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A new closed form formulation of threedimensional (3-D) refined higher-order shell theory
(RHOST) to analyze the free vibration of composite circular cylindrical shellsas beenpresented
in this article. The shell is considered to be laminated with orthimopic layers and simply sup-
ported boundary conditions. The proposed theory is used to investigate the effects of the-pfane
and rotary inertias as well as transverse normal and shear strains on the dynamic response t
thick composite cylindrical shells.The trapezoidal shape factor of the shell element is incorpo-
rated to obtain accurate stressresultants. UOET ¢ ( AT E1 01 160 POET AEDI
obtained and solvedin terms of the Galerkin method. Numerical results for the natural frequen-
cies are verified by making comparison with the 3D exact elasticity iterative solutions in the

theory literature. In addition, the validity of the results is further verified by ABAQUS. According to the

Trapezoidal shape factor
Circular cylindrical shells

Composite frequencies.

results, for thick composite cylinders with large lengthto-radius and orthotropic ratios, through
thickness exact integration yields accurate stresgesultants for proper prediction of the natural
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1. Introduction

Cylindrical shells are widely used in many
industries such as gas pipelines, petrol conveying.
Also, cylindrical structures are commonin modern
industries such as aerospace, aircraft and marine
structures. Based on classical shells theories, which
are based on Kirchhotf, T OAS O
studies have been performedon shells[1]. Although
classical shell theories ignore the transverse stress
and strain components for easy calculation, this
omission gives inadequate results for the analysis of
thick cylindrical shells [1]. Some research studies
are presented in the literature that investigate the
effects of shear deformation for dynamic response
of composite cylindrical shells[2]. Leissa[3] has
summarized many studies in the stateof-the-art in
his research work. According to these esearch
studies, the effect of shear deformation can become
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significant for small lengthto-thickness or radius
to-thickness ratios. Bhimaraddi [4], dewloped a
two-dimensional higherorder shell theory to
investigate the dynamic response of composite
circular cylindrical shell and the traction free
condition is assumed for inner and outer surfaces of

EUDI C)EACS'E 6’?1?”' F%(i)_/b\{and Liu[5] presented a two

dimensiona higher-order theory for
laminated elastic shells. The theory accounts for
parabolic distribution of the transverse shear
strains through thickness ofthe shell and tangential
stress-free boundary conditions on the boundary
surface of the shell.

The 2-D higher-order shell theories consider the
effects of shear deformation and rotary inertia and
they are more useful than the thin shell theories for
the analysis of moderately thick shell structures. In
order to analyzethe thick shells, 2D higher-order
shell theories are not adequate especially in the case
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of higher frequencies.In order to analyzethe thick
shells, the transverse normal stress and strain
components which are neglected in the -D higher-
order shell theories, should be accounted for in the
analysis which is based on threelimensional (3-D)
shell theories.

Due to accounting all the transverse stress and
strain components (which are ignored in the 2-D
higher-order shell theories), the dynamic analysis of
circular cylindrical shells on the basis of the
governing equations of the 3D elasticity attracted
the attention of researchers. In recent years, by
refinement of thick-shell theories, somenew 3-D
shell theories for the case of homogeneous
cylindrical shells were investigated [6-8] as
reviewed by Qatu[9]. Khalili et al.[10] investigated
dynamic responses of freevibration analysis of
homogenous isotropic circular cylindrical shells
based on a new D refined higherorder theory.

In the case of multilayered anisotropic
composite shells, the effects of transverse shear
deformation are more significant as comparedto
isotropic shells. Hence, the dynamic behavior of
composite shells is more complicated than isotropic
ones. Because of this complexity, accurate results
for dynamic response of composite shells need
three-dimensional modeling instead of twe
dimensional one especially for analysis of thick
shells where transverse normal and shear strains
become more significant. Rogers and Knightl1]
have famulated a linear higher-order finite element
to analyze an axisymmetric composite structure. A
higher-order theory for the analysis of composite
cylindrical shells was proposed by Murthy et al.[12]
by expanding the displacement variables in the form
of power series and retaining a finite number of
terms. As a result, the formulation allows for
arbitrary variation of in -plane dsplacement. Three
dimensional elasticity solutionswere presented for
the vibration of crossply laminated simply
supported cylindrical shells by Ye and Soldatogl3].
They used an iterative procedure and after a few
iterations, they obtained the exact values for the
natural frequencies. Natural frequencies and their
mode shapes of some homogeneous orthotropic
crossply cylinders were investigated. Kant and
Menon[14] presented a higherorder refined theory
for composite and sandwich cylindrical shells with
finite number of elements which is suitable for the
analysis of thin and moderately thick anisotropic
laminated cylindrical shells. Timarci and Soldatos
[15] presented comparative dynamic research
studies for symmetric crossply cylindrical shells
using unified sheardeformable shell theory.

Most of the research studies for higheorder
shear deformation theories that include shear
deformation and rotary inertia, failed to consider
the (p GFY terms (trapezoidal shape factor) that
is considered due to the fact that the stresses over
the thickness of the shell have to be integrated on a
trapezoidal crosssection of a shell element to
obtain the accurate stress resultantsAs shown in
Fig. 1, an element of theshell section ispresented.
As it can be seen, taking into account the large
shape trapezoidal -coefficient (including 1#/R
terms), instead of therectangular shape (excluding
1+z/R terms), is closer to reality, and therefore
precision of the integration increased for calculating
the stress resultants in the axial direction.

Chang [16] and Leissa and Chang[17]
considered this term but by neglecting the terms
beyond the order of QY. For the first time, Qatu
[18] utilized the (p OFY shape factor within the
framework of first order shear deformation theory
(FSDT) to analyzethe free vibration of laminated
deep thick shells. lam and Qian[19] developed a
theoretical analysis and analytical solution for
vibrations of thick symmetric angleply laminated
composite shells considering trapezoidal shpe
factor (p OT'Y . Icardi and Ruotolo[20] presented
a multi-layered model based on a secondrder
expansion of the p &fY terms. They presented
some numerical results concerning eigen
frequencies and stress distributions across the
thickness of simply supported, crossply cylindrical
shells. As a result, incorporation of the secondrder
expansion of the p d&fY terms appears to be
suited for technical purposes, as it can improve the
accuracy for predicting the overall and local
behavior of rather thick shells. Other research
studies which incorporate the (p OFY terms in
the static and dynamic analysis of thick laminated
cylindrical shells are presented in Refs[21-25]. In
these studies, the most popular procedures are
finite element method, Ritz method and the series
solution method.

