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In this study, the new refine trigonometric shear deformation plate theory is used to study the 

out-of-plane vibration of the rectangular isotropic plates with different boundary conditions. The 

novelty of the research is that the analytical precision closed-form solution is developed without 

any use of approximation for a combination of six different boundary conditions; specifically, two 

opposite edges are simply supported hard and any of the other two edges can be simply support-

ed hard, clamped or free. The equations of motion and natural boundary conditions, using Hamil-

ton’s principle are derived. The present analytical precision closed-form solution can be obtained 

with any required accuracy and can be used as benchmark. Based on a comparison with the pre-

viously published results, the accuracy of the results is shown. Finally, the effect of boundary 

conditions, variations of aspect ratios and thickness ratios on natural frequency parameters is 

shown and the relation between natural frequencies for different plates is examined and dis-

cussed in detail. 
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1. Introduction

Moderately thick plates are important structural 
elements. They are widely used in various engineer-
ing applications such as aircrafts, space structures, 
ships and submarines. In order to solve plate prob-
lems, two main steps must be taken: the choice of 
the plate theory and the type of solution method. 
The most commonly used plate theories can be clas-
sified into four main categories: Classical Thin Plate 
Theory (CPT) (based on the hypothesis that straight 
lines normal to the undeformed midplane remain 
straight and normal to the deformed mid plane and 
do not undergo thickness stretching.), Leissa [1], 
First-order Shear Deformation Plate Theory (FSDT) 
(based on the assumption that straight lines normal 
to the undeformed midplane remain straight but not 
necessarily normal to the deformed midplane and in 
this theory the transverse shear strain distribution 
is assumed to be constant through the plate thick-
ness and therefore shear correction factor is re-
quired to account for the strain energy of shear de-
formation), Reissener [2 ,3], Mindlin[4], and Kim 

and Cho [5], Third-order Shear Deformation Plate 
Theory (TSDT) and three-dimensional elasticity 
theory (3-D). According to a comprehensive survey 
of literature, it is found that a wide range of re-
searches has been carried out on free vibration of 
the rectangular and circular plates that most of 
them have used CPT, FSDT, TSDT and 3-D [6]. In 
order to deal with moderately thick plates, the trig-
onometric shear deformation plate theory was in-
troduced to take into account the transverse shear 
strains and rotary inertia. Five variables are used in 
this theory to describe the deformation: three dis-
placements of the middle surface and two rotations. 
In case of flat plates (without geometric imperfec-
tions), the in-plane displacements are uncoupled 
from the transverse displacement and rotations. 
Several publications can be found, in existing litera-
ture, concerning the investigation of trigonometric 
shear deformation plate theory. Ferreira et al. [7] 
analyzed symmetric composite plates using a mesh-
less method based on global multi quadric radial 
basis functions. They used the trigonometric shear 
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deformation theory which this trigonometric theory 
uses trigonometric functions through the thickness 
direction, allowing for zero transverse shear stress-
es at the top and bottom surfaces of the plate. Xiang 
and Wang [8] considered the free vibration analysis 
of symmetric laminated composite plates using the 
trigonometric shear deformation theory. Mantari et 
al. [9, 10] developed a new trigonometric shear de-
formation theory for isotropic and composite lami-
nated and sandwich plates. Tounsi et al. [11] pre-
sented a Refined Trigonometric Shear Deformation 
Theory (RTSDT) by taking into account the trans-
verse shear deformation effects for the thermo-
elastic bending analysis of the functionally graded 
sandwich plates. Tornabene et al. [12] developed a 
general formulation of a 2D higher-order equivalent 
single layer theory including the stretching and zig-
zag effects for free vibrations of thin and thick dou-
bly-curved laminated composite shells and panels 
with different curvatures. Rango et al [13] present-
ed the formulation of an enriched macro element 
suitable for analyzing the free vibration response of 
the composite plate based on the Trigonometric 
Shear Deformation Theory (TSDT). Sahoo and Singh 
[14] proposed a new trigonometric zig-zag theory 
for the static analysis of the laminated composite 
and the sandwich plates. When the equations of mo-
tion are derived using each of plate theories, these 
partial differential equations must be solved 
through numerical methods, semi-analytical meth-
ods or exact analytical methods. The exact free vi-
bration and buckling analysis of rectangular plates 
has been studied by many researchers using CPT, 
FSDT and TSDT. Vel and Batra [15] presented a 
three-dimensional exact solution for free and forced 
vibrations of simply supported functionally graded 
rectangular plates. HosseiniHashemi and Arsanjani 
[16] derived the dimensionless equations of motion 
from the Mindlin plate theory to study the trans-
verse vibration of thick rectangular plates without 
further usage of any approximate method. Hosseini-
Hashemi et al [17] presented an exact solution to 
study the buckling of in-plane loaded isotropic rec-
tangular plates with different boundary conditions. 
The proposed rectangular plates have two opposite 
edges simply-supported, while all possible combina-
tions of free, simply-supported and clamped bound-
ary conditions are applied to the other two edges. 
Hosseini-Hashemi et al [18] investigated the struc-
tural-acoustic radiation of vibrating rectangular 
Mindlin plates in different combinations of classical 
boundary conditions. Hosseini-Hashemi et al [19] 
presented an analytical solution for free vibration 
analysis of moderately thick rectangular plates, 
which is composed of Functionally Graded Materials 
(FGMs) and is supported by either Winkler or Pas-
ternak elastic foundations. Khorshidi [20-21] ana-

