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A new closed form formulation of three-dimensional (3-D) refined higher-order shell theory
(RHOST) to analyze the free vibration of composite circular cylindrical shells has been presented
in this article. The shell is considered to be laminated with orthotropic layers and simply sup-
ported boundary conditions. The proposed theory is used to investigate the effects of the in-plane
and rotary inertias as well as transverse normal and shear strains on the dynamic response of
thick composite cylindrical shells. The trapezoidal shape factor of the shell element is incorpo-
rated to obtain accurate stress-resultants. Using Hamilton’s principle, the equations of motion are
obtained and solved in terms of the Galerkin method. Numerical results for the natural frequen-
cies are verified by making comparison with the 3-D exact elasticity iterative solutions in the
literature. In addition, the validity of the results is further verified by ABAQUS. According to the
results, for thick composite cylinders with large length-to-radius and orthotropic ratios, through
thickness exact integration yields accurate stress-resultants for proper prediction of the natural
frequencies.

© 2019 Published by Semnan University Press. All rights reserved.

1. Introduction

Cylindrical shells are widely used in many
industries such as gas pipelines, petrol conveying.
Also, cylindrical structures are common in modern
industries such as aerospace, aircraft and marine
structures. Based on classical shells theories, which
are based on Kirchhoff-Love’s hypothesis, many
studies have been performed on shells [1]. Although
classical shell theories ignore the transverse stress
and strain components for easy calculation, this
omission gives inadequate results for the analysis of
thick cylindrical shells [1]. Some research studies
are presented in the literature that investigate the
effects of shear deformation for dynamic response
of composite cylindrical shells [2]. Leissa [3] has
summarized many studies in the state-of-the-art in
his research work. According to these research
studies, the effect of shear deformation can become
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significant for small length-to-thickness or radius-
to-thickness ratios. Bhimaraddi [4], developed a
two-dimensional higher-order shell theory to
investigate the dynamic response of composite
circular cylindrical shell and the traction free
condition is assumed for inner and outer surfaces of
the shell. Reddy and Liu [5] presented a two-
dimensional (2-D) higher-order theory for
laminated elastic shells. The theory accounts for
parabolic distribution of the transverse shear
strains through thickness of the shell and tangential
stress-free boundary conditions on the boundary
surface of the shell.

The 2-D higher-order shell theories consider the
effects of shear deformation and rotary inertia and
they are more useful than the thin shell theories for
the analysis of moderately thick shell structures. In
order to analyze the thick shells, 2-D higher-order
shell theories are not adequate especially in the case
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of higher frequencies. In order to analyze the thick
shells, the transverse normal stress and strain
components which are neglected in the 2-D higher-
order shell theories, should be accounted for in the
analysis which is based on three-dimensional (3-D)
shell theories.

Due to accounting all the transverse stress and
strain components (which are ignored in the 2-D
higher-order shell theories), the dynamic analysis of
circular cylindrical shells on the basis of the
governing equations of the 3-D elasticity attracted
the attention of researchers. In recent years, by
refinement of thick-shell theories, some new 3-D
shell theories for the case of homogeneous
cylindrical shells were investigated [6-8] as
reviewed by Qatu [9]. Khalili et al. [10] investigated
dynamic responses of free vibration analysis of
homogenous isotropic circular cylindrical shells
based on a new 3-D refined higher-order theory.

In the case of multi-layered anisotropic
composite shells, the effects of transverse shear
deformation are more significant as compared to
isotropic shells. Hence, the dynamic behavior of
composite shells is more complicated than isotropic
ones. Because of this complexity, accurate results
for dynamic response of composite shells need
three-dimensional modeling instead of two-
dimensional one especially for analysis of thick
shells where transverse normal and shear strains
become more significant. Rogers and Knight [11]
have formulated a linear higher-order finite element
to analyze an axisymmetric composite structure. A
higher-order theory for the analysis of composite
cylindrical shells was proposed by Murthy et al. [12]
by expanding the displacement variables in the form
of power series and retaining a finite number of
terms. As a result, the formulation allows for
arbitrary variation of in-plane displacement. Three-
dimensional elasticity solutions were presented for
the vibration of cross-ply laminated simply
supported cylindrical shells by Ye and Soldatos [13].
They used an iterative procedure and after a few
iterations, they obtained the exact values for the
natural frequencies. Natural frequencies and their
mode shapes of some homogeneous orthotropic
cross-ply cylinders were investigated. Kant and
Menon [14] presented a higher-order refined theory
for composite and sandwich cylindrical shells with
finite number of elements which is suitable for the
analysis of thin and moderately thick anisotropic
laminated cylindrical shells. Timarci and Soldatos
[15] presented comparative dynamic research
studies for symmetric cross-ply cylindrical shells
using unified shear-deformable shell theory.

Most of the research studies for higher-order
shear deformation theories that include shear
deformation and rotary inertia, failed to consider
the (1 + z/R) terms (trapezoidal shape factor) that
is considered due to the fact that the stresses over
the thickness of the shell have to be integrated on a
trapezoidal cross-section of a shell element to
obtain the accurate stress resultants. As shown in
Fig. 1, an element of the shell section is presented.
As it can be seen, taking into account the large
shape trapezoidal coefficient (including 1+z/R
terms), instead of the rectangular shape (excluding
1+z/R terms), is closer to reality, and therefore
precision of the integration increased for calculating
the stress resultants in the axial direction.

Chang [16] and Leissa and Chang [17]
considered this term but by neglecting the terms
beyond the order of h/ R For the first time, Qatu
[18] utilized the (1 + z/R) shape factor within the
framework of first order shear deformation theory
(FSDT) to analyze the free vibration of laminated
deep thick shells. Lam and Qian [19] developed a
theoretical analysis and analytical solution for
vibrations of thick symmetric angle-ply laminated
composite shells considering trapezoidal shape
factor (1 + z/R). Icardi and Ruotolo [20] presented
a multi-layered model based on a second-order
expansion of the (14 z/R) terms. They presented
some numerical results concerning eigen-
frequencies and stress distributions across the
thickness of simply supported, cross-ply cylindrical
shells. As a result, incorporation of the second-order
expansion of the (14 z/R) terms appears to be
suited for technical purposes, as it can improve the
accuracy for predicting the overall and local
behavior of rather thick shells. Other research
studies which incorporate the (1 + z/R) terms in
the static and dynamic analysis of thick laminated
cylindrical shells are presented in Refs. [21-25]. In
these studies, the most popular procedures are
finite element method, Ritz method and the series
solution method.
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Fig. 1. (a) Circumferential cross-section of a thick cylinder
for integrating stress resultants in axial direction; (b) Regions
shown by + and - signs indicate the area differences between the
assumed (rectangular and trapezoidal) developed shapes of the
cross-section.
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The main purpose of this work is to investigate a
closed form solution of the free vibration of simply
supported-simply supported (SS-SS) composite
laminated circular cylindrical shells using a three-
dimensional (3-D) refined higher-order shell theory
(RHOST). The effects of the in-plane and rotary
inertias and transverse normal and shear strains on
the dynamic response of composite cylindrical
shells have been investigated. Due to the fact that
the stresses over the thickness of the shell are to be
integrated on trapezoidal-like cross section of a
shell element, trapezoidal shape factor (1 + z/R) is
also considered for the first time in the framework
of the present RHOST. The present work is an
extension of the first author earlier research on free
vibrations of thick homogenous isotropic cylinders
[10] to multi-layered thick composite cylinders. The
advantage of the present RHOST is that no iterative
procedure like those used for example in Refs. [1]
and [13] is required for calculating the natural
frequencies and hence, less CPU-time is consumed
and this would be useful especially in optimization
processes where frequency should be calculated
several times.

2. Formulation

A circular cylindrical shell as shown in Fig. 2 is
considered with radius R, thickness h and length L.
The displacement components in the axial, tangen-
tial and radial directions are u, v and w, respectively
and the reference coordinate system (x,¢ z), is
placed on the middle surface of the cylindrical shell.