D

(@) (b)

Fig. 1. (a) Circumferential crosssection of a thick cylinder
for integrating stress resultants in axial direction; (b) Regions
shown by + and- signs indicate the area differences between the
assumed (rectangular and trapezoidal) developed shapes of the

cross-section.
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The main purpose of this work is to investigate a
closed form solution of the free vibration of simply
supported-simply  supported (SSSS) composite
laminated circular cylindrical shells using a three
dimensional (3-D) refined higher-order shell theory
(RHOST). The effects of the iplane and rotary
inertias and transverse normal and shear strains on
the dynamic response of composite cylindrical
shells have beeninvestigated. Due to the fact that
the stresses over the thickness of the shell arto be
integrated on trapezoidatlike cross section of a
shell element, trapezoidal shape factorg oFY is
also considered for the first time in the framework
of the present RHOST. The present work is an
extension of the first author earlier research a free
vibrations of thick homogenous isotropic cylinders
[10] to multi -layered thick composite cylinders. The
advantage of the present RHOST is that no iterative
procedure like those used for example in Refs. [1]
and [13] is required for calculating the ratural
frequencies and hence, less CFigne is consumed
and this would be useful especially in optimization
processes where frequency should be calculated
several times.

2. Formulation

A circular cylindrical shell as shown in Fig2 is
considered with radius R, thicknessh and length L.
The displacement components in the axial, tangen-
tial and radial directions areu, vand w, respectively
and the reference coordinate system Xy, z), is
placed on the middle surface of the cylindrical shell.

Fig. 2. A circular cylindrical shell with the reference coordinate
system

In order to formulate a 3-D elasticity problem, the

4AUI T 080 OAOEAO AgbAl OEIT I

equations are obtained by expanding the displace-
ment componentsu(xy , z, t), ¥x/, z, tyand w(xy/, z,
t) in terms of thickness coordinatez of any point of
shell space10]:

ux ezt =u(xg ) +29(xet +
Z2u(x o 0+ 2°0( x4 )
V(X0 z ) =0 +7,20 RY X))t +
20 (x ¢ )+ ZV( %@ ) + Z0( x@ X
WXz =w(xg )+ xel+
W (% )+ 20( x4 )

@)

The termsu, vand w are the displacements com-
ponents andt is the time. It should benoted that 12
displacement parameters are presented in Eq. (1) as
a higher-order displacement field. By setting the
coefficient g equal to 1 in Eq. (1), the trapezoidal
shape factor of the cylindrical shell is applied in the
equilibrium equations and the HOST12heory (g
1 is refined to RHOST1206 , 0 are the inplane
displacements of the cylindrical shelland 0 is the
transverse displacement of a pointX,/ ) on the shell
middle surface.q , g; are the rotation functions of
the normal to the shells midde surface about/ -
and x- axis, respectively.6®,0*,0°,—=,— and—are
the higher-i OAAO OAOI O ET OEA
sion that represent higherorder transverse defor-
mation modes. For the first-order shear defor-
mation theory, only6 ,0 ,0 ,g and g; are consid-
ered as displacement filed. The general strain
displacement relations in the cylindrical coordinate
system according to linear theory of elasticity for
circular cylindrical shells are defined as followW10]:

du
e = —
o OX
e -1 |1ov w
¥ 1442/ R{ROy R
ow
R
1 (1ou) ov )
T T1iazIR(Roy) ox
L _ou ow
be a7 T ax
__ 1 [row v} ov
* 14,2/ R{R3d¢ R) 0z

By substituting Eq. (1), the expressions for dis-
placement at any point within the shell, the linear
strains in terms of middle surface displacements are
obtained as follow:

EC

4 AUl
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g, :520+sz+225*%

1
Ve, = ————=(&, +2x,, +Ze;, +2x,)+
S Lzl RO T o ¢ @
(5;XO +zx, + 225:% + fx;x)
Y = Bt 2x, + 2B+ 2,
1
=—— (B +zx, +Z8 +2%,)+
Yoz 1+ 702/ R( o Xoz, ﬁ,«u X;ZO)
(3, +2x, +20)
where:
ou, a0,
£ = — , =
Yoo OX X Ox
ou, . 00
e =— =
oo 9x X X
gﬂ — l 81/0 + %
“ RIp R
1 81/0 + 1 80¢ z
X“ = ’Y —_— —_—— -
» "R29p ROy R
o R Jy R Y RJp R
€, :92 .X, :2W§ , s"% :39*2
v, 1 9y, BGQ N vy,
S = Xy = Voo e T ST G =
%o 1524 ¥ R 0x IX o IX
. 90 1 du, 190,
XX“:i’va =357 ' szi‘ ’
i Ox o R 9¢ R 9¢p
1o, ., 106
E ==—, X, =——
PXo R 8@ PX R 850
(4
B =6 +aW° / —2u*+8192
x  Ux X ! sz - 0 X
ﬁ*739*+awg %
T T e T gy

1 BWO v 892 v

1
“ Rop R ' = Rop, °R?

[

1 ow, 3 vy

%% "Rop R = Ro, RR

v " X
ﬁﬂ = ’}/O EO + 9*71 Xﬂ1 = 2]/8,[3?1 =30

3. Stress- Srain Relations and Sress Re-
sultants

For an orthotropic material, 3D stressstrain re-
1 AOET 10 AOA 1T AOAHIIAA AU (11 EAGQC

9y k C 11 C 12 c 13 0 0 0 - €y ‘

T, ClZ c 22 c 23 0 0 0 €2

T3 _ C13 Czs Css 0 0 0 €3 (5)
., 0 0 0¢C, 0 0 |y,

T 0 0 0 0 C, Of |y,

T 0 0 0 0 0 Cgl |7,

coefficients® are defined as:

c, =l vt

11

— E1£V21+l/3{{2i

12

v v
Cc = E11(V31 TV 3)
13 e
c :Ezz(l_ylsl/sl) C :E2£V32+V1§/:)1
22 . 23 P
v v (6)
C = E33(1 — U 21)
33 .
v
Cu=06,C5=64C (=G

v :(1*’/12’/217’/231/327”15/ 31 2v H# 1)3

where O AOA 91 01 C60 11 ADla®0 1T £ Al
01 EOOI 10 Gre dddhdaimbduli for compo-

site material in different directions. The relation

between offaxis stress and strain for the'Q layer

of a multi-layered composite cylindrical shell is de-

fined as follows:

o Qu Q. Qu Q. 0 0ffe]

Uu Q12 Q22 Q 23 Q 24 0 o Eo

UZ Q13 Q23 Q33 Q34 0 O EZ

o, 10w Qu Qu Q. 0 Of v, @
UXZ 0 0 O O Q55 QSG ’yxz

UOZ 0 0 0 0 QSG Q66 ’Yoz

where Q; are elements of the reduced stiffness ma-
trix as defined in Appendix A.