lyzed the dynamic response of the moderately thick 
isotropic rectangular plates using an exact closed-
form procedure. Hosseini-Hashemi et al. [22] pre-
sented an exact closed-form procedure for free vi-
bration analysis of moderately thick rectangular 
plates having two opposite edges simply supported 
(i.e. Levy-type rectangular plates) based on the 
Reissner–Mindlin plate theory. Liu and Xing [23] 
obtained an exact closed-form solution for free vi-
brations of orthotropic rectangular Mindlin plates 
using the separation of variables. Dozio [24] pre-
sented an exact solution for free vibration of rectan-
gular cross-ply laminated plates with at least one 
pair of opposite edges simply supported using re-
fined kinematic theories of variable order. Leissa 
[25] presented an exact solution for the six cases of 
vibrating thin rectangular plates having two oppo-
site sides simply-supported and the Ritz method for 
the remaining 15 cases which involved the possible 
combinations of clamped, simply-supported, and 
free edge conditions. Liew et al. [26] analyzed the 
transverse vibration of thick rectangular plates us-
ing the Rayleigh-Ritz procedure. Liew et al. [27] pre-
sent the vibration analysis of shear deformable 
plates, which is formulated on the basis of first-
order Mindlin theory. Malik and Bert [28] presented 
an accurate three-dimensional elasticity solution for 
free vibrations of six types of plates having free lat-
eral surfaces, two opposite sides simply supported, 
and two other sides having combinations of simply 
supported, clamped, and free boundary conditions 
via the differential quadrature method. Liew et al. 
[29] formulated three-dimensional Ritz method for 
the vibration analysis of homogeneous, thick, rec-
tangular plates with arbitrary combinations of 
boundary constraints. Zhou et al. [30] presented 
three-dimensional vibration analysis of thick rec-
tangular plates using Chebyshev polynomial and 
Ritz method. 
The objective of this study is to determine the free 
vibration response of rectangular plates using the 
trigonometric shear deformation plate theory. Such 
equations for moderately thick plates are not avail-
able in the literature. In order to fill this apparent 
void, the present work is carried out by providing 
the exact free vibration analysis for six cases of a 
rectangular plate having two opposite sides simply 
supported. The other two edges may be given by 
any possible combination of free, simply-supported 
and clamped boundary conditions. The integrated 
equa-tions of motion in terms of the resultant 
stresses are derived from the trigonometric shear 
deformation plate theory for moderately thick rec-
tangular plates. This is done by considering the 
transverse shear deformation and rotary inertia. 
The exact transverse deflection and the exact dis-
placements along    and    axes are derived for the 
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first time. The present analytical solution can be 
obtained with any required accuracy and can be 
used as benchmark. Based on a comparison with the 
previously published results, the accuracy of the 
results is shown. Finally, the effect of boundary con-
ditions, variations of aspect ratios and thickness 
ratios on natural frequency parameters and the re-
lation between natural frequencies for diffrent 
plates are examined and discussed in detail. 
 
