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In this study, discrepancies between the free vibration of fiber-metal laminate (FML) and com-

posite cylindrical shells reinforced by carbon nanotubes (CNTs) based on Love’s first approxi-

mation shell theory have been considered by beam modal function model. The representative 

volume elements consist of three and four phases for composite and FML structures, respec-

tively, which include fiber, CNTs, polymer matrix and metal for FML cylindrical shells while the 

metal section is ignored for composite cylindrical shells. The modulus of carbon nanotubes rein-

forced composites cylindrical shell could be defined based on rule of mixture. In addition, the 

fiber phase can be reinforced by the obtained matrix using the extended rule of mixture. The 

frequencies of FML and composite cylindrical shells reinforced by CNTs have been compared to 

each other for different materials, lay-ups, boundary conditions, axial and circumferential wave 

numbers. 
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1. Introduction 

Due to the need for light structures with high 
strength and stiffness in the modern engineering, the 
composite structures are utilized more than the 
heavy metallic ones. Therefore, in the past decades, 
the applications of composite materials have in-
creased in most advanced engineering fields such as 
aerospace and mechanical engineering and espe-
cially the automobile engineering structures. One of 
the most important subjects for the composite struc-
tures is the vibration analysis of various composite 
structures such as beams [1], plates [2] and specifi-
cally cylindrical shells [3- 12]. Zhang [13] obtained 
the natural frequencies of laminated composite cylin-
drical shells subjected to different boundary condi-
tions using wave propagation method. He found that 
the effect of boundary conditions in the small circum-
ferential modes was more than the large ones. Lee et 
al. [14] studied vibration of laminated composite cy-
lindrical shells with an interior plate. Malekzadeh et 

al. [15] investigated the free vibration of laminated 
cylindrical shell based on three-dimensional elastic-
ity theory. A mixed layerwise theory was used in 
their work to derive the equations of motion while 
the differential quadrature method (DQM) was uti-
lized to solve them. Three dimensional state equa-
tions with DQM were used to analyze the static and 
free vibration of unsymmetric laminated composite 
cylindrical shell subjected to different boundary con-
ditions by Alibeigloo [16].  

Although when compared to metallic structures, 
composite structures have good characteristic, the 
composites have deficient behavior which could be 
modified by fiber metal laminates (FMLs). FMLs, 
which are so-called hybrid structures, have good 
characteristics of the metal such as ductility, impact 
and damage tolerances as well as the benefits of the 
fiber composite materials such as high strength and 
stiffness to weight ratios, excellent fatigue resistance 
and acceptable corrosion resistance. It was found 
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that the fatigue crack growth rates in adhesive 
bonded sheet materials can be reduced, if they are 
built up by laminating and adhesively bonding thin 
sheets of them, instead of using one thick monolithic 
sheet [17]. Botelho et al. [18] investigated the damp-
ing behavior of the FMLs including different materi-
als based on Voigt-Kelvin model. Shooshtari and Ra-
zavi [19] used multiple time scale method to study 
the linear and nonlinear vibration of cross-ply lami-
nated composite and FML rectangular plates sub-
jected to simply supported boundary condition. 
Rahimi et al. [20] studied the free vibration of FML 
annular plate with a central hole based on the three-
dimensional elasticity theory. They determined the 
natural frequencies of the plate with different bound-
ary conditions using the combination of DQM, state-
apace and Fourier series. The DQM was used to con-
sider the dynamic response of geometrically nonlin-
ear FML Timoshenko beam under unsteady temper-
ature field by Fu et al. [21]. Fu and Tao [22] studied 
the nonlinear dynamic responses of FML Timo-
shenko beams subjected to thermal shock using the 
DQM. In their research, the influences of thermal 
shock, geometric nonlinearity and the conditions of 
viscoelasticity on the dynamic responses of the FML 
beams were considered. Zarei et al. [23] studied the 
dynamic response of glass-reinforced aluminum lam-
inate (GLARE) 5-3/2 plate based on higher-order 
shear deformation theory subjected to low velocity 
impact. With increasing the temperature, indenta-
tion value increased and contact force decreased. In 
addition, with dropping clamped edges, the FML 
plate became more flexible and also the energy ab-
sorption and indentation value grew. Tao et al. [24] 
investigated the nonlinear dynamic behavior of FML 
Euler-Bernoulli beams based on von-Karman as-
sumption under moving loads in thermal environ-
ment. The effects of temperature, geometric nonline-
arity, material parameters and velocity of the moving 
loads on the dynamic responses of the FML beam 
were considered. Moniri bidgoli and Heidari-Rarani 
[25] studied the buckling behavior of FML cylindrical 
shells based on first-order shear deformation theory 
subjected to axial compression using analytical and 
numerical methods for simply supported boundary 
conditions. They found out that the effect of different 
lay-ups on the buckling loads of FML cylindrical 
shells is considerable.  