By substituting Eq. (3) into Eqg. (7) and integrating
through the shell thickness, Eq. (7) is refined to
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4. Governing Equations

0 =Dz (8) N
50EI ¢ (AIEI Ol 60 DOEI AEDI Ah
D 0 D D tion for the free vibration analysis are obtained. It
D=| ' D =/ ™ ™ could be defined as follows in analytical form:
0 k,D, f D,. D, ©) n
. &
Thematrices’© HOhO , O andO are given in a’rtl2 [U-K w]dt ® (13)

Appendix B.Q is the shear correction factorwhose

. . . wher is the total strain energy due to defor-
value is considered equal to 1 for higheorder theo- ere Uis t 9y

mation, W is the potential of the external loads and

rlest_ anc:hequalltoA 7p cd_flrsé orderrs:wez;\; ?ﬁf(ér' f Kis the kinetic energy. Due to the assumption of the
mation theory. In Appendix L, accurate method o absence of damping and external loads, the Hamil-

_calculatlon of integrals th(_)rough_ the s_hell thickness AI 180 meuHbBeAEMbriaed as follows:
in stressresultant equations, including the (p

orY terms, are presented.€ and 0 , the middle

surface grain vector and stressresultant vector,

L2
respectively, in Eq. (8) are defined as follow: ar) [U-K]dt =0 (14)
) ) T . o
AN N NN NN R RN, 8 U, the .total .straln energy due to deformation in
® | o 0 Eqg. (13) is defined as:
§ = BUMM, MM MM MM 0 (10)
M,Q.9 R 4. QR85 5,78 s 1o o
& R T U=zl a4y
&0 o0 0 x 6% 0 G K xBvz200€ 6
e 0
@:?%’ XC/-,C~X,CX/, *q'*}é xjéx'gzv £ g (11) t t L2 h/2$ dﬂ’ yS daa (15)
2 . . B Aau d= { R i 255 I o Sy o@ﬁdzm
o b b’  Cogr Caj & G2 0 My

& dg 5 o
The components of the stressesultant vector © @sxz 2 v

for the composite shell are defined as: o ] ]
and the kinetic energyKis defined as:

&N, M, N, M, 8
e * u 2 2 2 8
N . ) ) ]_ ~ o - . 0
Ny M, N Mg 5 M r"%]nﬂ w o av
e s Q 3 vog 0
éR T F‘i/' S K (16)
o, dg 1
aloy GoZ 4. AL 2p +h2

an Ls., Tbl’z 2) @) d ‘i, 0 [, (0¥ @ w JodAdzd

I t/'z {/ .
; . Mmis the mass density of the material of the shell and
eN. M. N, M . @ 12 . L . .
(eN/ M / N*/ M | (12) ( represents differentiation with respect to time.
g /x x x ¥ E In Egs. (15) and (16), the differential element on the
g€ s, Q S, Y middle surface of the shell is defined agl0]:

és, 0
5 ils tz2,7) d z
an is,x hzz, ) z dA = R(1 +g, ﬁ)dxd/ a7)
i=1 :’S/Z |y
gNz M, N, g Substituting the appropriate strain expressions
N GZ\ . g!ven by Eqg. (4) _and the displacgment gxpressions
a 52(112,22) (1+F)d‘ given by Eq. (1) in Eq. (14) and integrating the re-
= sulting expressmns by parts, after separatmg the

where NLis the number of composite layers. coefficients of o, Mo Mo 99 g dg a, d"o
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o dg dg dq . .
o, 99 99 99 the eqations of motions are ob-

tained:
du, :
uNx+i“N/X _
X R
SR T T
it 0 i? 1 t%l 2 tu3
de
1N 1 M, Ny 1 My,
Ry hw R
W RF W X X
1 1 1 _
RY "%RR IS =
2 ~x 1.2 ~
WVo o 2001 8 M9 & 49 0
@+ 20, +9, 6 &, ¥
FORlRZZ— Q1R29
2 ~ 112N ~
MVpa_ g O0MHG _a 0
+00, 6+ I
W TR S IER e 8
dWOZ
1, Q0 1w
R/ ux R p -
2 .
Hwg Kq, o~ Ag-_
HIZ |0+ i? |1+t%|2 t2u|3
dg:
W LW
[ Ji X
W - P wo Ce
|JI2 1 i? 2 t% 3 t2u4
d/q:
iuM_/ MX/ +i R. =
R W M R Y
2, P * 2q"
Pwé g- 01—  fw_ Kg
w2 @R O s e
adg:
1 1HS MBS
RYN Ry e T
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(18a)

(18b)

(18¢)

(18d)

(18e)

(18)

duo:

N LN

o R o x (189)

* *
K i g, r 0 qu
+ +

p? 2 tf 3 th 4 t?p 5
dvo:

TN, M 1. B
Ry Fw Y S (18h)
v & g 8 wg Ny Rg_
PR S Tl T
a’w*

1 - W, 11
RNOM e B (18i)
, , , ,

VAV A A -

mz |2+ f? 3 + t% |4 tZIJIS
a’g:

HMy 1 HM, _

w TRop % T (18))
2, 2,.* 2

WU — fg, W - ® -

utz |3+ i? I4 *+ ti |5 IZHIG
aq

1 |JJVI/* MX/ 1 = F\: _
Rw " x RS 3R < (18k)
2 ~ 112 * ;
Vo & g 0GBy Ag_

ut? ?3+E|4 AT La t?i'S t2p{ 6
dg:

1 Cops, LES
RM N, A R TR T (181)
Wwy — g, fw, . pg_

I_nz I3+ i?|4+t%|5 tZIJIG

where the inertia terms in the right side of Egs. (18)
are given by

2 19
fr(1272.2,2,2, )@ g4 Re (19)