2. Governing Equations of Motion 

A flat, isotropic, rectangular plate with uniform 
thickness  , length  , width  , modulus of elasticity 
 , Poisson's ratio  , and density   is shown in Fig. 1. 
The displacement components   and   are the in-
plane displacements of middle surface in    and    
directions respectively and wis the deflection of 
middle surface in    direction.The two edges of the 
plate parallel to the    direction are assumed to be 
simply supported while the other two edges may 
have any combinations of clamped, free or simply 
supported boundary conditions. 
Based on the trigonometric shear deformation theo-
ry, the displacement field can be described as the 
following [10]: 
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Where    and    are the rotations of the transverse 
normal about    and    axes, respectively and 
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In Eqs. (1a) and (1b) the sinusoidal function is as-
signed according to the shear stress distribution 
through the thickness of the plate. Using Hamilton’s 
principle (see appendix A), the governing differen-
tial equations of motion are as follows: 
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Figure 1. The geometry of a recangular plate 

 
Where the stress resultants (   ,   ,      ,     and 

     ) are exhibited in appendix A. 
The governing differential equations of motion in 

terms of displacement field ( ,   and   ) can be 
rewritten as what follows: 
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For generality and convenience, the coordinates are 
normalized with respect to the plate planar dimen-
sions and the following nondimensional terms are 
introduced. 
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Where   is the vibration frequency of the plate,   is 
the frequency parameter,   is the flexural rigidity,   
is aspect ratio,   is thickness ration and  
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        ̃ (       )

   (     ) 
     

(8a) 

 ̃(       )  
 (     )

 
      (8b) 

Substituting nondimensional terms into Eq. (4), 
the nondimensional governing differential equa-
tions of motion are expressed as follows: 
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Where comma-subscript convention represents the 
partial differentiation with respect to the normal-
ized coordinates and  

   
  

  
        

  
  

       
  
  
  (10a-10c) 

According to trigonometric shear deformation plate 
theory, the boundary conditions for an edge parallel 
to the    (     or     ) are given by: 

Hard simply support boundary conditions: 
 ̃           ̃                            (11a) 

Clamped boundary conditions: 
 ̃           ̃           ̃           ̃      (11b) 

Free boundary conditions: 
                                          (11c) 
Where 
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Corresponding boundary conditions for the simply 
supported edge at both      or      are ob-
tained by interchanging subscripts 1 and 2 in equa-
tions (11). 
After differentiating Eqs. (9b) and (9c) with respect 
to    and   , respectively, the two obtained equa-
tions should be added together. Thus, we have the 
following equations: 
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And the Eq. (9a) can be rewritten as follows: 
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In order to solve Eqs. (9a)–(9c), it is necessary to 
obtain  ̃, first. Next, substituting Eq. (12) into Eq. 
(13), the potential function  ̃     ̃    can be given 

by the following equation 
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Considering Eqs. (12-14a) and after some mathe-
matical manipulations, the following equation can 
be obtained: 
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Eq. (15) can be written as what follows: 
(     )( 

    )( 
    ) ̃      (17) 