Fig. 2. A circular cylindrical shell with the reference coordinate
system

In order to formulate a 3-D elasticity problem, the
Taylor’s series expansion is used and the following
equations are obtained by expanding the displace-
ment components u(x,@ z t), v(x,@ z t) and w(x,¢ z,
t) in terms of thickness coordinate z of any point of
shell space [10]:

Wz, ¢, 2,t) = uy(z,0,t) + 20, (2, 0,%) +
2, % 3 n*

Zu (z,0,) + 2°0 (7, ,t)

'U(IL', ©5 2, t) = (1 + 70’2 / R)U(}(xv 2 t) +

20 (z,0,t) + 2°0) (z,00,1) + 2°0" (2, 0,1)

w(z,p,2,t) = wy(z,0,) + 26 (z,9,1) +

2wy (z,0,1) + 2°0. (2, 0,1)

(1)

The terms u, v and w are the displacements com-
ponents and ¢ is the time. It should be noted that 12
displacement parameters are presented in Eq. (1) as
a higher-order displacement field. By setting the
coefficient y, equal to 1 in Eq. (1), the trapezoidal
shape factor of the cylindrical shell is applied in the
equilibrium equations and the HOST12 theory (3, =
0) is refined to RHOST12. u,, v, are the in-plane
displacements of the cylindrical shell and wj is the
transverse displacement of a point (x,¢) on the shell
middle surface. 6, 9(/, are the rotation functions of
the normal to the shells middle surface about ¢ -
and x- axis, respectively. ug, v, wg, b5, 8, and 8; are
the higher-order terms in the Taylor’s series expan-
sion that represent higher-order transverse defor-
mation modes. For the first-order shear defor-
mation theory, only u,, v, wy, 6, and 6, are consid-
ered as displacement filed. The general strain-
displacement relations in the cylindrical coordinate
system according to linear theory of elasticity for
circular cylindrical shells are defined as follow [10]:

du
ET = s
dzx

c

_ 1 l0v+ﬂ
v 14+v,2/R{RO¢ R

ow
=,
z
1 (10u) v (2)
e 14+7v,2/R(RO¢) Oz
ou  Ow
Vo =505
® 0z Oz
o1 |1ow v Ov
T T +7,2/R(ROp R) 0z

By substituting Eq. (1), the expressions for dis-
placement at any point within the shell, the linear
strains in terms of middle surface displacements are
obtained as follow:
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. 1 Ou . 1 06;
E. == y Xopp — 2
o R Q¢ R Op
(4)
3 o+ ou, ou’ + a0,
= ) (e = 4U,
v : T on X o T o
ﬁ* _ 30 4 8w5 . 80:
R T Xew = oz
1 Bwo v, 1 BHZ v, 9¢
“ Rop R Rop, "R R

3. Stress- Strain Relations and Stress Re-
sultants

For an orthotropic material, 3-D stress-strain re-
lations are obtained by Hooke’s law as [1]:

k K k
Ul Cll Cl2 013 0 0 0 81
0'2 012 022 023 0 0 0 52
03 — CI 3 023 033 0 0 0 83 (5)
T 0 0 o ¢, O 0 Vs
Ty 0o 0 o0 o0 C, 0 Vs
Tys 0 0 0 0 0 Cul |7

coefficients C;; are defined as:

Cn _ Eu(l _*V23V32) 012 _ Eu(l’m _': V31V23)

v v
013 _ E11(V31 J:’/Qll/:ﬂ)

v

c, = L, (1- V13’/31) C, = EQZ(VSQ + V12V31)

v ‘ v (6)
033 _ E33(1 7:/12’/21)

v
C,=G6,0C,; =G6,C, =G,
V= (1 TV T VgV T Vil T 21/21’/32’/13)

where E;; are Young's modulus of elasticity, v;; are
Poisson’s ratio, G;j are the shear moduli for compo-
site material in different directions. The relation
between off-axis stress and strain for the k" layer
of a multi-layered composite cylindrical shell is de-
fined as follows:

o e @ @ @ 0o of[e]
U(‘: QLQ QZ‘Z Q23 Q24 0 0 Eo
gz _ QIB Q23 QSJ Q34 0 0 Ez
0‘1‘0 Q14 Q24 Q34 Q44 0 0 ,cho (7)
U.rz 0 O O 0 Q55 Q5ﬁ ’y.r,z
Uoz O O O 0 QS()' Qﬁh Woz

where Qj are elements of the reduced stiffness ma-
trix as defined in Appendix A.

By substituting Eq. (3) into Eq. (7) and integrating
through the shell thickness, Eq. (7) is refined to:
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o=De (8)
D Df 0 D Dm, me 9
a 0 kl)Ds T a Db(: Db ( )

The matrices D,,, Dy, Dy, Dy and Dy are given in
Appendix B. k, is the shear correction factor whose
value is considered equal to 1 for higher-order theo-
ries and equal to ©2/12 first order shear defor-
mation theory. In Appendix C, accurate method of
calculation of integrals thorough the shell thickness
in stress-resultant equations, including the (1+
z/R) terms, are presented. € and O, the middle
surface strain vector and stress-resultant vector,
respectively, in Eq. (8) are defined as follow:

T
Ny Ny Ny Ny N3N UNCL NG N,

N; .M, M, M My, M Mo M M (10)

Ql
I

M,.Q.Q, R,.Q.Qp Ry .S.8, T, 558,

* * *
ng 'g(ﬂ() ’g(ﬂx() ’gxf/’f) ’gx() ’g</’0 'g@‘O ’gx(ﬂ() ’EZO !

R
]

£y ’ZX’Z(/)’Z(/}X'ZX(/}’ZX’Z(/;!Z(/;X1lx(/)ylz|ﬁxy (11)

ﬂ(/)o 'ﬂq)l By ’ﬁ(po vﬁ(m 1 Hxz 1 Xy 1 KXoz 1 Xxa 1 Xpzg

The components of the stress-resultant vector &
for the composite shell are defined as:

N, M, N Mg
N, M, N, M|
Q S Q& S
R, T, R -

Q q

™
i
<

¢ (1,2,22,23)(1+%Z)dz

Z

I
Q

)

Nw Mf/} Nlﬂ M«J (12)
N(px M(ox X M(px =
QW SW Q(P S‘/’
NL 2 G(P
1 2 3
> L o (1,z,z .z )dz
O,
[NZ MZ NZ]:

N Ziy 2 }/OZ
> az(l,z,z)(l+?)dz

i

where NL is the number of composite layers.

4. Governing Equations

Using Hamilton’s principle, the equations of mo-
tion for the free vibration analysis are obtained. It
could be defined as follows in analytical form:

5[7 U -kw]at =0 (13)

where U is the total strain energy due to defor-
mation, W is the potential of the external loads and
K is the kinetic energy. Due to the assumption of the
absence of damping and external loads, the Hamil-
ton’s principle could be summarized as follows:

5f12 [U-K]dt =0 (14)

U, the total strain energy due to deformation in
Eq. (13) is defined as:

1
U= f.”. oy &;dV
v
0y0&,+0 06, + (15)
‘U dt=[ [[7T[" | 0,06, +0yy 7, + | dAdzdt
Io _J.ojo .[o I-h/z 02062 T Oxy Oy ™ g
0 +0y %y

and the kinetic energy, K is defined as:

<=0 p[02+\}2+\)v2]dv
\%

E SK dt = (16)

—L; IOL J‘Ohjj:; p(Usu+Vsu+Wwou) dAdzdt

p is the mass density of the material of the shell and
() represents differentiation with respect to time.
In Egs. (15) and (16), the differential element on the
middle surface of the shell is defined as [10]:

z
dA = R(L+7, z)dxdo (17)

Substituting the appropriate strain expressions
given by Eq. (4) and the displacement expressions
given by Eq. (1) in Eq. (14) and integrating the re-
sulting expressions by parts, after separating the

. su. Sv, Sw 8. S0 o Su. 6v
coefficients of ~°, ~°, "0, Tx e ¥ TR0 0
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* * *

ow, o0 60

*

50 . .
o, x, ¢, %z, the equations of motions are ob-

tained:

ou

oN, 1 AN,

x 'R op

uy — %0, _  Puy %6, _
+ I+ I+

ot Io o 1 otz 2 ot |3

5vo :

1 0N, 1 oM, 0Ny, 1 oM
+t——+V 5

1 lR 15
RO 70w 0 TToRZ %0
2
%,
R

2
o 2oty | S (e, |
ot R R? ot

oy (— o 0, (o,
7 (4 7
?[WE%%Y '3+FOI“

5WO :
Q 10Q,

1
RNo " "R e

o*w, . 0%9, _  *wy _ 8% _
it it bt s

o0
1 1 0S oS
M N +-_ 2, X _
RV7¢ "z"R dp ' ox
w, - %0, _  Pw _ 0%
I+ I+ +

X@
Rop "R 30 " 7ax TToR &

(18a)

(18b)

(18c)

(18d)

(18e)

(18f)

§u0.

oNy 1 N,

XD P o5 =

x "R ap (18g)
2 2 2 % 2 %

o°u 69X 6u0 60X

oV,
1 0N, ONg, .
Rap " TR T, S (18h)
Ay [ oy ) 00, Ay %6,
=z |2 [t = T+ [+ |
at aZ 3T a? e A s
ow,
* oQ, 1 9Q,
RN, MR o0 (18i)
2w, _ 0%, r o’w, _ &%, _

50
X

M, 1 M, .