In the recent years, carbon nanotubes (CNTs)-re-
inforced composite materials have attracted consid-
erable attention for usage in different industries. Ad-
dition of CNTs to a matrix can significantly amend 
thermal, mechanical and electrical behaviors. Also, 
substituting the carbon fibers by CNTs can improve 
the composite properties such as tensile strength and 
elastic modulus. Khorshidi et al. [26-27] considered 

the vibration and buckling of functionally graded 
(FG) rectangular nanoplate using non-local elasticity 
subjected to simply supported boundary condition 
based on exponential shear deformation theory. 
Emami et al. [28] considered free vibration of lattice 
cylindrical shells reinforced by CNTs based on first-
order shear deformation theory (FSDT). They found 
that with adding the CNTs, the natural frequencies in-
creased. Thomas and Roy [29] investigated the vibra-
tion and damping of functionally graded carbon 
nanotube-reinforced hybrid composite (FG-
CNTRHC) shells. In another research, Thomas and 
Roy [30] studied the vibration of uniform and func-
tionally graded carbon nanotube-reinforced compo-
site (FG-CNTRC) shells including FG − X, FG −∨, FG −
O and FG −∧ distributions. The results indicated that 
the volume fraction and distribution of CNTs influ-
enced all the elastic properties of the composites. 
Dastjerdi et al. [31] studied static and free vibration 
of FG plates reinforced by wavy CNTs rested on Pas-
ternak elastic foundation based on FSDT using devel-
oped mesh-free method. The results showed that the 
developed mesh-free method had an excellent con-
vergence and accuracy to consider static and free vi-
bration of the plate. Ansari et al. [32] applied varia-
tion differential quadrature method (VDQM) for vi-
bration analysis of various FG-CNTRC spherical 
shells rested on the elastic foundation subjected to 
different boundary conditions. They found out that 
the greatest value of the fundamental frequencies oc-
curred for FG − X distribution. Furthermore, the re-
sults indicated that with increasing the thickness-to-
radius ratio, the non-dimensional frequencies de-
creases remarkably. Dastjerdi and Malek-Moham-
madi [33] investigated the vibration and buckling of 
FG nanocomposite plate reinforced by CNTs having 
simply supported boundary condition. They demon-
strated that both frequency and critical buckling 
loads increased by increasing μ (volume fraction of 
cluster with respect to total volume of representative 
volume element) and a h⁄  (length to thickness ratio) 
and decreasing η (volume ratio of the CNTs inside the 
clusters over the total CNTs inside the representative 
volume element) and volume fraction of CNTs.  

In this research, free vibration of 
CNT/fiber/polymer/metal laminate (CNTFPML) and 
CNT/fiber/polymer (CNTFP) cylindrical shells have 
been compared to eachother. Comparison between 

these two types of cylindrical shells would show the ad-

vantages of CNTFPML cylindrical shells compared to 

the CNTFP cylindrical shells. Consequently, the mixture 

of these four phases can obtain attractive results. The 
CNTs have been added to the matrix so as to reinforce 
the matrix in the first step; then the fiber phase was 
reinforced by the matrix (which has been reinforced 
by CNTs). The composite cylindrical shells reinforced 
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by CNTs (which can be named as CNTFP cylindrical 
shells) have been prepared by this method. In order 
to make the FML cylindrical shells reinforced by 
CNTs (which can be named CNTFPML cylindrical 
shells), the adhesive fiber prepreg has been com-
bined with the thin metal layers. The novelty of the 

present study consists of considering the free vibration 
of CNTFPML and CNTFP circular cylindrical shells 

having four and three phases including fiber, CNTs, pol-

ymer matrix, metal and fiber, CNTs, polymer matrix, re-

spectively. The frequencies of CNTFPML and CNTFP 
have been compared to each other for different ma-
terials, lay-ups, boundary conditions, axial and cir-
cumferential wave numbers. 