Natural and essential boundary conditions for
simply supported conditions atx=0 and x=L are as
follows:
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du, =0orN, =0, @, DoN, 8,
X 0 X

dv0=00r(N>y. +g/RMx/.) 9 vy &

orN*. =0,

¥
dw, =00rQ =0, af, DoQ, 8, (20)
dg=Ooer =0, c;/q=00rl\/I; o,

d/q:OOrMX/. =0, d/.q:Ooer/. 9,

a’gzOorSX =0, nz’q=00SX 9,

5. Solution to the Governing Equations

The Galerkin method is used to solve the free vi-
bration problem of simply supported-simply sup-
ported circular cylindrical composite shells. The
boundary conditions for simply supported edges at
x=0 andx=L is applied as follows[10]:

Vo=V% T Y % W <
. . (21)
=g =N_ M N M 0

X X

In order to satisfy the boundary conditions, the
displacement components are expandeds follow

[6]:

U, = U, COSAX COS1y e'”m"I
V, =V, SinAxsinny €

W, =W, sinAxcosny gemt

Oomn

, COSAX COS1p gt

. SinAx sinny gt

0,
9
9 . Sin Ax cosny gt
u

(22)

fw t

, COSAX cosip e™

le

\

o '+ o % N

. SinAx cosny €

cosAx [ofek: 41%; gmt

0.

0

6,

u

v L sinAxsinny €
w

g,

6 L sinAx sinny gt
g

W
g
0
0

. Sin AX cosny gt

where in Eq. (22), A=Q” p andi are the natural

angular frequencies (int @ 9 and arerelated to the
mode numbers (n,n) where mis the axial halfwave
number and n is the circumferential wave number.

u v w08 6 6 u_ v w

Oomn Oomn Oomn xmn wmn zmn Oomn Oomn omn
L 1 1 1 1 1 1 1 1
0 0 6

xmn - “emn
1

zm gre the constant amplitudes of vi-
bratlons related to the natural mode shapes. By sub-
stituting Eq. (22) into Egs. (18) and applying the

Galerkin method, after simplification and collecting
coefficients, the following eigenvalue equation is
obtained:

[K- b5, M]d =0 (23)

where is the displacement vector,dand b, = @n

corresponding to the mode shape numbers r,n).
Generally, between the 12 eigenvalues (frequencies)
obtained from Eq. (23), the smallest one is associat-
ed to the bending vibration mode shape correspond-
ing to the specified node numbers (n,n). The lowest
eigenvalue is called fundamental frequency of bend-
ing vibration. The elements of the stiffness matrix
[K] and the mass matrix [M] are given in Appendix
D.

6. Numerical Results and Discussion

In order to analyze the free vibration of compo-
site circular cylindrical shells with simply support-
ed-simply supported boundary conditions, a com-
puter code using MATLABR13 based on the formu-
lation of the present shell theories is developed. Dif-
ferent examgdes of composite cylindrical shells with
a wide range of thicknesgo-radius (Q'Y and
length-to-radius (0j 'Y ratios are investigated to
show the efficiency and accuracy of the present
formulations. In order to verify the present results,
they were compared to the analytical results availa-
ble in the literature. Furthermore, the results were
validated with those obtained using Lanczos eigen-
frequency extraction subroutine in
ABAQUS/Standard code. In ordeio obtain accurate
results of the free vibration anaysis, the stress re-
sultants were calculated using exact integration
over the thickness of the composite cylindrical
shells. In addition in contrast to some3-D elasticity
theories, e.g. Refs. [1, 13], in the literature for the
free vibration analysis, thepresent RHOST does not
require any iterative procedure and convergence
study. This is an advantage from the sense that
computational time in the present RHOST is less
than these iterative procedures.

Unless otherwise stated, the following geomet-
rical and material properties are used hereinafter:

E

|m

=40 =2 =
E E
612_613 GZS
2= Hp6 2 B6,5
E, E (24)
U,= th =4 25

Layup=[0/90] ,% =1,% 01
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Also, unless otherwise mentioned, the natural
frequency parameter is considered to be:

w=uhy Bl /8, (25)

For the verification purpose, in Tables 1 to 4, the
results of the present RHOST12 and HOST12 are
compared to those obtained from 3D elasticity ex-
act solution method, reported by Ref. [13].

In Table 1, the lowest natural frequency parame-
ters, 1 “h for 4-layered olindrical shells having
symmetric crossply layup are presented. As can be
seen in this Table, in all cases, the first frequency
parameters of 1w Tt layup are greater than those
for wi#mn layup. Furthermore, good accuracy is
obtained in comparison with the results of Ref{13]
for different values of thickness ratios and mode
shape numbers. Byricreasingh/R, the discrepancies
are increased. Also, by increasing, the discrepan-
cies are increased for [0/90} layup, unless atn=3
for w#®m . The maximum discrepancy (1.75%) is
corresponded toh/R=0.3 andn=2 for [90/0] s layup.

In Tables 2 and 3, he first three frequency pa-
rameters of crossply composite cylindrical shells
are shown for different values of'Q"Y, and circum-
ferential mode number (n). The results were also
validated by making comparison with Ref[13]. Ac-
cording to these Tables, the natural frequency pa-
rameters of the laminated cylinders increased by
increasing the number of layers This trend occurs
due to the fact that by increasing the number of lay-
ers, the bendingextensional coupling decreased for
an anti-symmetric crossply laminate. It isnecessary
to be noted that in Tables 2 and 3, by increasing
both h/R and n, the discrepancis increased. The
maximum discrepancy for the present RHOST12
(2.84%) and for the present HOST12 (5.12%) are
both corresponded to h/R=0.3 and n=3 for [0/90]

layup in Table 2. As shown in these Tables, all the
discrepancies corresponding to the present
RHOST2 are very less than those for the present
HOST12. This outcome reveals the importance of
incorporating the trapezoidal shape factor (1#/R
terms) in the present analytical formulations. In
addition, as can be seen in these Tables, except for
h/R=0.1 for layup [0/90] 2 in Table 2, generally by
increasing the number of layers, the discrepancies
decreased. Also, good agreement between the pre-
sent results of RHOST12 and RgfL3] results shows
the accuracy of the present theory.