Where  ,    and   are the roots of following equa-
tion: 
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Based on the superposition principle we can write 
the following solution to Eq. (15), as: 
 ̃            (19) 
Where  ,    and    are potentials satisfying the 
differential equations: 
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And the potential functions   ,    and    are de-
fined as follows: 
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Substituting Eqs. (14a) and (19) into Eq. (9), the 
nondimentional rotations can be expressed as the 
follwing: 
 ̃                      
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(23a) 
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In order to find the coefficient 
  (                  ), the following coefficients 
are obtained by substituting Eqs. (23a) and (23b) 
into Eqs. (9),: 
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Substituting Eq. (23) into Eq. (9a), the following 
equation is obtained as: 
           . (27) 
The potential functions    so that simultaneously 
satisfies Eqs. (25) and (27), and it is defined as fol-
lows: 
       

       (28) 
Finally, the  ̃   ̃  and  ̃ are introduced as what fol-
lows: 
 ̃            (29a) 
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 ̃                             (29c) 
and 
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Using the separation of variables method, one set of 
solutions for Eq. (30) can be written as what fol-
lows: 
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Note that Eq. (31) is one set of solutions for Eq. (30), 
The boundary conditions of plate at      and 
     are assumed simply supported, then Eq. (31) 
are reduced as follow: 
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and 
              . (34) 
Substituting Eqs. (33) into Eqs. (29) and substitut-
ing the results into the three appropriate boundary 
conditions along the edges at      and      
(Eqs. (11)), leads to a characteristic determinant of 
the eight-order for each  . Expanding the determi-
nant and collecting terms yield a characteristic 
equation. 
 
3. Comparison Studies 

In order to validate the accuracy of the present 
method, a comparison has been carried out with the 
previously published results by Leissa [25], Liew et 
al. [26], Hosseini-Hashemi and Arsanjani [16], Malik 
and Bert [28], and Zhou et al. [30] for both thin 
(τ=0.001) and moderately thick (τ=0.1 and τ=0.2) 
isotropic square plates for all the six considered 
boundary conditions. The present results are shown 
in Tabels 1 and 2, and are compared with other 
well-known solutions (e.g. exact solution by Hos-
seini-Hashemi and Arsanjani [16], Rayleigh Ritz 
method by Leissa [25], Liew et al. [26] and Zhou et 
al. [30] and differential quadrature method by Malik 
and Bert [28]) and different plate theories (e.g. clas-
sical plate theory by Leissa [25], first-order shear 
deformation plate theory by Hosseini-Hashemi and 
Arsanjani [16]) and three dimensional elasticity (by 
Leissa et al. [25], Liew et al. [26], and Zhou et al. 
[30]). From the results shown in Table 1, it can be 
observed that there is an excellent agreement be-
tween the present results and those given by Leissa 
[25], Liew et al. [26], Hosseini-Hashemi and Arsan-
jani[16], Malik and Bert [28], and Zhou et al. [30]. 
 
4. Results and Discussion 

The natural frequency parameters obtained from 
the exact characteristic equations presented in Sec-
tion 3 have been expressed in dimensionless form   
where the symbols are defined in Section 2. The 
numerical calculations have been performed for 
each of the six different boundary conditions. In the 
numerical calculations, Poisson’s ratio v=0.3 has 
been used. The results are given in Table 2 for the 
thickness to length ratios τ=0.001, τ=0.1, and τ=0.2 
over a range of a aspect ratios       and    . In 
Table 2, the results are given for the first five non-
dimensional natural frequency parameters of the 
isotropic rectangular plates. The results are pre-

sented with considerable accuracy simply because 
they are easily obtained for the accuracy given, and 
because they may be used as a benchmark. For all 
six cases the wave forms are, of course, sine func-
tions in the x1 direction, according to their corre-
sponding equations of transverse displacement. 
Furthermore, the wave forms in the x2 direction are 
sine function exactly for the          case only, 
whereas for the other cases the forms are only ap-
proximately sinusoidal. 