2. Fundumental Equations 

The equations of motion for thin circular cylindri-
cal shells are given by [34]: 
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where h, ρ and R are the thickness, density and radius 
of the cylindrical shell. Forces Nij and moments Mij 

are defined as follow: 
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where σx, σθ and σxθ are the axial, circumferential 
and shear stresses at an arbitrary point of the cylin-
drical shell, respectively. The stress resultants are 
obtained by considering the axial εxx, circumferential 
εθθ and shear γ

xθ
 strains at an arbitrary point of the 

cylindrical shell related to the middle surface strains 
εx,0, εθ,0 and γxθ,0 and to the changes in the curvature 
and torsion of the middle surface kx, kθ and kxθ. 
Therefore, stress resultants can be introduced based 
on the Love’s first approximation shell theory [35] as 
follows:  
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(3) 

where A16 = A26 = B16 = B26 = D16 = D26 = 0 be-
cause orthotropic laminates as cross-ply and unidi-
rectional lay-ups are considered in this study. Stiff-
ness coefficients can be expressed as the following 
equation [35]: 
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where Qij  illustrates the transformed reduced stiff-

ness coefficients. Aij, Bij and Dij are extensional, cou-

pling and bending stiffnesses, respectively. The stiff-
nesses for composite laminated cylindrical shells 
could be written as: 
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where hk and hk−1 are the distances of the middle 
surface of the shell to outer and inner surfaces of the 
kth layer, respectively. In addition, Qij

k  denote the 

transformed reduced stiffness coefficients for the 𝑘th 
layer. Also, the stiffnesses for the FML cylindrical 
shells are defined as follow: 
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where hmetal  and Qij
metal  are the thickness and re-

duced stiffness of the metal layer, respectively. In the 
above equations, Qij  is related to the composite sec-

tion and can be illustrated as follow: 
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where Ec)L, Ec)T and Gc are the longitudinal, trans-
verse and shear modulus of the nano-composite sec-
tion, respectively. Also, υL and υT introduce the effec-
tive Poisson’s ratios of the nano-composite cylindri-
cal shell. The elastic modulus and Poisson’s ratios of 
the shell are presented as: 
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where E11)f, E22)f and G)f are the elastic moduli of fi-
ber phase. In addition, υ)f and V)f are the Poisson’s 
ratio and volume fraction of fiber, respectively. 
E11

m )new, E22
m )new and G12

m )new are the elastic moduli 
of matrix phase which has been reinforced by CNTs 
while υm)new and Vm)new  introduce the Poisson’s ra-
tio and volume fraction of the matrix reinforced by 
CNTs, respectively. All of the parameters related to 
the new matrix which consists of a mixture of CNTs 
and the isotropic matrix are specified in the next sec-
tion. 
 

 

3. Material Properties of Cntrcs 

The effective mechanical properties of CNTRCs 
cylindrical shell are obtained based on the extended 
rule of mixture as follows [36]: 
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where E11
CN, E22

CN are Young's moduli and G12
CN is shear 

moduli of CNTs, and η
j
 (j = 1, 2, 3) are the CNTs effi-

ciency parameters. Also, Em)old and Gm)old  introduce 
the corresponding properties for the isotropic ma-
trix. In addition, the volume fraction of CNT and iso-
tropic matrix are indicated by VCN  and Vm)old , respec-
tively, which are related by VCN + Vm)old = 1. 
The effective density and Poisson's ratio of the 
CNTRCs shell can be defined as [36]: 
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where the Poisson's ratio of the CNT and matrix 
phase are shown by υ12

CN and υm )old, respectively, 
and ρCN and  ρm)old are the density of the CNT and 
matrix phase, respectively. 
The volume fraction of CNTs influences the free vi-
bration of CNTRCs cylindrical shell remarkably. In 
this manuscript, the material properties of the 
CNTRCs vary continuously and smoothly through the 
thickness direction of the shell that their distribution 
are categorized by uniform distribution (UD) or func-
tionally graded (FG) as shown in Fig. 1. Four types of 
CNT distributions including: FG − V, FG − Λ,  FG − O 
and FG − X are considered in this study in which 
outer surface, the inner surface, the mid-plane and 
both outer and inner surfaces of the shell are CNT-
rich, respectively.  
The volume fractions of the CNTs for each type of the 
distributions can be expressed as [37]: 
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where wCN is the mass fraction of CNTs. 