Table 4 shows the values of the first three fre-
quency parameters for different orthotropic ratios
of 2-layered unsymmetric crossply composite cy-
lindrical shells for different values of the thickness
to-radius ratio "Q'Y. The present RHOST12 results
were validated by making comparison with those
reported by Ref.[13] and good agreement was ob-
served. According to the results, all frequency pa-
rameters increased by increasing either the stiffness
ratio Oj ‘O or the thicknessto-radius ratio "Q'Y of
the cylinders. Also, the discrepancy increased by
increasing the values ofOj ‘O and h/R. The maxi-
mum discrepancy (5.6%) is corresponded to
'0j 0=40 andh/R=0.5 for the second (ll) frequency.
There is not a specific trend for the discrepancies
when the frequencynumber (I, Il or 1ll) is changed.

In Fig. 3, variations of the natural frequency pa-
rameter vs. thicknessto-radius (‘Q'Y is indicated
for symmetric crossply layups. Also, the results of
the present RHOST12 and HOST12 theories foiR=
10 are compared with the present FEM analysis.
According to Fig. 3(a) by decreasing the value of
orthotropic ratio, ‘Oj ‘O, the discrepancis between
the results of the present RHOST12 and HOST12
and the present FEM results increased specially for
greater values of Q.

Table 1. Natural frequency parameters] °, for composite circular cylindrical shells with symméric cross-ply layups (m=1)

h/R Theory [0/90] s [90/0] s
n=1 n=2 n=3 n=1 n=2 n=3
0.1 RHOST12 (present) 0.079302 0.066377 0.064700 0.070809 0.052872 0.059267
Ref.[13] 0.079277 0.066335 0.064600 0.070738 0.052748 0.059130
0.03 0.06 0.15 0.10 0.23 0.23
0.2 RHOST12 (present) 0.175333 0.163123 0.171778 0.151538 0.131548 0.160240
Ref.[13] 0.175188 0.162844 0.170868 0.150651 0.130168 0.158886
0.08 0.17 0.53 0.58 1.06 0.85
0.3 RHOST12 (present) 0.273215 0.263860 0.286369 0.239027 0.222623 0.272072
Ref.[13] 0.272860 0.263048 0.283798 0.236385 0.218779 0.268258
0.13 0.30 0.90 1.11 1.75 1.42

*Percentage discrepancy ((PresergRef.[13])/ Ref. [13])*100.
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Table 2. Natural frequency parameters] *, for composite circular cylindrical shells with unsymmetric crossply layups (m=1)

h/R Theory [0790] [0/90],
n=1 n=2 n=3 n=1 n=2 n=3
RHOST12 "
(present) 0.069519 0.13 0.049802 0.35 0.046207 0.56 0.074085 0.22 0.058276 0.52 0.059502 0.78
0.1 (Egz;ls 0.069594 0.24 0.049986 0.72 0.046627 1.46 0.074141 0.30 0.058461 0.84 0.059881 1.42
Ref.[13] 0.069428 0.049630 0.045949 0.073919 0.057975 0.059043
RHOST12
(present) 0.148051 0.84 0.122233 1.64 0.130875 1.99 0.162243 0.81 0.145715 148 0.162551 1.77
0.2 HOSST;%)(pre— 0.148539 1.17 0.123520 2.72 0.133160 3.77 0.162664 1.08 0.146790 2.23 0.164226 2.82
Ref.[13] 0.146819 0.120255 0.128317 0.160932 0.143589 0.159729
RHOST12
(present) 0.233711 161 0.208223 2.64 0.232943 2.84 0.253687 1.10 0.239751 1.82 0.272722 2.01
03 HOSSEE)(WG' 0.235187 2.24 0.211727 4.37 0.238106 5.12 0.254902 159 0.242367 2.94 0.276154 3.29
Ref.[13] 0.230019 0.202861 0.226517 0.250922 0.235457 0.267347

“Percentage discrepancy ((PresergRef.[13])/ Ref. [13])*100.

Table 3. Natural frequency parameters] “Ffor composite circular cylindrical shells with unsymmetric crossply layups (m=1)

h/R Theory [0/90], [0/90],
n=1 n=2 n=3 n=1 n=2 n=3
RHOST12 .
(present) 0.075019 0.1 0.059930 0.24 0.062060 0.36 0.075390 0.07 0.060569 0.15 0.063045 0.24
0.1 (grce)j;-r}t? 0.075052 0.15 0.060071 0.48 0.062379 0.79 0.075408 0.09 0.060679 0.33 0.0632470 0.56
Ref.[13] 0.074939 0.059787 0.061838 0.075339 0.060477 0.062896
RHOST12
(present) 0.165499 0.39 0.151194 0.72 0.170352 0.90 0.166894 0.27 0.153521 0.49 0.173719 0.64
0.2 (;'g?;% 0.165812 0.58 0.152001 1.26 0.171439 1.55 0.167122 0.41 0.154138 0.89 0.174432 1.05
Ref.[13] 0.164852 0.150114 0.168829 0.166445 0.152779 0.172616
RHOST12
(present) 0.259425 0.57 0.249229 0.99 0.285798 1.20 0.262183 0.42 0.253746 0.75 0.292216 0.99
0.3 HOST12
(present) 0.260390 095 0.251165 1.78 0.288778 1.93 0.262929 0.71 0.255779 1.32 0.293348 1.38
Ref.[13] 0.257947 0.246783 0.282406 0.261081 0.251849 0.289353

*Percentage discrepancy ((PresergRef.[13])/ Ref. [13])*100.

Table 4. First three lowest frequency parameters| *ffor composite circular cylindrical shells with unsymmetric crossply layups (m=n=1)

Theory [0/90]
EE h/R=0.1 h/R=0.3 h/R=0.5
2
| 1l 1] | 1] 1] | Il Il
glosglt:)m 0.06192 0.15824 0.29462 0.20945 0.47465 0.71821 0.38460 0.78261 0.98567
10 Ref.[13] 0.06192 0.15824 0.29444 0.20878 0.47432 0.71297 0.38198 0.78053 0.96867
0" 0 0.06 0.32 0.06 0.73 0.68 0.26 1.75
2}':6053232 0.06632 0.20305 0.38953 0.22237 0.58876 0.80612 0.39948 0.92867 1.06172
20 Ref.[13] 0.06629 0.20302 0.38888 0.22057 0.58695 0.79149 0.39425 0.91408 1.02944
0.04 0.01 0.16 0.81 0.3 1.84 1.32 1.59 3.13
E::GOSEISZ 0.06828 0.23929 0.45417 0.22921 0.66924 0.85234 0.40660 1.00773 1.10908
30 Ref[13] 0.06823 0.23922 0.45285 0.22638 0.66463 0.82864 0.39975 0.97244 1.07140
0.07 0.02 0.29 1.25 0.69 2.86 1.71 3.62 351
E::eosglt:;z 0.06951 0.27021 0.50185 0.23371 0.72855 0.88451 0.41091 1.05494 1.14304
40 Ref.[13] 0.06943 0.27009 0.49971 0.23002 0.71976 0.85292 0.40298 0.99892 1.10068
0.11 0.04 0.42 1.6 1.22 3.7 1.96 5.6 3.84