o TR g % (18))

uy - %0, oty _ %G _

560
1M, My, o

R ap T ax TR SR, T (18k)
2 2 2. 2 g*

(o nr +80¢,T+av0|,+69¢,r

aZ \BTRM) T AT 4T A s a? s

560

4

L e s, 138,

TRM, N St R T (181)
®w, _ 8%, r o’w, _ 8% _

2t it st

where the inertia terms in the right side of Eqgs. (18)
are given by

(T T LT, T 0, T ) =

h 19
J:th(],z,22,23,24,25,25)(1+;/Oz/R)dz (19)
2
Natural and essential boundary conditions for
simply supported conditions at x=0 and x=L are as
follows:
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6u0:00rN =0, su, =00orN_ =0,
X 0 X

oV, :Oor(NXW +70/RMX(/)) =0, 6v, =0

orN, =0,
Xp

5W0=00I’QX=0, 5W0=00rQX=0, (20)

80, =0orM_=0, 66, =0orM_ =0,
X X X X

606 =0orM_ =0,60 =0orM__ =0,
4 Xp [ X

80 =00rS. =0, 50 =0orS. =0,
z X z X

5. Solution to the Governing Equations

The Galerkin method is used to solve the free vi-
bration problem of simply supported-simply sup-
ported circular cylindrical composite shells. The
boundary conditions for simply supported edges at
x=0 and x=L is applied as follows [10]:

* *
Vozwozgq;:‘gz:\/o:wo:

R (21)
0 =6, =N =M _=N =M =0
X X X X

In order to satisfy the boundary conditions, the
displacement components are expanded as follow

[6]:

iw 1
U = U __ COSATCOSNY € ™

0 Omn

. . iw t
U, =1, SInATsinng e

. iw t
w, = w, ~sin Az cosng e

Omn

iw
0 =6 cosAxcosnp e

T rmn

)

. . iw t
=0 _ sinAzsinng ™
wmn

I

. iw t
6 =0_ sinAzcosnyp e
z zmn (22)
* * iw 1
Uy = U, ~COSATCOSTY €
mn

* * gin \zsi gt
v, =0, SIMATSInng e

%

w =w  sinAzcosng e
0 0mn 99

* * Y(J.J t
0 =0 cosAzcosnp e

T rmn

* * . . iw
0 =60 sinAzsinng e“m

% wmn

* EI o, 1
0 =0_ sinAzcosnp e

z zmn

where in Eq. (22), * = MM/, and wy,, are the natural

angular frequencies (in rad/ s) and are related to the
mode numbers (m,n) where m is the axial half-wave
number and n is the circumferential wave number.

B
u(]mn U[)nm wOmn rmn wmn Zmn u(]mn U[)mn w(Jmn
) ) ) ) ) ) ) ) )

* * *
amn - —emn - Zamn gre the constant amplitudes of vi-
brations related to the natural mode shapes. By sub-

stituting Eq. (22) into Egs. (18) and applying the

Galerkin method, after simplification and collecting
coefficients, the following eigenvalue equation is
obtained:

[K-p_Mld =0 (23)

where is the displacement vector, dand ﬁmn = a)fm

corresponding to the mode shape numbers (m,n).
Generally, between the 12 eigenvalues (frequencies)
obtained from Eq. (23), the smallest one is associat-
ed to the bending vibration mode shape correspond-
ing to the specified mode numbers (m,n). The lowest
eigenvalue is called fundamental frequency of bend-
ing vibration. The elements of the stiffness matrix
[K] and the mass matrix [M] are given in Appendix
D.

6. Numerical Results and Discussion

In order to analyze the free vibration of compo-
site circular cylindrical shells with simply support-
ed-simply supported boundary conditions, a com-
puter code using MATLABR13 based on the formu-
lation of the present shell theories is developed. Dif-
ferent examples of composite cylindrical shells with
a wide range of thickness-to-radius (h/R) and
length-to-radius (L/R) ratios are investigated to
show the efficiency and accuracy of the present
formulations. In order to verify the present results,
they were compared to the analytical results availa-
ble in the literature. Furthermore, the results were
validated with those obtained using Lanczos eigen-
frequency extraction subroutine in
ABAQUS/Standard code. In order to obtain accurate
results of the free vibration analysis, the stress re-
sultants were calculated using exact integration
over the thickness of the composite cylindrical
shells. In addition, in contrast to some 3-D elasticity
theories, e.g. Refs. [1, 13], in the literature for the
free vibration analysis, the present RHOST does not
require any iterative procedure and convergence
study. This is an advantage from the sense that
computational time in the present RHOST is less
than these iterative procedures.

Unless otherwise stated, the following geomet-
rical and material properties are used hereinafter:

Ew Eo
El E3
G2 _%_o5 Sn_gs
E, E E, (24)
Uy, =U;3 =0, =0.25
Layup=[0/90],£=1,ﬂ=o.1
R R
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Also, unless otherwise mentioned, the natural
frequency parameter is considered to be:

w = a)(h/ﬂ')\)p/Glz (25)

For the verification purpose, in Tables 1 to 4, the
results of the present RHOST12 and HOST12 are
compared to those obtained from 3-D elasticity ex-
act solution method, reported by Ref. [13].

In Table 1, the lowest natural frequency parame-
ters, w*, for 4-layered cylindrical shells having
symmetric cross-ply layup are presented. As can be
seen in this Table, in all cases, the first frequency
parameters of [0/90], layup are greater than those
for [90/0]; layup. Furthermore, good accuracy is
obtained in comparison with the results of Ref. [13]
for different values of thickness ratios and mode
shape numbers. By increasing h/R, the discrepancies
are increased. Also, by increasing n, the discrepan-
cies are increased for [0/90]s layup, unless at n=3
for [90/0];. The maximum discrepancy (1.75%) is
corresponded to h/R=0.3 and n=2 for [90/0]s layup.

In Tables 2 and 3, the first three frequency pa-
rameters of cross-ply composite cylindrical shells
are shown for different values of h/R, and circum-
ferential mode number (n). The results were also
validated by making comparison with Ref. [13]. Ac-
cording to these Tables, the natural frequency pa-
rameters of the laminated cylinders increased by
increasing the number of layers. This trend occurs
due to the fact that by increasing the number of lay-
ers, the bending-extensional coupling decreased for
an anti-symmetric cross-ply laminate. It is necessary
to be noted that in Tables 2 and 3, by increasing
both h/R and n, the discrepancies increased. The
maximum discrepancy for the present RHOST12
(2.84%) and for the present HOST12 (5.12%) are
both corresponded to h/R=0.3 and n=3 for [0/90]

layup in Table 2. As shown in these Tables, all the
discrepancies corresponding to the present
RHOST12 are very less than those for the present
HOST12. This outcome reveals the importance of
incorporating the trapezoidal shape factor (1+z/R
terms) in the present analytical formulations. In
addition, as can be seen in these Tables, except for
h/R=0.1 for layup [0/90]: in Table 2, generally by
increasing the number of layers, the discrepancies
decreased. Also, good agreement between the pre-
sent results of RHOST12 and Ref. [13] results shows
the accuracy of the present theory.

Table 4 shows the values of the first three fre-
quency parameters for different orthotropic ratios
of 2-layered unsymmetric cross-ply composite cy-
lindrical shells for different values of the thickness-
to-radius ratio h/R. The present RHOST12 results
were validated by making comparison with those
reported by Ref. [13] and good agreement was ob-
served. According to the results, all frequency pa-
rameters increased by increasing either the stiffness
ratio E;/E, or the thickness-to-radius ratio h/R of
the cylinders. Also, the discrepancy increased by
increasing the values of E;/E, and h/R. The maxi-
mum discrepancy (5.6%) is corresponded to
E,/E,=40 and h/R=0.5 for the second (II) frequency.
There is not a specific trend for the discrepancies
when the frequency number (I, II or I1I) is changed.

In Fig. 3, variations of the natural frequency pa-
rameter vs. thickness-to-radius (h/R) is indicated
for symmetric cross-ply layups. Also, the results of
the present RHOST12 and HOST12 theories for L/R=
10 are compared with the present FEM analysis.
According to Fig. 3(a) by decreasing the value of
orthotropic ratio, E;/E,, the discrepancies between
the results of the present RHOST12 and HOST12
and the present FEM results increased specially for
greater values of h/R.