4.1. The effect of plate aspect ratio on the natural 
frequency parameters 
In order to study the effect of aspect ratio on the 
vibration behavior of the plates, consideration may 
now be focused on Tabels 2-4 and Figure 2. From 
the results presented in these tables, it is observed 
that the nondimensional natural frequency parame-
ter  , except for the first nondimensional natural 
frequency of the        plates, for the rest of con-
sidered six plates increases with increasing plate 
aspect ratio (a/b), if the relative thickness ratio  is 
kept constant. It seems this different behavior of 
       plates, with respect to the rest of plates, is 
due to having two parallel edges free boundary con-
ditions.Considering the results presented in Table 3 
and Figure 2, one may observe that, the half wave in 
the    direction decreases and the half waves in the 
  direction increase with increasing plate aspect 
ratio (a/b), if the relative thickness ratio   is kept 
constant. This observation indicates that, between 
two plates having an identical b, thickness h and 
boundary conditions, the one which has longer 
width a behaves like a beam. 
 

 
 

Figure 2. The effects of aspect ratio on the nondimensional 
frequancy (     ). 
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Table 1. The comparison study of the natural frequency parameter ( 2 /a h D   )for          ,         ,        ,        ,         

and        boundary conditions of square plate for different thickness ratios. 

BCs Methods   
 

 
                

         

Malik [28] 

0.1 

19.0901 45.6193 45.6193 70.1040 85.4878 

Liew et al [26] 19.0898 45.6193 45.6193 70.1038 85.4876 

Zhou et al [30] 19.0898 45.6193 45.6193 70.1038 85.4876 

Present study 19.0661 45.4917 45.4917 69.8213 85.0830 

        

Hashemi [16] 

0.1 

22.4260 47.2245 52.3247 74.4019 86.2191 

Malik [28] 22.4535 47.2761 52.4356 74.5481 86.3542 

Present study 22.4047 47.1387 52.2487 74.2516 85.9542 

       
Hashemi [16] 

0.2 
22.5355 40.0654 45.3350 59.3313 66.0079 

Present study 22.5597 40.1049 45.4333 59.4424 66.1755 

       

Leissa [25] 

0.001 

9.6314 16.1348 36.7256 38.9450 46.7381 

Hashemi [16] 9.6311 16.1313 36.7161 38.9433 46.7317 

Present study 9.6310 16.1314 36.7165 38.9436 46.7319 

        

Hashemi [16] 

0.2 

10.6981 23.1532 32.7157 43.5740 45.3051 

Malik [28] 10.7216 23.2565 32.9299 43.9289 45.6888 

Present study 10.8240 23.5908 31.8004 44.5052 45.8714 

       

Hashemi [16] 

0.1 

12.2606 30.4743 38.7128 55.9736 62.9527 

Malik [28] 12.2623 30.5095 38.7264 56.0240 63.0725 

Present study 12.2519 30.4373 38.6425 55.8560 62.8485 
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Table 2. The first five natural frequency parameters ( 2 /a h D   ) for          ,         ,        ,        ,         and        

boundary conditions of rectangular plates with different aspect and thickness ratios. 

BCs   
 

 
   

 

 
                

         

0.001 

0.5 

49.3476 78.9557 128.302 167.778 197.385 

0.1 45.4917 69.8213 106.765 133.770 152.821 

0.2 38.2052 55.2943 95.4108 106.562 106.562 

0.001 

2 

12.3370 19.7391 32.0760 41.9455 49.3476 
0.1 12.0678 19.0661 30.3643 45.4917 45.4917 
0.2 11.3729 17.4553 26.6913 33.4425 38.2052 

        

0.001 

0.5 

69.3257 94.5830 140.200 206.688 208.381 

0.1 59.4495 79.1242 112.462 151.451 156.336 

0.2 45.4333 59.4424 81.3549 101.807 107.923 

0.001 

2 

12.9185 21.5335 35.2111 42.2393 50.4307 

0.1 12.5941 20.6199 32.8994 39.3201 46.2699 

0.2 11.7847 18.5629 28.2848 33.5677 38.6280 

       

0.001 

0.5 

95.2594 115.799 156.350 218.961 254.120 

0.1 75.3708 90.2390 119.256 160.420 168.269 

0.2 53.3295 64.1280 83.9169 107.449 109.436 

0.001 

2 

13.6857 23.6462 38.6936 42.5863 51.6737 

0.1 13.2755 22.4047 35.6292 39.5722 47.1387 

0.2 12.2972 19.7810 29.9276 33.7067 39.0840 

       