4. Governing Equations of Motion 

The governing equations of motion for the 
CNTFPML circular cylindrical shell are obtained by 
substituting the equation (3) into the equation (1) as 
follows: 
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5. Analytical Solution Procedure 

The beam modal function model could be used to 
study the vibration of the cylindrical shell subjected 
to different boundary conditions. In the first step, the 
following harmonic solution should be used as [38]:  

)sin()sin()(),,( tnxUtxu    
(14a) 

)sin()cos()(),,( tnxVtxv    
(14b) 

)sin()sin()(),,( tnxWtxw    
(14c) 

where U(x), V(x) and W(x) are mode shapes in the 
longitudinal, torsional and flexural directions, re-
spectively. n denotes the number of circumferential 
waves in the mode shape and ω is the natural fre-
quency of the vibration. The three modal displace-
ments can be illustrated as [38]: 

   TRzT
BCAexWxVxU 1,,)(),(),(   (15) 

where α, A, B and C are constants to be determined. 
Although the exact value of α for cylindrical shells is 
unknown, it is specified by the axial modal number 𝑚 
or mode shapes of cylindrical shells in the axial direc-
tion for a given circumferential modal number 𝑛. It is 
known that α depends on the boundary conditions. 
In order to obtain the value of α, it is assumed that 
the flexural mode shapes of the cylindrical shells in 
the axial direction are in the identical form with the 
flexural vibration of beam subjected to the same 
boundary condition. Therefore, the value of α can be 
approximated using the beam modal function with 
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appropriate boundary conditions [39]. In addition, 
there are many different studies indicating the use of 
the beam function method to obtain the approximate 
solution for cylindrical shells [38-41]. Furthermore, 
the values of A, B and C (which are modal displace-
ments) are related to the modal frequency and sys-
tem parameters. By introducing equations (11) and 
(12) into equation (10), a 3 × 3 displacement coeffi-
cient matrix H in the non-dimensional form can be 
expressed as: 

   TT
BCH 0,0,01,,33   (16) 
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The determinant of the coefficient matrix H set to 

zero for each value of n for a non-trivial solution of 

the equations of the motion. When the value of α is 

provided, the displacement coefficient matrix leads 

to a six-order polynomial in ω.  

6. Numerical Results 

In this section, the frequencies of CNTFPML circu-
lar cylindrical shells are compared to the frequencies 
of CNTFP circular cylindrical shells subjected to dif-
ferent boundary conditions by the beam modal func-
tion model. The difference between CNTFPML and 
CNTFP cylindrical shells is existence and non-exist-
ence of metal in the their structurerespectively, so 
that the fiber phase is reinforced by the CNTs which 
have been combined with the polymer matrix for 
both of them. All properties and dimensions to study 
these circular cylindrical shells are presented as fol-
lows, except otherwise noted: 

The boundary condition is simply supported, the 
materials of metal and composite layers are alumi-
num and carbon/epoxy reinforced by the CNTs, re-
spectively, the lay-ups of the cylindrical shell are con-
sidered cross-ply consisting of four-layered [Al/0°/
90°/0°] for CNTFPML and three-layered [0°/90°/0°] 
for CNTFP as shown in Fig. 1, the distribution of the 
CNTs is uni-directional (UD) as shown in Fig. 2, L =
10 × R. In addition, the considered material proper-
ties of the circular cylindrical shells are shown in Ta-
ble 1. 

6.1. Validation 

The non-dimensional frequency parameter Ω =

ω√(ρR2 E)⁄  of CNTFPML and CNTFP cylindrical 

shells without any reinforcement (CNTs) is consid-
ered to verify the accuracy of the presented model. 
Hence the frequencies of FML and composite lami-
nated cylindrical shells are considered for validation 
in Table 2. The material properties of FML have been 
mentioned in the previous section and the material 
properties of composite laminated cylindrical shells 
are E2 = 7.6 (GPa), G12 = 4.1 (GPa), E1 E2⁄ = 2.5 and 
υ12 = 0.26. The results show excellent agreement be-
tween the used model in this manuscript and the 
other methods to obtain the frequencies. 
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Fig. 1. (a) FML cylindrical shell , (b) Composite cylindrical shell 