Table 1. Natural frequency parameters, w*, for composite circular cylindrical shells with symmetric cross-ply layups (m=1)

h/R Theory [0/90]s [90/0]s
n=1 n=2 n=3 n=1 n=2 n=3
0.1 RHOST12 (present) 0.079302 0.066377 0.064700 0.070809 0.052872 0.059267
Ref. [13] 0.079277 0.066335 0.064600 0.070738 0.052748 0.059130
0.03* 0.06 0.15 0.10 0.23 0.23
0.2 RHOST12 (present) 0.175333 0.163123 0.171778 0.151538 0.131548 0.160240
Ref. [13] 0.175188 0.162844 0.170868 0.150651 0.130168 0.158886
0.08 0.17 0.53 0.58 1.06 0.85
0.3 RHOST12 (present) 0.273215 0.263860 0.286369 0.239027 0.222623 0.272072
Ref. [13] 0.272860 0.263048 0.283798 0.236385 0.218779 0.268258
0.13 0.30 0.90 1.11 1.75 1.42

*Percentage discrepancy ((Present -Ref. [13])/ Ref. [13])*100.
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Table 2. Natural frequency parameters, w*, for composite circular cylindrical shells with unsymmetric cross-ply layups (m=1)

h/R Theory [0/90] [0 /90],
n=1 n=2 n=3 n=1 n=2
RHOST12 .
(present) 0.069519  0.13 0.049802 035 0.046207 0.56 0.074085 0.22 0.058276 0.52 0.059502 0.78
0.1 []:)I(‘)ESS’IEEI%] 0.069594 0.24 0.049986 0.72 0.046627 1.46 0.074141 030 0.058461 0.84 0.059881 1.42
Ref. [13] 0.069428 0.049630 0.045949 0.073919 0.057975 0.059043
RHOST12
(present) 0.148051 0.84 0122233 1.64 0.130875 1.99 0.162243 0.81 0.145715 148 0.162551 1.77
0.2 HOSZelnzt)[pI‘E- 0.148539 117 0123520 2.72 0.133160 3.77 0.162664 1.08 0.146790 223 0.164226 2.82
Ref. [13] 0.146819 0.120255 0.128317 0.160932 0.143589 0.159729
RHOST12
(present) 0233711 1.61 0.208223 2.64 0.232943 284 0.253687 1.10 0.239751 182 0.272722 2.01
03 Hoszelr?t][pl’e- 0.235187  2.24  0.211727 437 0238106 5.12 0.254902 1.59 0.242367 294 0.276154 3.29
Ref. [13] 0.230019 0.202861 0.226517 0.250922 0.235457 0.267347

"Percentage discrepancy ((Present -Ref. [13])/ Ref. [13])*100.

Table 3. Natural frequency parameters, w*, for composite circular cylindrical shells with unsymmetric cross-ply layups (m=1)

h/R Theory [0/ 90]3 [0/ 90],
n=1 n=2 n=3 n=1 n=2 n=3

RHOST12 *

(present) 0.075019  0.11 0.059930 0.24 0.062060 0.36 0.075390 0.07 0.060569 0.15 0.063045 0.24
0.1 (l;?essii%] 0.075052 0.15 0.060071 048 0.062379 0.79 0.075408 0.09 0.060679 0.33 0.0632470 0.56

Ref. [13] 0.074939 0.059787 0.061838 0.075339 0.060477 0.062896

RHOST12

(present) 0.165499 039 0.151194 0.72 0.170352 0.90 0.166894 0.27 0.153521 0.49 0.173719 0.64
0.2 (g?eizi% 0.165812 0.58 0.152001 1.26 0.171439 1.55 0.167122 0.41 0.154138 0.89 0.174432 1.05

Ref. [13] 0.164852 0.150114 0.168829 0.166445 0.152779 0.172616

RHOST12

(present) 0.259425 0.57 0.249229 099 0.285798 1.20 0.262183 0.42 0.253746 0.75 0.292216 0.99
0.3 HOST12

(present) 0.260390 095 0.251165 1.78 0.288778 193 0.262929 0.71 0.255779 132 0.293348 1.38

Ref. [13] 0.257947 0.246783 0.282406 0.261081 0.251849 0.289353

*Percentage discrepancy ((Present —-Ref. [13])/ Ref. [13])*100.

Table 4. First three lowest frequency parameters, w*, for composite circular cylindrical shells with unsymmetric cross-ply layups (m=n=1)

Theory [0 /90]
E
E—l h/R=0.1 h/R=0.3 h/R=0.5
2
i jii jii i jii Jii i 1 Jij
RHOST12
(present) 006192  0.15824 0.29462 0.20945  0.47465  0.71821 038460 078261  0.98567
10 Ref.[13] 0.06192  0.15824 0.29444 0.20878  0.47432  0.71297 038198 078053  0.96867
0 0 0.06 0.32 0.06 0.73 0.68 0.26 1.75
F;ngnlﬂz 0.06632  0.20305 0.38953 0.22237 058876  0.80612 039948 092867  1.06172
20 Ref.[13] 0.06629  0.20302 0.38888 0.22057  0.58695  0.79149 039425 091408  1.02944
0.04 0.01 0.16 0.81 0.3 1.84 132 1.59 3.13
?ggirnlﬂz 0.06828  0.23929 0.45417 022921  0.66924  0.85234 040660  1.00773  1.10908
30  Ref.[13] 0.06823  0.23922 0.45285 0.22638  0.66463  0.82864 039975 097244  1.07140
0.07 0.02 0.29 1.25 0.69 2.86 1.71 3.62 3.51
?ggirnlﬂz 0.06951  0.27021 0.50185 0.23371 072855  0.88451 041091  1.05494  1.14304
40 Ref. [13] 0.06943  0.27009 0.49971 0.23002 071976  0.85292 040298 099892  1.10068
0.11 0.04 0.42 1.6 1.22 37 1.96 56 3.84

*Percentage discrepancy ((Present —-Ref. [13])/ Ref. [13])*100.
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As illustrated in Fig. 3(a), at h/R=1.9, the discrep-
ancies of the present RHOST12 and HOST12 for
E,/E,=40 are 0.23% and 6.21% for [0/90], layup
and 3.19% and 6.66% for [90/0], layup, respective-
ly. At h/R=1.9, the discrepancies of the present
RHOST12 and HOST12 for E, /E,=1 are -0.44% and
18.4% for [0/90], layup and -0.43% and 19.33% for
[90/0], layup, respectively, as indicated in Fig. 3(b).
Generally, the frequencies corresponded to [0/90],
layup are greater than [90/0], layup.

In Figs. 4(a) and 4(b), variations of the lowest
natural frequency parameter vs. L/R ratio is indi-
cated for [0/90]s and [0/90]2 layups of a cross-ply
composite circular cylindrical shell for the present
RHOST12 and HOST12. According to these figures,
regardless of the layup sequence (symmetric or un-
symmetric) for h/R = 0.5 and 1.5, by increasing L/R
ratio from 5 to 20, the differences between the pre-
sent RHOST12 and HOST12 increased from about
0% and 2% to about 2.63% and 6.7%, respectively.

Variations of the lowest natural frequency pa-
rameter, w* vs. h/R ratio, for different orthotropic
ratios (E,/E,) are presented in Fig. 5. The results of
the present HOST12 and RHOST12 are compared to
each other for L/R=1 (Fig. 5(a)) and also to the pre-
sent FEM results for L/R=10 (Fig. 5(b)).
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As it can be seen in Fig. 5(a), regardless of the
value of E,/E,, the difference between the present
RHOST12 and HOST12 results are not considerable
since the shell length is short. However, according to
Fig. 5. (b), by increasing h/R from 0.1 to 1.9, the
discrepancies between the present RHOST12 and
FEM for E;/E,=1, 10 and 40 increased from about
0% to about -0.67% -3.35% and -1.64%, and these
discrepancies for HOST12 increased from about 0%
to about 18.58%, 17.87% and 15.7%, respectively.

According to Fig. 5(b), there is a good agreement
between the present RHOST12 and FEM results and
noticeable discrepancies were found between
HOST12 and FEM results.

Fig. 6(a) indicates the effect of different layups on
the lowest natural frequency parameter vs. h/R ra-
tio for L/R=1. In this figure, the maximum difference
between the results of the present RHOST12 and
HOST12 is about 1.01%. However, in the case of
L/R=10, as indicated in Fig. 6(b), the geometric pa-
rameter L/R has considerable influence on the accu-
racy of the present theories. By increasing the value
of L/R, the differences between the present HOST12
and RHOST12 increased. The results of the present
FEM simulations are also compared. As it can be
seen in Fig. 6(b), the maximum discrepancy -8.5%
occurs in the case of [90] layup between the present
HOST12 and FEM results.

It could be observed from Figs. 6(a) and 6(b) that
for both RHOST12 and HOST12 by increasing the
volume fraction of zero angle layers in the laminate,
the frequency of the cylinder increased.

Figs. 7(a) and 7(b) illustrate the variations of fre-
quency parameter vs. orthotropic ratio E1/E2 for
L/R=1 and 10, respectively. In Fig. 7(a), a small dif-
ference between the present RHOST12 and HOST12
exists and it is almost unchanged by increasing the
value of E1/E2 the present RHOST12 and HOST12.
In addition, the frequency converges to an almost
constant value. However, in case of L/R=10 in Fig.
7(b), by increasing E1/E2 and h/R, the differences
between the present RHOST12 and HOST12 in-
creased.

