frequencies and mode shapes can be 
obtained. 

5. Validation and Convergence Studies 

In order to operate the accuracy and merit of 
the current model, a comparison has been made 
with the available results existing in the literature 
by Khorshid and Farhadi [13], Omidezyani et al. 
[35,36] and Uğurlu et al. [37].  

Various frequencies parameter 𝜛 =

𝜔𝑎2√𝜌ℎ/𝐷 of a simply supported isotropic plate  

for different values of depth ratio 
𝑏1

𝑏
 are shown in 

Table 1. Numerical results in this table are 
acquired for a square isotropic plate with a=b=10 
m, h=0.015 m, E=25 GPa, ρ=2400 Kg/m3, 𝜈 = 0.15 
and ρf=1000 Kg/m3.  The flexural rigidity of the 
plate is denoted by 𝐷 = 𝐸ℎ3/12(1 − 𝜈2). The 
width of the tank is assumed to be infinite, i.e. 
c=100 m. Based on this table there is an excellent 
agreement between the current model and 
previously published results available in the 
literature.  

It is noteworthy to mention that the numerical 
results in this table are computed by vanishing 
electrical potential in Eqs. (21)- (26). Besides, to 
compute the required terms to truncate series in 
the Galerkin method, a convergence study is 

displayed in Table 2. The numerical results 
reported in this table are obtained for PZT4 with 
a=b=1 m, h=10 cm, b1=60 cm, and c=50 cm. It can 
be concluded that N=M=8 is appropriate in order 
to ro  acuqire desired accuracy. 

6. Numerical Results 

In this section, numerical results for vibration 
analysis of piezoelectric plate subjected with 
simply supported boundary conditions are 
illustrated. For all calculation, thickness of the 
plate is cotemplated 10 cm, and the length of the 
plate is taken as 1 m. Otherwise, they are 
specified. Moreover, the fluid existing in the tank 
is assumed to be water with 𝜌𝑓 = 1000 Kg/m

3. 

Different properties of PZT4 which are applied in 
this analysis are as follows [38] 

𝑐11 = 132 GPa, 𝑐12 = 71 GPa, 𝑐13 = 73 GPa 

𝑐33 = 115 𝐺𝑃𝑎, 𝑐44 = 26 𝐺𝑃𝑎, 𝑐66 = 30.5 𝐺𝑃𝑎 

ρ=7500 Kg/m3, e31=-4.1 C/m2, e15=10.5 C/m2 

e33=14.1 C/m2, 𝜅11=5.841 C/Vm, 𝜅33=7.124 C/Vm 

 

Table 1. Dimensionless frequencies of the isotropic plate in contact with bounded fluid 

𝑏1/𝑏 
method 

Mode 
number 1 0.8 0.6 0.4 0.2 0 

1.1170 1.2810 1.6390 2.3350 3.0520 3.1390 [36] 

(1,1) 

1.1358 1.3030 1.6664 2.3746 3.1038 3.1917 [37] 
1.0360 1.1730 1.4960 2.1960 3.0640 3.1690 [35] 
0.8565 1.0172 1.3563 2.0746 3.0127 3.1415 [13] 
1.1168 1.2822 1.6428 2.3427 3.0551 3.1393 present 

3.225 3.8780 4.4700 5.7760 7.1860 7.8370 [36] 

(2,1) 

3.2823 3.9474 4.5498 5.8788 7.3152 7.9792 [37] 
3.3370 3.9260 5.1740 5.7080 7.0920 7.9020 [35] 
3.1434 3.7329 4.9530 5.5313 7.9032 7.8528 [13] 
3.2368 3.8950 4.4952 5.8051 7.2180 7.8402 present 

3.6870 3.8990 5.265 5.9190 7.6090 7.8370 [36] 

(1,2) 

3.7523 3.9686 5.3601 6.0251 7.7463 7.9792 [37] 
3.2610 3.4840 4.0580 5.3820 7.6220 7.9020 [35] 
3.0037 3.2288 3.7884 5.0916 7.4957 7.8528 [13] 
3.6993 3.9375 5.3440 5.9346 7.6243 7.8402 present 