*Percentage discrepancy ((PresergRef.[13])/ Ref. [13])*100.
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As illustrated in Fig. 3(a), ah/R=1.9, the discrep-
ancies of the present RHOST12 and HOST12 for
‘0j O=40 are 0.23% and 6.21% for Tifw Tt layup
and 3.19% and 6.66% for w & layup, respective-
ly. At "Q'Y=1.9, the discrepancies of the present
RHOST12 and HOST12 f@j ‘O =1 are-0.44% and
18.4% for 1w 1 layup and-0.43% and 19.33% for

w & layup, respectively, as indicated in Fig. 3(b).
Generally, the frequencies corresponded torifw Tt
layup aregreater than w #mt layup.

In Figs. 4(a) and 4(b), variations of the lowest
natural frequency parameter vs.,]j 2 ratio is indi-
cated for [0/90]s and [0/90]2 layups of a crossply
composite circular cylindrical shell for the present
RHOST12 and HOST12. Aading to these figures,
regardless of the layup sequence (symmetric or un-
symmetric) for Ej 2 1@ and 1.5, by increasing j 2
ratio from 5 to 20, the differences between the pre-
sent RHOST12 and HOST12 increased from about
0% and 2% to about 2.63% and 6.7%, regutively.

Variations of the lowest natural frequency pa-
rameter,] * vs. QY ratio, for different orthotropic
ratios (O] ‘O are presented in Fig. 5. The results of
the present HOST12 and RHOST12 are compared to
each other for0j 'Y=1 (Fig. 5(a)) and also® the pre-
sent FEM results fordj "Y=10 (Fig. 5(b)).
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As it can be seen in Fig. 5(a), regardless of the
value of O] 'O, the difference between the present
RHOST12 and HOST12 results are not considerable
since the shell length is short. However, according to
Fig. 5. (b), by increasingQ"Y from 0.1 to 1.9, the
discrepancies between the present RHOST12 and
FEM forOj O =1, 10 and 40 increased from about
0% to about-0.67% -3.35% and-1.64%, and these
discrepancies for HOST12ncreasedfrom about 0%
to about 18.58% , 17.87% and 15.7%, respectively.

According to Fig. 5(b)there is a good agreement
between the present RHOE12 and FEM results and
noticeable discrepancies were found between
HOST12 and FEM results.

Fig. 6(a) indicates the effect of different layups on
the lowest natural frequency parameter vsh/R ra-
tio for L/R=1. In this figure, the maximum difference
between the results of the present RHOST12 and
HOST12 is about 1.01%. However, in the case of
L/R=10, as indicated in Fig. 6(b), the geometric pa-
rameter L/R has considerable influence on the accu-
racy of the presen theories. By increasing the value
of L/R, the differences between the present HOST12
and RHOST12 increased. The results of the present
FEM simulations are also compared. As it can be
seen in Fig. 6(b), the maximum discrepancy8.5%
occurs in the case 0f90] layup between the present
HOST12and FEM results.

It could be observed from Figs. 6(a) and 6(b) that
for both RHOST12and HOST12 by increasing the
volume fraction of zero angle layers in the laminate,
the frequency of the cylinder increased.

Figs. 7(a) and 7(b) illustrate the variations of fre-
qguency parameter vs. orthotropic ratio E1/E2 for
L/R=1 and 10, respectively. In Fig. 7(a), a small dif-
ference between the present RHOST12 and HOST12
exists and it is almost unchanged by increasing the
value of E1/E2 the present RHOST12 and HOST12.
In addition, the frequency converges to an almost
constant value. However, in case of L/R=10 in Fig.
7(b), by increasing E1/E2 and h/R, the differences
between the present RHOST12 and HOSTI12 in-
creased.

The maximum discrefancy (14.55%) between the
present theories and the present FEM simulations
occurs for HOST12 at h/R=1.8 and E1/E2 =45 as it
can be seen in Fig. 7(b). In fact, by increasing the
value of L/R, the influence of the exact integration of
the stress resultants wer the trapezoidatlike cross-
section of the shell becomes more important. Since
in the present HOST12, this important point is not
considered, this theory fails to predict the correct
values of the frequency in contrast to the present
RHOST12 especialljor higher values of h/R, E1/E2
and L/R ratios.
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In Fig. 8, variations of lowest natural frequency
DAOAI AOAOOR b5v eh 008
layup £ O AEAEAOAT O
have been investigated. As shown in Fig. 8(a), for
L/R=1 and h/R=0.1, regardless of the value of
E1/E2, by increasing the number of layers (n) in
[0/90]n layup, no considerable difference could be
observed between the present RHOST12 and
HOST12 results. Also, by increasing the number of
layers in [0/90]n layup, regardless of the value of
E1/E2, the frequency converges to a special con-
stant value. Furthermore, in Fig. 8(b), for L/IR=10
and h/R=1.5, the frequency cowerges to another
special constant value. However, in contrast to Fig.
8(a), considerable difference could be observed be-
tween the present RHOST12 and HOST12 results by
changing the value of E1/E2. For E1/E2=1, the dif-
ferences between the present RHOST12 nd
HOST12 are almost unchanged by increasing the
number of layers (n) in [0/90]n layup. While, for
E1/E2=10 and 40, there is a special value for the
number of layers (n) where the difference between
the present RHOST12 and HOST12 is negligible and
before and after this special value, this difference
becomes clear especially for lower values of the
number of layers (n).

In Table 5, the lowest natural frequencyarame-
ters,] *hobtained from the present analytical theo-
ries are compared with those reported byRef.[13].

In addition, results are compared to those obtained

using Lanczos eigenvalue extraction method in
ABAQUS/Standard solver and the ssociated mode

shapes are depicted in Table 5. For the finite ele-
ment 3-D (FE) modeling of the composite cylindrical

shells, 8noded continuum shell (SC8R) was used
and convergence study for the elements size was
achieved.