The maximum discrepancy (14.55%) between the
present theories and the present FEM simulations
occurs for HOST12 at h/R=1.8 and E1/E2 =45 as it
can be seen in Fig. 7(b). In fact, by increasing the
value of L/R, the influence of the exact integration of
the stress resultants over the trapezoidal-like cross-
section of the shell becomes more important. Since
in the present HOST12, this important point is not
considered, this theory fails to predict the correct
values of the frequency in contrast to the present
RHOST12 especially for higher values of h/R, E1/E2
and L/R ratios.
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In Fig. 8, variations of lowest natural frequency
parameters, w”"*, vs. number of layers (n) in [0/90]n
layup for different orthotropic ratios (E_1/E_2 )
have been investigated. As shown in Fig. 8(a), for
L/R=1 and h/R=0.1, regardless of the value of
E1/E2, by increasing the number of layers (n) in
[0/90]n layup, no considerable difference could be
observed between the present RHOST12 and
HOST12 results. Also, by increasing the number of
layers in [0/90]n layup, regardless of the value of
E1/E2, the frequency converges to a special con-
stant value. Furthermore, in Fig. 8(b), for L/R=10
and h/R=1.5, the frequency converges to another
special constant value. However, in contrast to Fig.
8(a), considerable difference could be observed be-
tween the present RHOST12 and HOST12 results by
changing the value of E1/E2. For E1/E2=1, the dif-
ferences between the present RHOST12 and
HOST12 are almost unchanged by increasing the
number of layers (n) in [0/90]n layup. While, for
E1/E2=10 and 40, there is a special value for the
number of layers (n) where the difference between
the present RHOST12 and HOST12 is negligible and
before and after this special value, this difference
becomes clear especially for lower values of the
number of layers (n).

In Table 5, the lowest natural frequency parame-
ters, w*, obtained from the present analytical theo-
ries are compared with those reported by Ref. [13].
In addition, results are compared to those obtained
using Lanczos eigenvalue extraction method in
ABAQUS/Standard solver and the associated mode
shapes are depicted in Table 5. For the finite ele-
ment 3-D (FE) modeling of the composite cylindrical
shells, 8-noded continuum shell (SC8R) was used
and convergence study for the elements size was
achieved.

As it can be seen from Table 5, for the first bend-
ing mode No. (1,1), the absolute values of the dis-
crepancies between the present theories and those
of Ref. [13] for different thickness-to-radius ratios
h/R= 0.1, 0.2 and 0.3 are 0.13%, 0.64% and 1.61%,
respectively, for RHOST12 and 0.24%, 1.17% and
2.24%, respectively, for HOST12. According to Table
5, for the second bending mode No. (1,2), the abso-
lute values of discrepancies between the present
theories and those of Ref. [13] for different thick-
ness-to-radius ratios h/R=0.1, 0.2 and 0.3 are
0.35%, 1.64% and 2.64%, respectively, for
RHOST12 and 0.72%, 3.96% and 7.44%, respective-
ly, for HOST12.

Also, as shown in Table 5, for the third bending
mode No. (1,3), the absolute values of the discrep-
ancies between the present theories and those of

Ref. [13] for different thickness-to-radius ratios
h/R=0.1, 0.2 and 0.3 are 0.56%, 1.99% and 2.84%,
respectively, for RHOST12 and 1.41%, 5.43% and
8.87%, respectively, for HOST12. Hence, by increas-
ing the mode number, generally the discrepancies
increased for both the present RHOST12 and
HOST12.
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Fig. 8. Lowest natural frequency parameter w*, for SS-SS compo-
site cylinder vs. number of layers (n) in [0/90]n layup for differ-
ent orthotropic ratios (E;/E,). (a). L/R=1 and h/R=0.1. (b).
L/R=10 and h/R=1.5

According to Table 5, the present FEM analysis al-
so indicates good accuracy as compared to those
results in Ref. [13]. For different thickness-to-radius
ratios h/R=0.1, 0.2 and 0.3, for the first mode (1,1),
the discrepancies between the present FEM results
and Ref. [13] are 0.04%, 1.09% and 0.69%, respec-
tively. For the second bending mode (1,2), the dis-
crepancies are -0.02%, -0.11% and -1.43%, respec-
tively, and for the third bending mode (1,3), the dis-
crepancies are -0.24%, -1.78% and -3.47%, respec-
tively. As compared to Ref. [13], in most cases, the
discrepancies of the present FEM results are less
than those for the present RHOST12. However, in
some cases like mode No. (1,1) with h/R= 0.2 and
mode no. (1,3) with h/R= 0.3, the results of the pre-
sent RHOST are closer than the present FEM results
to those for Ref. [13].
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Table 5. Comparison of lowest natural frequency parameters w*, for composite circular cylindrical shells with unsymmetric cross-ply layups
([0/90]) with those obtained using Lanczos method of eigenvalue extraction in ABAQUS/Standard solver and associated mode shapes

Mode
no. Theory h/R=0.1 h/R=0.2 h/R=0.3
(m,n)
Ref. [13] 0.069428 0.146819 0.230019
RHOST12 (present) 0.069519 0.13* 0.148051 0.84 0.233711 1.61
HOST12 (present) 0.069594 0.24 0.148539 1.17 0.235178 2.24
FEM (present) 0.069458 0.04 0.148423 1.09 0.231612 0.69
FSDT(present) 0.069858 0.61 0.150135 2.25 0.239457 4.1
(1,1)
Mode shape
Ref. [13] 0.049630 0.120255 0.202861
RHOST12 (present) 0.049802 0.35 0.122233 1.64 0.208223 2.64
HOST12 (present) 0.049986 0.72 0.123520 2.72 0.211727 4.37
FEM (present) 0.049618 -0.02 0.120119 -0.11 0.199962 -1.43
FSDT(present) 0.050340 1.43 0.125735 4.55 0.217378 7.15
(12)
Mode shape
Ref. [13] 0.045949 0.128317 0.226517
RHOST12 (present) 0.046207 0.56 0.130875 1.99 0.232943 2.84
HOST12 (present) 0.046620 1.46 0.133160 3.77 0.238106 5.12
FEM (present) 0.045838 -0.24 0.126032 -1.78 0.218653 -3.47
FSDT(present) 0.047055 2.40 0.135579 5.65 0.244040 7.73
(13) z -
Mode shape

*Percentage discrepancy ((Present -Ref. [13])/ Ref. [13])*100.

7. Conclusions

For the first time, a closed form solution method for
free vibration analysis of composite thin and thick
simply supported cylindrical shells on the basis of 3-
D refined higher-order shell theory (RHOST) is
presented in this study. The effect of the trapezoidal
shape factor (1+z/R terms) of the cross-section of
the orthotropic composite circular cylindrical shells
wa incorporated exactly in the formulations. The
characteristic eigenvalue equation was obtained
based on Hamilton’s principle and by applying
Galerkin method to the governing equations, natural
frequencies were obtained. The applicability and
validity of the present theory were confirmed by
verifying the results with those obtained using the

exact 3-D elasticity method for a wide range of
thickness-to-radius and thickness-to-length ratios.
Comparisons of the results for thick cylindrical
shells with published results in the literature were
carried out and good agreement was observed.

The present theory does not require any
convergence study, in contrast to some existing
iterative approaches in the literature that require a
few iterations to achieve sufficient convergence to
the exact solution. This is an important advantage of
the present RHOST. Furthermore, the natural
frequencies associated to higher-modes of
moderately thick, thick and very thick composite
cylinders, never published in the literature before,
were compared to those obtained using FE
modeling in ABAQUS commercial software. The
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results show that considering the effect of the free vibration analysis of highly orthotropic
(1+z/R) terms in the calculation of stress resultants, composite circular cylindrical shells, especially for
would lead to a reliable higher-order theory for the the cases of long and thick hollow cylinders.
Nomenclature

h Shell’s thickness

L Length of the cylinder

R Mean radius of the cylindrical shell

X Position coordinate in axial direction

z Position coordinate in radial direction

) Position coordinate in tangential direction

u Displacement component in axial direction

1% Displacement component in tangential direction

w Displacement component in radial direction

7()

* % M * * *
uo,vo,wo,Gx,Oy,Gz,uo,vo,wO,Oz,Gy,OZ

€w ) gy ? 82 ) f}/:lzy ) 7:17.2 ’ Pyyz

Q| ™|

Q

19995935 T1gs Tigo Tog
81762’637712’7137723

ij

Q,
E 117 E 227 E 33
G]2 ) G13’ G23
V]Q’ Vl‘d’ 7/23’ V‘Z] ’ 1/3] ’ ’/32
UI, Uy’ Uz’ sz, Tzz’ Tyz
NL
D ’ Dm ’ Dm,r" Db{t’ Db ’ Ds
U
w
K
[07117127137147[57[6
L.
1
m
n
mn (t)
w
mn
w
f
K
u()nm ) Ul]mn ) w(lmn ’ g.mm ’ gymn, ? gzmn ’
u K * * ‘, .