5.8470 6.8390 8.9250 10.153 11.501 12.525 [36] 

(2,2) 

5.9567 6.9678 9.0951 10.3465 11.7215 12.7667 [37] 
5.9420 6.7770 8.7460 9.9740 11.400 12.680 [35] 
5.6503 6.5259 8.4732 9.7556 11.074 12.563 [13] 
5.8826 6.9234 9.082 10.1932 11.5866 12.5312 present 

7.5620 8.7310 9.5940 11.470 13.938 15.644 [36] 

(3,1) 

7.7085 8.9012 9.7821 11.6968 14.2176 15.9884 [37] 
7.8480 9.4100 10.570 12.570 13.800 15.950 [35] 
7.7808 9.1994 10.2708 12.1332 13.3586 15.6962 [13] 
7.6498 8.8536 9.7757 11.5324 14.1553 15.653 present 

10.462 11.994 14.198 16.686 18.259 20.312 [36] 

(3,2) 

10.6761 12.240 14.4937 17.0397 18.6468 20.7459 [37] 
10.720 12.660 14.470 16.680 18.100 20.690 [35] 

10.9678 12.4425 14.1435 16.1027 17.6359 20.4032 [13] 
10.6087 12/2234 14/2891 16/9801 18.5814 20.3277 present 
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Table 2. Convergence study of frequency parameter 𝜔̃ for 
piezoelectric plate in interaction with fluid 

N1=M1=5 
Mode number 

𝜔̃11 𝜔̃12 𝜔̃22 

N=M=4 0.5731 1.3841 2.1607 

N=M=5 0.5715 1.3815 2.1599 

N=M=6 0.5715 1.3811 2.1591 

N=M=8 0.5715 1.3811 2.1589 

Nine different mode shapes of piezoelectric plate 
PZT4 in contact with air and fluid are presented in 
Fig. 2 and 3 in order to gain more information 
about FSI effects. 

It can be observed that wet mode shapes are 
distorted as a result of the interaction between the 
fluid and plate and this distortion is more 
prominent in higher modes. Mode shapes and 
dimensionless frequencies in these figures are 
acquired with a=b=1 m, h=10 cm, b1=0.4 m and 
c=0.5 m.  

The effects of aspect ratio (a/b) and thickness 
of the plate on the dimensionless frequency 𝜔̃ =

𝜔𝑎√𝜌/𝑐11 of a piezoelectric plate coupled with 

fluid for different values of b1(depth of fluid) are 

displayed in Table 3. It is observed that overall 
stiffness of structure increase as the thickness of 
the structure of the raises. Consequently, it causes 
an increase in fundamental frequency. 
Furthermore, it can be realized that increasing 
aspect ratio (a/b) at a constant plate’s width(b) 
decreases the fundamental frequency of the 
system. The results of this table are calculated for 
b=1 m and c=0.5 m.   

The variations of the dimensionless 
fundamental frequency of piezoelectric plate 
coupled with fluid versus variations of fluid’s 
depth based on classical plate theory and 
exponential shear deformation theory are 
depicted in Fig. 4. 
The numerical results in this figure have been 
obtained for c=2 m, h=0.1 m, and a=b=1m.  It is 
protrayedin Fig. 4 that by raising in the depth of 
fluid, the fundamental frequency of the system 
drops which is a result of the effects of fluid’s 
kinetic energy. In fact, the existence of fluid 
around the plate increases the kinetic energy of 
the fluid-structure system and causes a raising in 
the overall inertia of the system. 