As it can be seen from Table 5or the first bend-
ing mode No. (1,1), the absolute values of the dis-
crepancies between the present theories and those
of Ref.[13] for different thickness-to-radius ratios
B 2=0.1, 0.2 and 0.3 are 0.13%, 0.64% and 1.61%,
respectively, for RHOST12 and 0.24%, 1.17%nd
2.24%, respectively, for HOST12\ccording to Table
5, for the second bending mode No. (1,2), the abso-
lute values of dscrepancies between the present
theories and those of Ref[13] for different thick-
nessto-radius ratios "Q'Y=0.1, 02 and 0.3 are
0.35%, 1.64% and 2.64%, respectively, for
RHOST12 and 0.72%, 3.96% and 7.44%, respective-
ly, for HOST12.

Also, as shown in Table 5, for the third bending
mode No. (1,3), the absolute values of the discrep-
ancies between the present theories and those of

Ref. [13] for different thickness-to-radius ratios

1 01 AAQ'YH 04, Ol2dnd A3a@ 0.p606(11.98% and 218RA%, T ¥ 1
i OOET OOI bdspectivehA HERHOST]2%ndp1j.4%8%, 6.43% and

8.87%, respectively, for HOST1XHence, by increas-
ing the mode number, generally the discrepancies
increased for both the present RHOST12 and
HOST12.
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Fig. 8. Lowest natural frequency parameter “ffor SSSS compo-
site cylinder vs.number of layers (n) in [0/90]n layup for differ-
ent orthotropic ratios (%] %). (a). L/R=1 and h/R=0.1. (b).
L/R=10 and h/R=1.5

According to Table 5, the present FEM analysis al-
so indicates good accuracy as compared to those
results in Ref.[13]. For different thicknessto-radius
ratios "} 'Y=0.1, 0.2and 0.3 for the first mode (1,1),
the discrepancies between the present FEM results
and Ref.[13] are 0.04%, 1.09% and 0.69%respec-
tively. For the second bending mode (1,2), the dis-
crepancies are-0.02%, -0.11% and-1.43%, respec-
tively, and for the third bending mode (1,3), the dis-
crepancies are-0.24%, -1.78% and-3.47%, respec-
tively. As compared to Ref[13], in most cases, the
discrepancies of the present FEM results are less
than those for the present RHOST1Zowever, in
some cases like modéNo. (1,1) with "Q"Y= 0.2 and
mode no. (1,3) with"® 'Y= 0.3, the results of the pre-
sent RHOST are closer than theresent FEM results
to those for Ref[13].
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Table 5. Comparison of lowest natural frequency parameters *Ffor composite circular cylindrical shells with unsymmetric crossply layups
([0/90]) with those obtained using Lanczos method of eigenvalue extraction in ABAQUS/Standard solver and associated mode sap

(L/R=1).
Mode
no. Theory "TY=0.1 "TY=0.2 "XY=0.3
(m,n
Ref.[13] 0.069428 0.146819 0.230019
RHOST12 (present) 0.069519 0.13 0.148051 0.84 0.233711 1.61
HOST12 (present) 0.069594 0.24 0.148539 1.17 0.235178 2.24
FEM (present) 0.069458 0.04 0.148423 1.09 0.231612 0.69
FSDT(present) 0.069858 0.61 0.150135 2.25 0.239457 4.1
(1,3)
Mode shape
Ref.[13] 0.049630 0.120255 0.202861
RHOST12 (present) 0.049802 0.35 0.122233 1.64 0.208223 2.64
HOST12 (present) 0.049986 0.72 0.123520 2.72 0.211727 4.37
FEM (present) 0.049618 -0.02 0.120119 -0.11 0.199962 -1.43
FSDT(present) 0.050340 1.43 0.125735 4.55 0.217378 7.15
(1,2) :
Mode shape
Ref.[13] 0.045949 0.128317 0.226517
RHOST12 (present) 0.046207 0.56 0.130875 1.99 0.232943 2.84
HOST12 (present) 0.046620 1.46 0.133160 3.77 0.238106 5.12
FEM (present) 0.045838 -0.24 0.126032 -1.78 0.218653 -3.47
FSDT(present) 0.047055 2.40 0.135579 5.65 0.244040 7.73
1,3) ,
Mode shape
*Percentage discrepancy ((PresergRef.[13])/ Ref. [13])*100.
7. Conclusions exact 3D elasticity method for a wide range of

thickness-to-radius and thicknessto-length ratios.
Comparisons of the results for thick cylindrical
shells with published results in the literature were
carried out and good agreement was observed.
The present theory does not require any
convergence study, in cofrast to some existing
iterative approaches in the literature that require a
; . ; few iterations to achieve sufficient convergence to
wa incorporated exactly in the formulations. The . o .

S . ; the exact solution. This is an important advantage of
characteristic eigenvalue equation was obtained t resent -RHOST. - Eurtheriore. natural
AAOAA i1 (AIEIOIT80 bDOET ApRreEent sFHRST 4y YL 51%|

. . . frequencies " associated ~ to iger-modes ~ of
Gderkin method to the governing equations, natural . . . .

. ! o moderately thick, thick and very thick composite
frequencies were obtained. The applicability and . : . .

S : cylinders, never published in the literature before,
validity of the present theory were confirmed by

o . . . were compared to those obtained using FE
verifying the results with those obtained using the modeling in ABAQUS commercial software. The

For the first time, a closed form solution method for
free vibration analysis of composite thin and thick
simply supported cylindrical shells on the basis of 3
D refined higherorder shell theory (RHOST) is
presented in this study. The effect of the trapezdal

shape factor (1+z/R terms) of the crosssection of
the orthotropic composite circular cylindrical shells
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results show that considering the effect of the free vibration analysis of highly orthotropic
(1+z/R) terms in the calculation of stress resultants, composite circular cylindrical shells, especially for
would lead to a reliable higherorder theory for the the cases of long and thick hollow cylinders.