. X
0mn? “0mn? ~0mn’ “amn’ “ymn’ " zmn

Coefficient of trapezoidal shape

Displacement component
Strain components

Vector of strain components
Vector of stress resultants components
Normal and shear stresses of each layer

Normal and shear strains of each layer

Elements of stiffness matrix
Elements of reduced stiffness matrix
Young's modulus

Shear modulus

Poisson coefficients

The rotation angle of the fiber relative to the main axis
Normal and shear stresses for a multilayer

Number of layers
Shell stiffness matrices

Total strain energy

Energy from external forces
Total kinetic energy

Shell mass inertia

Differential operators

Number of half-axial waves
Number of circumferential waves
Time functions in generalized coordinates

Natural frequency for mode (m, n)
Fundumental natural frequency

Stiffness matrix
Constant natural mode shapes
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M Mass matrix

k Shear Correction Coefficient (first order shear deformation theory)
0

N, N, NN, Stress resultants

N NJNG NG NGNS,

MM, M, M,

M, M M, M/ M,

Q. R, Q, R,

Q,.R,,Q, R,
S, T,.S,.T,.5,.S;
Exy1 €y Eayyr ey Strain and curvature components

E¢,1 8y, Exyyr €

*
XYo Yxo"gzo"(:zoy

Tar Xy s ooy X

T Xy Zong s Xoysr Ko

P P Py s Oy

Deys P Py Py

Tozor Xz Xypgs Xyoss Zoaor Xons

Appendixes

Appendix A. Elements of Reduced Stiffness Matrix Qj

Q, = 01104 +2(C, + 2044)52 A+ 02254

Q12 = 012 (C4+ 84) + (011 + 022 - 2044)52 ¢

Qm = 013 ¢+ 023 s’

Q,=(C,6 ~-C, 72044)503 +(C,-C,, + 2044)653
Q, = 0115"1 +2(C,, + 2044)52 ¢+ C’ch'1

Q23 = 01382 + 02362

Q24 = (011 - 012 - 2044 )Sdc + (012 - 022 + 2044 )Cds
Qu = (Cfﬂ_ 032 >Sc

Q44 = (Cu_ 2012 + 022 - 2044> s’ + 044 (04 + 54)
Qas = C55 ¢+ 06682

Qa - (Cssi Cﬁﬁ)sc

Q(i(i = Css s+ C(;(;62

Q,=0Q, , ij=1l..6

where ¢ = cos6 and s =sin# ; @ is fibre orientation (in radians) with respect to x-axis of the shell.
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Appendix B. Definition of D matrices

The terms H; , Hj and ﬁj (j=1, 2, ...,7), used in the following matrices (D,,,, D,,c, Dy, Dy, and Dy ), are defined in
Appendix C.

Q11H1 Q12]{1 Q14I{1 Q14 1 Q11H3 lefza Q14]£3 Q14H3 Q13H1 Q13Hs k
Q12H1 Q22P_[1 Q24[__[1 Q24H1 Q12H3 Q22];_[3 Q24123 Q24H3 Q23H1 Q23H3
QM[{l Q24H1 Q44H1 Q44I{1 Qm{[s Q24H3 Q44H3 Q44}{3 Q34I{1 Q34]i[3
Q14 }A[ 1 Q24 H 1 Q44H 1 Qu{{ 1 QM}A] 3 Q24H 3 Q44 i 3 Q44 I{ 3 Q34 }A] 1 Q:m }A[ 3
Dm P i Q11H3 mefs QMI{S Q14H3 Q11H5 Qm}{&s mefa Q14H5 leHs Q13H5
k=1 QmHs szlig QQ-l]ZS Q24H3 Q12H5 Q”]-;’5 Q24]_;’5 Q24H5 Q23H3 Q23H5
Q14]_:’3 Q24H3 Q44H3 Q44]_{3 Q1411[5 Q24H5 Q«l«lHo Q44Ii[o Qulila Q34]_{5
Ql 4 I{ 3 Qm }{ 3 QM }{ 3 Qm I{ 3 Q1 4 IA{ 5 Q2/1 }AI 5 Q«m }{ 5 Q»1 4 I{ 5 QS/I I{ 3 Q34 I{ 5
Qm{{ 1 Q2:s }A[ 1 Q:MI? 1 Q34H 1 Q13 F{ 3 QQSI{ 3 Q34 I{ 3 Q34 }A[ 3 Q:;:slf 1 Q:;:;I{ 3
leHz Q23H3 Q34H3 Q34H3 Q13H5 Q23H5 Q34Ha Q34H5 Q33H3 Q33H5
Quﬁz me_lz Q14IZ2 Q14 Az Q11ﬁ4 Q12[i4 Q14Ii4 Q14ﬁ4 Q13ﬁ2 k
Qqu szf_lz Q24I{2 Q24H2 Q12H4 szlﬂ Q24Ii4 Q24H4 Qz:sH2
Q14I{z Q24H2 Q44H2 Q44I{z QMFAA Q24H4 Q44H4 Q44I{4 Q34F{2
Q14 I:[ 2 Q24H 2 Q44 i 2 Q44H 2 Q14 I_:T 4 Q24 H 4 Q44H 4 Q44 4 Qst:’ 2
Dmc o z\L: Q11H~1 Q]zlft Q14}_I4 Q1«1H1 QllHﬁ Qm}_[ﬁ QMI{G QmHs Q13H4
k=1 Q12H4 Q22If4 Q24}_I4 Q24H4 QIQHG szf_je Quffe Q24H6 Q23H4
Q14Ii[4 Q24H4 Q44H4 Q44]?4 Qu"ilﬁ Q24HG Q44H6 Q44Ii[6 Q34Ii[4
Ql 4 }{ 4 Qm I{ 4 Qm I{ 4 Qm }{ 4 QM I{ 6 Qm }{ 6 Qm I{ 6 Qm 6 QS/I I{ 4
lef 2 Qz:s f{ 2 Q34 f{ 2 Q34 {{ 2 Ql:s }A[ 4 Q‘z:slf 4 Q34I{ 4 mef 4 Qm}{ 2
Q13H4 Q23 4 Q34 4 Q34H4 QlSHG st 6 Q34H6 Q34 6 Q33H4
A A A A A Atk
QnHz Q12]—_I2 Qul—_IQ Q14H2 Q11H4 Q12]f4 Q14Ii4 Q14H4 Q13H2 Q1:3H4
Q12Hz Q2QIZ2 Quliz Q24H2 Q12H4 szl;[4 Q24IZ4 Q24H4 Q23H2 Q23H4
Q14 }{ 2 Q24H 2 Q44 i 2 Q44]—:’ 2 Q14 [_{ 4 Q24H 4 Q44 H 4 Q44 }{ 4 Q34 }{ 2 Q34 }{ 4
NI Q14IA{2 Q24H2 Q44H2 Q44]i[2 Q14[i[4 Q24H4 Q44H4 Q44I{4 Qu{fz Q34[i[4
Dl)r: 9x10 Z Q11H4 Q12]_£4 Q14Ii’4 Q14H4 QHHG Qmjis Qu]ile Q14H6 Q13H4 QIBHG
. Q12H«1 Q22 154 Q24 }_Iq QM Hfi Q12H6 QZQJZG QMI{()‘ Q24 He Q23H1 Q23H6
Q1411[4 Q24H4 Q44H4 Q44I?4 Q14F{6 Q24H6 Q44H6 Q44]{e Q34]{4 Qaaf{e
Q14}A[4 QAIEQ Q44f{4 Q44I{4 QMIA{G Q24PAIG Q44I{e Q44FAIG Q34FAI4 Q‘d-’i{{(i
Qrg.H 2 QZ:sH 2 Q34 i 2 Q34 2 QmH 4 Q23 4 Q3.4H 4 Q34 4 Qz;:;H 2 Q:;:; 4
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QLL'FIS QIZ'IZS Quf_fs QMFAIS QllﬁF) Q12Ii5 Qlél}zfi Q14H5 QISﬁS k
Qui, Q,H, QH, Q.H, Q.H, Q.H QH QH Q.H,
th ]?’5 Q24 H3 Q—l—l H3 Q—l—l I{% Q14 }:’5 Q24 H') Q44 HS Q44 }:’5 Q34 ]{3
w |Qully @y QuH, QH, QH;, QH QuH; QH Q.H,
D, ,.=>1Q.H, QuH; Q. H, QH;, QH, Q,H, QH QH Q.
= Q12H5 QZQJZE Q24]Z5 Q2.'1H5 Q12H7 Q22]Z7 Q24]Z7 QMH? Q23H5
Q14 [{5 Q24 H5 Q44 H5 Q—l-i I{S Q14 [{7 Q24 H? Q-14 H7 Q44 I{? Q34 ]{5
Q14 [A{S Q24 }AIS Q44 [{5 Q44 I{ Q14 }{7 Q24 ]{7 Q44 I{? Q44 I{? Qd-i Ifs
Q.H, Q.H, QH QH QH QH QH QH Q.H,
Q55 ﬁl Q56 }_Il Q56 FI} Q55 ﬁS Q56 }_IS Q56 'FIQS Q55 ﬁ? Qoﬁ 152 Q56 'gQ Q55 ﬁ4
Qﬁﬁ 1 QGSI{I QSGI-:’fi Q66H3 QGS'FAIS QSG]-{Z Q66H2 QGSI{Q QSG]-:’4
Q()‘ﬁ‘ 1 QSGHS QG()‘HS Q66H3 Q56H‘2 Q66H2 Q()‘ﬁ‘ 2 Q56H4
Q.H QH QH QH QH QH QH
. Qull; Qull; Qufl, QuHl, QuHl, QH,
Ds 11x11 = Z QGGHa Q56'[{4 Q66H4 QGGI{-l Q56]{6
= QSSHS Q56 IZS Q56H3 QS.SHS
Qﬁﬁ H3 Qﬁﬁ }{3 Q56 I{Z)
Gy Qs
Q55 7
Sym.