 

 

   

𝜔̃ = 0.6037 𝜔̃ = 1.4474 𝜔̃ = 1.4474 

   
𝜔̃ = 2.2207 𝜔̃ = 2.7062 𝜔̃ = 2.7062 

   
𝜔̃ = 3.3972 𝜔̃ = 3.3972 𝜔̃ = 4.4673 

Fig. 2.  mode shapes of the piezoelectric plate in contact with air 
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𝜔̃ = 0.5973 𝜔̃ = 1.4057 𝜔̃ = 1.4278 

   
𝜔̃ = 2.1709 𝜔̃ = 2.6517 𝜔̃ = 2.6831 

   
𝜔̃ = 3.3463 𝜔̃ = 3.3494 𝜔̃ = 4.4257 

Fig. 3.  mode shapes of the piezoelectric plate in contact with the fluid (b1=0.4b) 

Table 3. The dimensionless fundamental frequency of piezoelectric  plate in contact with the bounded fluid 
ℎ

𝑏
 

𝑎

𝑏
 

𝑏1/𝑏 
0 0.2 0.4 0.6 0.8 1 

0.01 
0.5 0.0786 0.0776 0.0660 0.0500 0.0397 0.0333 
1 0.0629 0.0621 0.0538 0.0408 0.0318 0.0265 

0.05 
0.5 0.3846 0.3836 0.3720 0.3419 0.3073 0.2787 
1 0.3119 0.3111 0.3017 0.2774 0.2484 0.2248 

0.1 
0.5 0.7237 0.7228 0.7121 0.6819 0.6409 0.6027 
1 0.6073 0.6065 0.5973 0.5715 0.5359 0.5032 

0.15 
0.5 0.9997 0.9989 0.9893 0.9612 0.9207 0.8807 
1 0.8749 0.8742 0.8655 0.8401 0.8031 0.7673 

0.2 
0.5 1.2178 1.2171 1.2085 1.1828 1.1445 1.1055 
1 1.1103 1.1096 1.1014 1.0771 1.0407 1.0043 

 
Fig. 5 presents the dimensionless fundamental 

wet frequency of a square piezoelectric plate 
versus width of fluid using classical plate theory 
and exponential shear deformation theory for 
𝑏1 = 0.5 𝑚. Pursuant to this figure, it is observed 
that by increasing the width of fluid, fundamental 
frequency raises and nears to a specific value. In 
other words, for high adequate values of tank’s 
width, the assumption of infinite fluid is valid. The 
effect of depth of fluid on the distribution of 
electric potential along the y-axis at x=a/2 is 
depicted in Fig. 6. For a piezoelectric plate in 
contact with air (b1=0), the maximum value of 
electric potential occurs at the center of the plate, 
while for a piezoelectric plate in contact with the 
fluid, the maximum potential point deviates from 

the midpoint of the plate due to the fluid-structure 
effects. 

7. Conclusions 

The dynamic behavior of the piezoelectric 
plate (PZT4) in interaction with fluid based on 
exponential shear deformation theory have 
inspected. Exponential shear deformation theory 
against the classical plate theory considered 
rotary inertia and generated reliable results in 
moderately thick plates. The electric potential is 
assumed to have a cosine distribution in order to 
satisfy Maxwell equation. By inserting various 
energy of fluid and structure into Hamilton’s 
principle, governing equations have derived. 
Governing equations by minimizing weighted 
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residuals in the Galerkin method based on 
trigonometric admissible functions have solved. 
High accuracy of current work has verified by 
comparing the present model at the special cases 
with previously published results. The effects of 
various parameters such as fluid’s depth, fluid’s 
width, thickness ratio and aspect ratio on wet 
natural frequencies have illustrated. Results 
indicate that the presence of fluid around the plate 
makes a distortion on the vibrational mode shapes 
and this distortion is more notable in higher 
modes. Furthermore, it is observed that increasing 
thickness ratio and fluid’s width raise the 
vibrational frequencies, and increasing fluid’s 
depth and aspect ratio reduce the vibrational 
frequencies. At last, it is indicated that fluid-
structure coupling deviates the maximum 
potential point from the center of the simply 
supported piezoelectric plate. 

 

 

Fig. 4.  variations of the dimensionless fundamental frequency 
of the system versus depth of fluid 

 

Fig. 5.  variation of the dimensionless fundamental 
frequency of system versus tank’s width 

 

 

Fig. 6.  variation of the electric potential distribution of 
system at center of piezoelectric plate (x=a/2) 
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