Table 1. Material properties of CNTFPML cylindrical shell 

Material properties 
CNT Fiber Matrix Metal (Aluminum) 

Carbon Glass   

TPa)(6466.511 
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Fig. 2. Uniformaly distribution of CNTs 

Table 2. Material properties of CNTFPML cylindrical shell 

n  Present [42] Present [42] 
FML Composite 

1 0.1731 0.1731 0.083908 0.083908 
2 0.0645 0.0645 0.030009 0.030009 
3 0.0329 0.0329 0.015193 0.015193 
4 0.0260 0.0260 0.012176 0.012176 
5 0.0320 0.0320 0.015231 0.015231 

6.2. Comparison Between Free Vibration Analysis of 
CNTFPML and CNTFP Cylindrical Shells 

The frequencies of CNTFPML and CNTFP cylindri-
cal shells for two carbon and glass fibers are com-
pared to each other for different values of n and is 
presented in Fig. 3. As shown in the figure, the fre-
quencies of CNTFPML are greater than CNTFP for 
n = 1 because CNTFPML is stiffer than the CNTFP 
due to the existence of metal. The thin metal layers 
have been combined to composite laminated layers; 
consequently, the elastic modulus of their combine 
has become more than thao of the composite cylin-
drical shell. When the elastic modulus of a structure 
increases, the frequencies of that structure would in-
crease. Similar to this illustration, the frequencies of 
CNTFPML and CNTFP with carbon fiber are greater 
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than the glass one because of greater elastic modulus. 
It can be noted that the frequencies of CNTFPML are 
less than CNTFP for n > 3. 

The effects of length to radius ratio on the fre-
quencies of both CNTFPML and CNTFP circular cylin-
drical shells are considered in Figs. 4(a) and 4(b). As 
depicted in the figures, with increasing the n, the fre-
quencies of both structures decrease for short cylin-
ders. As growing the length of cylindrical shell, the 
change slope of frequencies of the shells declines. Alt-
hough the frequencies of the CNTFPML long cylindri-
cal shell (10 < L R⁄ < 20) for n = 1 and n = 3 are 
maximum and minimum, respectively, the frequen-
cies of CNTFP cylindrical shell do not have a constant 
procedure for different values of n. Admittedly, the 
frequencies of CNTFP cylindrical shell for 1 < L R⁄ <
4 in n = 1 are maximum and in n = 3 are minimum, 
but this procedure changes with raising the L R⁄ . It 
can be seen that for L R⁄ = 10, the difference be-
tween the frequencies of CNTFPML cylindrical shell 
subjected to various values of n is greater than the 
CNTFP one. 

In the Fig. 5, the frequencies of CNTFPML and 
CNTFP circular cylindrical shells for different values 
of m and n are compared to each other. It can be seen 
that with increasing the m, the frequencies of 
CNTFPML would change more than those of the 
CNTFP. Although with growing the n, in the first step 
the frequencies of both structures decrease and then 
increase, the decline procedure of  CNTFPML is more 
than the CNTFP. In addition, as growing the n, the fre-
quencies of both structures are converged. 

In the Fig. 5, the frequencies of CNTFPML and 
CNTFP circular cylindrical shells for different values 
of m and n are compared to each other. It can be seen 
that with increasing the m, the frequencies of 
CNTFPML would change more than those of the 
CNTFP. Although with growing the n, in the first step 
the frequencies of both structures decrease and then 
increase, the decline procedure of  CNTFPML is more 
than the CNTFP. In addition, as growing the n, the fre-
quencies of both structures are converged. 

A comparison between the frequencies of 
CNTFPML and CNTFP circular cylindrical shells for 
different boundary conditions is indicated in Fig. 6. 
As predicted, not only are the frequencies of 
CNTFPML greater than the CNTFP, but also the fre-
quencies of clamped boundary condition are more 
than the other ones since the clamp boundary condi-
tion is fixed in all directions and there is no displace-
ment in all directions. So, the stiffness of the struc-
ture in this boundary condition is more than the oth-
ers such as simply boundary condition which can dis-
place in one direction. Therefore, the frequency of 
clamped boundary condition is more than the others. 
Also, with increasing the value of m, the frequencies 

of CNTFPML and CNTFP cylindrical shells increase 
rapidly and moderately, respectively. In addition, the 
difference between the frequencies of CNTFPML sub-
jected to various boundary conditions is greater than 
those of the CNTFP. 