Appendix C. Definition of H Components

In matrices Dy, , Dy, Dp¢, Dy, and Dy the terms H;, Hj and 1-71 are defined as follows:
C.1. Definition oij

@A )
T j+1 A j

C.2. Definition Ofﬁ]

A~

By S 1 .
H = 2 1(1+fy0,z/R)dz:HjquyOEH]+l , 1=12..7

J Iy
where H are defined in Eq. (C-1)

C.3. Definition of ﬁj

] 1

hz]
_j; 1—|—'yoz/R
In the case of 7, =0 :

H =H
J J

217

(¢-1)

(C-2)

(C-3)

(C-4)
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In the case of 7, =1 after taking exact integration through the thickness of each layer, the following results were

obtained:
— hHl R + h
S I A M L
b 14+2z/R R+h,
— Ry z R + h
H = —= dz=R|h ., —h)—Rln|—L
2 (ﬂ,1+z/R (e =) R+h,
= [l z _ 2 2 2 R+ hk+1
Hgffhk Y L2~ B~ R(h,, —h)+R'In vy
— Iy z3 3 . . R + h
[{,l :‘/;A de:R 3(h:+1 *hk)*—R(h:Jr] h;)+R2(hk+] *hk)*Rs ln ﬁ
= Py iy 24 1 3 R+
= R = R RO R R G ) R ) R I S
! h’ h’ R h! hJ‘ R*(W} h 1 R (W} h2
_ f}'k o (k+1_ k:) 4 (k+1 )+3 (I.+1_ k,)_E (k+1_ )
= o =R
6 ' R+nh
b 14+z/R R4(hk+l )—R5 In kt1
R+ h,
5 1 5 B
fh‘“ 4 G(h:+l h:)_gR(hk:H - )+ R2(hk4+1 _h4)__R (h:+1 _hk)
T hy, 1+ R B 5 R + h
z/ += R4(hf+l—h]f)—R (h,,, —h)+R'In RH’;:]
Appendix D. Elements of Stiffness and Mass Matrices
D.1. Elements of Stiffness Matrix K;,x1:
1 1
K, =( mll)( )\z) <EDm33)(_n2)' K, = (RDmu +RDms4)()‘n)’ K, :(EDMQ)()\)'
1 1
K, = (Dmcn)(_)‘Z )+ (E D77L033)(_n2 ) K, = (me)()‘) K= (D77L15)<_)\2) + (E Dm37)( n’ )

R ml6 R

KlS ( D +—= Dm38 ) (A n ) ’ KlQ (R Dmlﬁ + DmL19 ) ()\ ) ’ K = (Dmcl5 ) (_)\2) + (_

1 1
K, (3Dm110)(>\) K, = (EDmﬂ +E m43)(>\n)

i i i 7
K ('Dm/l/l + ]_ijj Dmcﬂ R? 'Db( 44 + Rz 'DMA)(_AZ) (R ‘Dmgg + R(')S Dml,gg + R_(;Dbc??
7(]

2 1 o Y Yo Yo Y o
+ED};22)(_” ) +(_ EDszz + ED&B _EDszs _FDssQ _FDsss + ED& _E

1 o Y
K23 = (E D (e R D oo T3 R EDssz R R R

Ds‘33)

0 v Y
- D932)( )"Kv24:(_0D}721+ - b43)(/\n)

hk+1

R+h

|

(C-5)
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K, =D, + E D))+ (% D+ ;g D) (n?)
K, = (% D+ % ot #Dﬁg + 28D, ;g D )(-n), K, = (% D +% D )(An),
K, =D, + E D, )N + (R D+l D))
+ (—%Dm ;‘; D, +2 ;g D, + ;" D, - Z; D) '

Ky = (o Dy + Dy +25D, +2 28 D 28D, =D (o), K,y = (5D, +25D,,)(hn),
Ky = (D + 22D, )N+ (D, + 28 Dy ) o)+ (2 Dy =D,

;‘; D, - 3% D)

3 1 1

7 7, 1
K =(=D_ + +—D,, +—=D, +R? D ) (-n), K. =(==D_,)(=N),

212 1210 126 P 5211 3 26
R m R2 me Rz s R b

1 0 1 Y Y
Ksz = (7ED7r122 - R_(;Dmcm *EDSQQ + R_(; 523 R(j; D~28)( )
9 1 9 1 1 1 1
K, = (Dsll)(_)\ )+(ED522)(_H >+(_ED77122)’ K, = (+D511)(_>\)' K, = (_EDmm +E 523 _EDSZS)(TL)’
1 1 1 1
K36 (Dsn)(_)‘Z)_'_(EDszs)(_n?)+(_EDm29 _EDmczz)’ K37 ( Rsz5 +2D&17)( )‘)'
1 1 9 1 9 1
Ky = (_E m26 FDS%)(”)' Ky, = (Dsl4)(_>\ )+(ED525)(_TL )+<_EDm26) (3D514)( A),
1 3 1 1 3 1
Ksu = (_EDW:% +ED526 _EDsm)(n) ’ Ks ( 5110)( ) (RQ Ds211)(_n2) +(_EDm21o _ED’IHCZG)’
1 7 7
K41 = (Dbull)(_AZ ) +(ED1;¢33)(_”2)’ K42 = (R_(;sz +Eg 1;34)()‘ n) K = (_Dsll)()\)'
1 . 1
K44 = (Dbn)(_)‘Q) +(ED1>33)(_”2) +(_Dsll)’ K4a (RDMQ + RDM)()‘H)’ (Dmg + RD Dm)()‘)’
1
K47 = (Db<:15)(_)\2) + (E Db(:37>(_n2)+ (_QDm) K49 = (2Db19 - D514)()\)'
1 1
K410 = (Dbls)(_)\Q) +(EDb37)(—n2>+(_3D514) K411 (R DblG + RDb38)()\n) ’
1
K (3Db(110 R Dblﬁ Dano)o‘)
Y, 1 Y, 1 7,
KoQ (Dbr4-1 + };Dbu)( N )+(E be22 R_?;Db22)(_n2)+(_EDssz _R_[;Dsss
1 5y '
+_'D.s'32_EO sss)
1 1 1 1
K :(—ZD‘ +—D,——=D,)n), K, =(=D, +— D Y(An),