0.001 

0.5 

9.5076 27.3596 38.4758 64.2026 87.0925 

0.1 9.3259 24.9369 35.9366 56.4028 75.9733 

0.2 8.8851 21.2688 30.9574 45.1618 59.2599 

0.001 

2 

9.7322 11.6743 17.6556 27.7016 39.1518 

0.1 9.5554 11.3716 16.8869 26.1218 36.5820 

0.2 9.0899 10.7008 15.5425 23.1668 31.5120 

        

0.001 

0.5 

16.1141 46.6708 75.1191 95.83-3 110.659 

0.1 15.5981 43.2958 66.8379 83.4127 94.3631 

0.2 14.5425 37.0571 53.4665 65.3572 72.7286 

0.001 

2 

10.2961 14.7587 23.6025 37.0899 39.4497 

0.1 10.1062 14.3659 22.6312 34.8247 36.9407 

0.2 9.23518 13.4236 20.4762 30.2362 31.8004 

       

0.001 

0.5 

22.8153 50.7489 98.7753 99.7726 132.256 

0.1 21.1679 45.4951 81.0143 83.8251 103.514 

0.2 18.4830 37.4621 58.4731 64.0231 73.6141 

0.001 

2 

10.4221 15.7439 25.7668 40.5452 40.5831 

0.1 10.1999 15.1839 24.3551 37.1590 37.4081 

0.2 9.66068 13.9690 21.5178 31.6148 31.9010 
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Table 3. The first six natural frequency parameters ( 2 /a h D   ) in terms of wave numbers (m,n) with different aspect and thick-

ness ratios 0.1. 
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    ; m is the mode sequence in x direction and n is  

 

 

4.2. The effect of plate thickness ratio (     ) on 
the natural frequency parameters 
The influence of thickness ratio   on the nondimen-
sional natural frequency parameter   can also be 
examined for plates with specific boundary condi-
tions by keeping the aspect ratio constant while 
varying the thickness ratio. From the results pre-
sented in Tables 1-3 and Figure 3, it can be easily 
observed that, as the thickness ratio   increases 
from       to     the nondimensional natural fre-
quency parameter decreases. Such behavior is due 
to the influence of the transverse shear deformation 
in the plates. 
 

4.3. The effect of plate boundary conditions on the 
natural frequency parameters 
To study the effect of boundary conditions on the 
nondimensional natural frequency parameter  , 
consideration may now be focused on the values of 
  listed in a specific column of Tables 1-3. From the 
results presented in these tables, it is observed that 
the lowest nondimensional natural frequency pa-
rameter corresponds to plates subjected to less edge 
constraints. As the number of supported edges in-
creases, the values of   also increase. Among all six 

boundary conditions listed in Tables 1-3, it can be 
seen that the lowest and highest values of   corre-
spond to        and        cases, respectively. 
Thus, the higher constraints at the edges increase 
the flexural rigidity of the plate, resulting in a higher 
nondimensional natural frequency parameter re-
sponse. 
 

 
Figure 3. The effects of thickness to length ratio on the nondimen-

sionalfrequancy (   ). 

 

𝛽 
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4.4. Complementary results 
In order to satisfy Eq. (35) (case of         bound-
ary conditions), it is necessary that  
    [   ]    [   ]   [   ]    [   ]    (35) 
 

   (   )        
  

 
 ((36 

Where   (         ) is integer values. 
Using Eq. (36), between two plates having identical 
thickness ratio and boundary condition, the dimen-
sionless natural frequency   given in Table 3 for  , 
  and  , may be related to  ̇,  ̇ and  ̇ through Eq. 
(37). 