 
Fig. 3. The effect of material properties on the frequencies of 

CNTFPML and CNTFP cylindrical shells with respect to n 

 
(a) 

 
(b) 

Fig. 4. The effect of L R⁄  on the frequencies of (a) CNTFP, (b) 
CNTFPML, cylindrical shell with respect to 𝑛 
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The effect of weight fraction of CNTs on the fre-
quencies of the cylindrical shells is considered in Fig. 
7. The figure illustrates that the frequencies of 
CNTFPML for all of the weight fractions of CNTs in 
n = 1 are greater than those of the CNTFP. Also, the 
frequencies are approximately identical for CNTFP, 
but they are different for CNTFPML in 𝑛 = 1. Moreo-
ver, although the frequencies of CNTFP increase with 
growing the weight fraction of CNTs for all values of 
the 𝑛, they decrease and increase with growing the 
weight fraction of CNTs for 𝑛 < 3 and 𝑛 > 3, respec-
tively. It can be understood from the figure that the 
frequencies of CNTFPML and CNTFP drop dramati-
cally and gradually, respectively, and then they raise 
by increasing the 𝑛. 

 
Fig. 5. The effect of m on the frequencies of CNTFPML and 

CNTFP cylindrical shells with respect to n 

 
Fig. 6. The effect of boundary condition on the frequencies of 

CNTFPML and CNTFP cylindrical shells with respect to m 

 
Fig. 7. The effect of CNTs weight fraction on the frequencies of 

CNTFPML and CNTFP cylindrical shells with respect to n 

 
Fig. 8. The effect of lay-ups on the frequencies of CNTFPML 

and CNTFP cylindrical shells with respect to n 

Two different lay-ups of cross-ply and uni-direc-
tional for composite section of CNTFPML and CNTFP 
cylindrical shells are considered in Fig. 8 in order to 
study the discrepancies of free vibration of these two 
structures. The figure demonstrates that the frequen-
cies of two structures for cross-ply and uni-direc-
tional are approximately identical in n = 1. With 
growing the n, initially the frequencies decrease and 
then increase but the decline for the CNTFPML is 
more remarkable than the CNTFP. Also, the differ-
ence between cross-ply and uni-directional lay-ups 
increases as growing the n. It should be noted that 
the frequencies of cross-ply CNTFP are greater than 
the unidirectional one for all values of the n, but this 
procedure does not govern for CNTFPML cylindrical 
shell. The frequencies of cross-ply CNTFPML cylin-
drical shell are less and more than the uni-directional 
one for n < 4 and n > 4, respectively. 
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7. Conclusions 

In this manuscript, the frequencies of CNTFPML 
and CNTFP cylindrical shells based on Love’s first ap-
proximation shell theory using beam modal function 
model subjected to different boundary conditions for 
different material properties are compared to each 
other. The representative volume element consists of 
three and four phases for the composite and FML 
structures, respectively, which include fiber, CNTs, 
polymer matrix and metal for the FML cylindrical 
shells and the metal section is ignored for the compo-
site cylindrical shells. In order to generate the 
CNTFPMLs cylindrical shell, in the first step the CNTs 
have been added to the matrix and then the rein-
forced matrix has been utilized to reinforce the fiber 
phase. Finally, the adhesive fiber prepreg has been 
combined with the thin metal layers. The results 
show that the frequencies of CNTFPML are more than 
the CNTFP for n = 1, but with increasing the n, this 
procedure is converted. Also, the frequencies of 
CNTFPML and CNTFP made of carbon fiber are more 
than the glass one. Moreover, the frequencies of 
CNTFPML cylindrical shell decrease with increasing 
the n in L R⁄ = 10, while the frequencies of CNTFP cy-
lindrical shell do not have this regular process. Fur-
thermore, the difference between the frequencies 
CNTFPML for various values of m is more than the 
CNTFP in n = 1. In addition, frequencies comparison 
between the CNTFPML and CNTFP for different 
weight fractions of CNTs indicates that although the 
frequencies of CNTFP for different weight fractions 
of CNTs in n = 1 are approximately identical, they 
are different for CNTFPML. Admittedly, the frequen-
cies of uni-directional lay-up of CNTFPML and CNTFP 
are more than the cross-ply in n = 1 but with in-
creasing the n, this procedure is converted. 
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