54 R 021 R 043
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1 1 1 1
K, = (Db44)(_>\2) + (EDm)(_rﬁ) +(_ED588 - Dssg)' K, = (EDMQ + EDssg)(_n) ’
9 1 9 1 2
Kss = (Dbc48)(_)\ )+(E b(26)( n )+(_E s T o5 R + RD Dssg)'
2 1 1 1
ng (R Dbc26+ D1729+R 85_ED535>(_n>' Ksm (RDI)25+RDIJ47)(>\n)'
9 1 9 1 1 1
K511 ( b48)< A ) (R DbZG)( n )+(_ Dssn ?’Dsse)' K512 = (EDMG +ED5811)(_n)' Kal = (_Dm91)(_)\)’
1 7, 1 7, 1 7,
K62 = (7E 'DlmZZ - R(j; Dbzz - E D7r192 - RT[; Dm(392 - E Dssz - R_Ug Dsgs)(n) ’
2 ]- 2 1 1 ]_
Ky = ( 571)(_)\ )+ (E 582>( )+ (= o E m92)' K, = (__DbZI me9l +D71)(_>‘)'
1 1 1 ; 1 1 1
K, = (_E b2 E me92 EDSSS)(H> » Koy = (Dsw)(_)‘z) + (E Dsss)(_n2) + (_EDbQQ =D g — EDch?)’
1 1 1 2
K67 ( Dm95+2D )( )‘)' K68 :(_EDIJC‘ZG_EDm%_EDsS{S+ED589)(n)’
2 1 2 1 2
ng (Da74)( A )+(ED585)( n )+( R Dbc‘26 E b2 =D Dmc99)
1 1 1 1
Kmo = (__Db25 Dcho + 3D574)( )\)’Kbll = (_E b26 E meds - p ssn)(n)
2 1 2 1 1 2 1 2
K, = (Dmo)(_)‘ )+(_2D5811)(_n )+(__2Db26 —=3D 4 __Dmc%')' K, = mal)< —X)+ (= Dm?S)( n),
R R R R
1 1 1 1
K, = (E D, + EDmu)()‘ n), K, = (E D, ., - 2D571)()\) K, = (Dm(:f)l)(_)\Z) + (E Dmm)(—nZ) + (_2Ds7l)
. 1 1 1
K76 = (Dm59 - 2D577)()\) 4 K77 = (Dm55)<_)\2) + (E Dm77)(_n2) + (_4Ds77) ’ K78 = (E Dm56 + E m78)()‘ n)
1 .
K?Q (R Dmaﬁ + 2DmL09 - 2Ds74)()\) 4 K?l[) = (Dmu55)(_>\2> + (E Dmc77)(_nz) + (_6D574)
K712 = (3Dm510 - 2D5710)(>\) 4 KSl (R Dmﬁl +- R Dm83 ) ()\ TL) 4
0 1 Y 1 0 0
KSZ = (D'm,84 + EO Dm(:84)(_)\2) + (E Dm62 + R_[j; Dvn,r:ﬁ?)(_nz) + (_ E 'Ds52 + R_(l Ds53 - R_(; D558 '
N;; D + 2 ;0 1)598)
1 1 9 1 9 1 1
Kss :(E m62 EDJ)Z)( n), Kss (DmL&l)( A )+(ED’”L(762)(_TL >+(EDS53_EDS 2D593 +RD598)
1 1 1 2 1 1
KSG = (E DmGQ + E D’mcGZ + E DS58 - E DSQS ) (7,’?’) 4 KS? = (R D77165 += R Dm87)()\ n) 4
. 1 ; 1 1
Kss = (Dmss)(_Az) +(EDm66)(_n2) +(_EDS55 _4D599)' ng (R DmGG +— R? D555)( n),
1 3 1 2
Ksu = (Dmss)( )‘Z) + (E Wee)( 2) + (E 56 EDSSJM 6Ds96 += R Dlel)
3 1 1 2 1
g2 (E D g0 + EDT!L(TGG + EDssn - ED5911)<_n) Ky = <_EDm61 chl)( A),
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1 v 2 Y 1 Y 7
ng = (7 E Dm,62 - R_(; me62 E DlmQZ - R_(; Db92 - E Ds52 R_(; D.e53 - R_?; Dsss ) (n) ’
1 1 2
Kgs = (Dszn)(_)‘Z) + (_zDssz)(_nZ) + (__QDmGQ - _Dbu92)' Kg ( 2Db01 + Ds41)( )‘)'
R R R
1 2 1 1
Kgs =(- RE e EDI)QQ + R Ds53 - R aaS)(n)'
2 1 2 1 1 2
KQG = ( 547)( A ) (Rz Ds58)(_n )+(_EDm69 _ED’I!L(TGQ _2Dbc99 _EDbOQ)'
1 1 2 1
K97 = (_EDmag 2Db 05 +2D )( A), K98 = (_F Dm66 - E Dbc96 _F Dsss)(n)
1 1 2
K99 = (Ds44)(*)‘2) + (EDsss)(*nﬂ + (7EDWL66 - EDchG - 4Db99) ’ Km ( 2Db95 + 3D544)( )‘) ’
1 2 3 1
Ky, = (= 2 mess E hos T R - E 5511)(71)'
2 1 2 3 1 2
K912 (Dsm)(*)‘ ) + (E Ds511)(7n ) + (75 Dm()‘lO - E Dmc66 - 6Dbc910 - E Db%)’
1 Y Y
Kun = (Dchl)(i)\z) + (E Dms)(*nz) ’ K102 = (R_g b52 + Rg 1)74)(>\ n) K = (_3Ds41)()\)’
1 ; 1 1
K, = (Db5l)(7)\2) + (_z Dm)(*nz) + (73D541) K = (= Dy, +— 574)0‘ n),
R R R
1 . 1 .
Kme (Db(59 += R D 3Ds47)(>\)’ K107 = (Db(:55)(*>‘z) + (E Dbc77)(*nz) + (76D547) ’ ng = (2Db59 - 3Ds44)()\) ’
1 1 1
Ko = (Dbss)(f)‘Z) + (E Db77)(7n2) +(-9D,,,), K, = (R Dy +— R D,..)(An),
1
K1012 (3Dm510 R Db56 3D&410)()‘) ’
0 Y . 1 0
an (Dbr&i +- Dbs4)( )‘2) ( 2 he62 R_(l b(ﬁ)(_nz) + (_E s112 R_(; 5118
3 )
+ E'DsGQ 3 R 'Ds63)
1 1 3 1
K113 :(R Db(62 +ED412 EDM)(—”)' K114 (RDb6l += Db&})()\n)
1 . 1
K115 *( b84)( )‘2) (R Dbﬁz)( nz)Jr(*?Dsns*gDsez)”
1 2 3
118 (DbCSS)( 12) +( bcee)(_nz) + (_E DsllS += R Ds119 R 565 _6D569) ,
1 2 1 3 1 1
K = (E Dices +E Diso +? Dy _E Dses)(_n) » Ko = (E Dyss +E Db87)(ﬂ’ n),
1 1 1
1111 (Dbss)( /12) +( bse)(_nz) + (__2 Dsllll _gDsee) , K1112 = (? Db66 +? Dsllll)(_n) , K121 = (_3Dm101)(_ﬂ) ’
1 7 3p 7 1 7
K122 = (_? Dbc62 R% Db62 R m102 3 ¢ Dmcloz _E DsllZ Rog Dslls)(n) ,
3 1

Kizs (Dlel)( ﬂ“2) +( 5112)(_n2) + (_E Dics2 _E DmlOZ) ’ K124 = (_E Db61 - 3DmclOl + Dlel)(_i)'
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1 3 1 1 1 3
K125 = (_E Db62 _E DmclOZ _E Dsus)(n) ’ K126 = (D5107 )(_ﬂz) + (E Dslls)(_n2)+ (_? Db62 _3Dm109 _E DmclOZ) ,
1 3 1 2 1 1
Ky = (_3Dm105 + 2Dle7)(_ﬂ’) K = (_? Dicss — E Diios — ? Dgy5 + E Dsllg)(n) K = (? Doe, + ? Dslls)(_n)
. 1 1 2 3
K129 = (D5104 ) (7>‘2) + (E Dsns ) (7n2) + ( - E Dbc66 - E Db69 - E DmlO()‘ - 6sz:109 ) ’
1 1 3 1
K, = (_E Dy =3D, 5 + 3D5104)<_)‘) Ky = (_E Dy — E mels E Ds1111)(n)
9 1 9 1 3
K1212 = (Dslolo)(f)‘ ) + (E Dsllll ) (7n ) + (7 E Db66 - 9Dm1010 - E Dmcl[)ﬁ)

K, =0,K, =0K =0K, =0K, =0K,=0K_=0K_ =0K =0K, =0k, =0K,=0

117

D.2. Elements of Mass Matrix M;,y12:

7 = = + Yo7 , 7, %7
]Mu:[o']wmz1"]‘417:2"]Mno:‘rz;]\/‘1(22_([07L 011+ 022)'M25:(1+EO 2)'
M, =( 2+EO 3) » M, _(IaJrEO DMy =1, My =1, My =1,, My, =I; M, =1 ,M,=1I,,
— — —_ ’7 —_ — — — — — —
M47:IB'M410= 4’M02:(1+ED 2)’M55:2’M58= B'M)M:IAL;M()}:1’M66:2’M69: 3’
— — — — — —_ ’y —_ — — —
M612= 4'M71: 2'M74: 3’M77: 4’M710=I5;M82:('[2+EOIS)'M85=IJ’M88: 4’M811= 57
- — — — — —_ —_ —_ - "}/ -
M93: 2'M96:I3'M99: 4’M912= 5’Ml(]1= 3’M104:I4’M107: 5'M101(J:I6;M112:(3+EO 4)’
M115 = I—l 4 MMS = 15 4 Mllll = Iﬁ’ M123 = I} 4 M126 = 4’ MlZQ = I’) 4 M1212 = Iﬁ'
Other elements of M are equal to zero.
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