(
  

 
)
 

 (  )  (
 ̇ 

 ̇
)
 

 ( ̇ )  (37) 

As an example for two simply supported plates hav-
ing identical thickness ratio and mode number in    
direction ( ̇   ), the nondimensional natural fre-
quency parameter for     and     (  
       ) is the same as those of  ̇    and  ̇   , 
because  

(
  

 
)
 

 (
 ̇ 

 ̇
)
 

   ̇= ̇ =(1)(2)=(2)(1) (38) 

This is because for  ̇   , the simply supported 
boundary condition of selected plate is duplicated at 
the nodal lines (      ). Similarly, for two simply 
supported plates having identical thickness ratio 
and mode number in    direction ( ̇   ), the non-
dimensional natural frequency parameter for     
and    (         ) is the same as those of 
 ̇      and  ̇   , 

(
 

 
)
 

 ( )  (
 

 ̇
)
 

 ( ̇)  (
 

 
)
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 ( )  ( )   

((39 

Focusing now on two simply supported plates hav-
ing identical thickness ratio, the nondimensional 
natural frequency parameter for    ,     and 
    (         ) is the same as those of  ̇   , 
 ̇    and  ̇   . Thus, some additional results re-
garding other mode numbers in    and    directions 
and aspect ratio not covered in Tables 1 and 3, can 
be obtained from the same table through Eq. (93). 

 
5. Conclusions 
In this study the trigonometric shear deformation 
plate theory is used to study the flextural vibration 
behavior of moderately thick rectangular with dif-
ferent boundary conditions.). The exact closed-form 
vibration equations are derived from the six cases 
having two opposite edges simply supported hard 
and any of the other two edges can be hard simply 
supported, clamped or free. The six cases consid-
ered are namely:         ,        ,       , 
      ,         and        plates. The ad-

vantages of the proposed closed-form solution are 
the following: 
1- They are capable of predicting the natural fre-
quency parameters with high accuracy within the 
validity of the trigonometric shear deformation 
plate theory since an exact analytical solution is 
used. 
2- They provide a closed-form vibration equation 
that can be easily solved numerically by researchers 
and engineers. 
Using numerical data provided previously, the effect 
of different parameters including boundary condi-
tions, aspect ratio and thickness ratio on the nondi-
mensional natural frequency parameter is examined 
and discussed in detail. The obtained results show 
the accuracy of the trigonometric shear deformation 
plate theory. The nondimensional natural frequency 
parameter  , except for the first nondimensional 
natural frequency of the        plates, decreases 
with increasing plate aspect ratio. The nondimen-
sional natural frequency parameter of the plate in-
creases monotonically, as the thickness ratio in-
creases. For all values of aspect ratio and thickness 
ratio, the nondimensional natural frequency param-
eter corresponding to clamped boundary conditions 
possesses higher values in comparison with free and 
simply supported boundary conditions. 

 

Appendix A 
In this section, the Hamilton’s principle is used to 
obtain the governing differential equation for free 
vibration of moderately thick isotropic rectangular 
plates under the hypothesis of the trigonometric 
shear deformation theory. The Hamilton’s principle 
is obtained as follows: 

∫  (   )    
 

 
, (A1) 

Where   is the kinetic energy of the plate and   is 
the elastic strain energy of the plate. The kinetic 
energy, including rotary inertia, and the elastic 
strain energy are given by the following equation: 

    ∫ ∫ ∫ (
   

   
   

   

   
  

 

 

 

 

 
  

  
  

 
   

   
  )             

(A2) 
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(A3) 

According to the trigonometric shear deformation 
theory, the following strain-displacement relations 
are given: 
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Substituting Eqs. (A4-A8) into Eqs. (A2-A3), the Eq. 
(A1) can be rewritten as what follows: 
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(A9) 

Where the stress resultants (   ,   ,      ,     and 

     ) are defined by: 
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According to the trigonometric shear deformation 
theory, the following stress-displacement relations, 
under the hypothesis     , are given: 
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Finally, the governing differential equations of mo-
tion are given in absence of the applied load and in 
terms of the stress resultants by Hamilton's princi-
ple as follows: 
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