Nomenclature

3EAT1 60 OEEAET AOGO
Length of the cylinder

Mean radius of the cylindrical shell

Position coordinate in axial direction
Position coordinate in radial direction
Position coordinate in tangential direction
Displacement component in axial direction
Displacement component in tangential direction
Displacement component in radial direction
Coefficient of trapezoidal shape

S<CcSNXJTrT

Yo
o\ « o+ o+ Displacement component
U, Vos Wi, 6,,6,, 6, U, Vi, W, 07,65, 6, p P

€0t €1 €3 Yoy Vo Vym Strain components

Vector of strain components

Vector of stress resultants components
Normal and shear stresses of each layer

Q Qo

! 02’ 0—3’ 7_12’ 7_13 T 2

Normal and shearstrains of each layer
81’ 62’ 63’ 712’ 713 7 23

C. Elements of stiffness matrix
ij
Q. Elements of reduced stiffness matrix
ij
E E_E Young's modulus
11" —22' — 33
G G .G Shear modulus
12' 13 23
VipVig VgV gV stV o Poisson coefficients
0 The rotation angle of the fiber relative to the main axis
oo . o.T T T Normal and shear stresses for a multilayer
x?' Ty Tz Txy' T x2 T yz
NL Number of layers
D,,D, D, ,D,,D,D. Shell stiffness matrices
U Total strain energy
Energy from external forces
K Total kinetic energy
““““ Shell mass inertia
I 0’I 1’I 2J 3l J’ L 6
L Differential operators
ij
m Number of halfaxial waves
n Number of circumferential waves
T @) Time functions in generalized coordinates
mn
w Natural frequency for mode (m, n)
mn
w, Fundumental natural frequency
K Stiffness matrix
u v. W .0 0 Constant natural modeshapes
Oomn?’ "Oomn’ ""omn’ “xmn’ “ymn’ “zmn’
u:)mn ! V;)mn’ W(}nn’ g;mn’ ;mn’ ;mn
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Appendixes

Mass matrix
Shear Correction Coefficient (first order shear deformation theory)

Stress resultants

Strain and curvature components

Appendix A. Elements of Reduced Stiffness Matrix Q;

Qu :C11C4 ""2((:12"'2044)32(:2 +C22$4
Qy :C12(C4+S4)+ C,+C,—-X 4)32(:2

Q13 :C13C2+C2332

Q, = (C117C1272C 4)3C3 +(C127 C,t2C 4)1C§

Q,,=C,s"+2(C,+2C,)s’c’+ C ¢’

Q,=C 1332 + C2302

Q,, = (C11_C12_2C 44)830—1—(C12— C,+2C AXCBS

Qs =Cy
Q, = (C aC sz)sc

Q= (C11_2012+C »— X 4)52(:2 +C 41(04 +5)

Qs = Csscz +Ceesz
Qg = (C ssfcegsc
Qg = C55Sz + Csecz

Q=Q . ij=..6

where ¢ = cosf and s = siné ; —is fibre orientation (in radians) with respect to x-axis of theshell.
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Appendix B. Definition of D matrices
Theterms™©O , 'O and Oj EEp h
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Appendix C. Definition of H Components

In matricesO ,O0 ,0O ,0,andO thetermsO,"O andO are definedasfollows:
C.1 DefinitionofHj

j+1

@2 H o @, 2)
ji+1 j

C.2. Definitionof I-f-j

B o 1 .
H :fm 21+ 7,2/ Bdz= H om Hi o 12227

where H, are defined in Eq. (C1)

C.3. Definition ofI—Tj

zZ

[z
hy 1+’)/OZ/ R

In the case ofy, =0 :

H =H

J

M QH, QH, QHEQHEQH .QH QK BH
2H3 QZJ_TSQZH3Q2!;|3Q1|E|5Q£_2T5Q§5Q|E!15Q|_2|33
4H3 QZAI—T3Q4J—T3Q4L—|3Q1|Z|SQ£T5QHTSQ|Z!15Q|_3|43
A QH, QH, QHE Qo o .o RH|,
H, QH, QH, QHEQHEQH ,QH QY ®H |
2H5 QZHSQZHSQZHSQH 7Q£T7Q57QI;!17Q|-2|35
4H5 Q24|__|5 Q4H5Q4h5Q1|Z|7Q£T7Qﬂ7Ql;!l7Q I5'45
M, QH, QH. QHEQHEQ H ,QH QK RHI|
S QHE QH, QHE o HEQ b o H &1 Qb |
Q. QH, QHEQH foy 08 o H ,dy 01 0fH QA
Q66|__|1 66]_|1Q54-| QH Q(JEI3Q!E| QL;JZQ%!SZQ@G4Q|1T6
Qif, Q.HE QH, QH £ zmz' ,QH ,%4 ,Qf
Q55|-£5 QSbJ_I QS!HE 5!;' £QJ€' 4Q éé 4% g:e QSGHG
QH, QH; QH, QH,QH ,QH ,QH
Qit, QHEQH, QHEQH o H
Q¥ Q%H stﬁ QH £Q 4
s QeHy QH. QH 4
QGGFEB QSbJ_I% 6(!45
Q55I-£7 QS()J_|7
Sym. QsH,
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(C1)

(G2

(C3)

(C4)
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In the case ofy, =1 after taking exact integration through the thickness of each layer, the following results were
obtained:

:fk+1 _ R+hk+1
he 1+z/R R+h
R+h
= Z:R _ *R'ﬂ k+1
j; 1+Z/R (s =) R+h
k+1 1 R+h
= = R|= S — _ R?| k+1
A m/RZ SUEa =D - Rh, =) + Rin | Sy s
1 1 R+h
= dz = R|= 3 _ Kl = _ + _ _ k+1
= e RdE = R~ ) S RIE, 1 + R, S
PR R 1 R+h,_,
- 1 - 1 CH_Fh o N
RS R SR R R,y R T
he —h9 -2t LR —]'Rf3— ——1F{3 2 e
— he.y Z5 ( k+1 |<) 4th+l h< + 3 h(+1 hf > |’L+1 [‘)( +
HG :‘/;k 1+Z/ R - R4 h h R5| R+hk+1
(k+1_ k)_ n R+hk
GO I (R IR O I T
- he s Z6 k+1 hK hK+1 h< 4 h<+l 3 h<+1 I‘)<
=, 1+z/RdZ: R+h,,
+ R(h“ h) — Rh_,—h) + R :
' : R+h,

Appendix D. Elements of Stiffness and Mass Matrices

D.1. Elements of Stiffness Matrix

a1 1 1 1
)X 5D, (Y Ky = (2D, + 2D )N)  Kyy = (2D, )0,

i = @3 5D A1 Ky = 0, )() Ky = 0, )(-X) 5D, (Y

Kio = (2D 20, d(0) Ky = (20,10 +2D, )N Ky = O, (-3 H( D (0

1 1
K 12 :(mmll()(A) ! K21 (RDm21+ RDm49()\n)

%g

+-9p

m 22 3 mc 2.
R

7 7 Y 1
K22:®m44+_0D +_OD +R_ZD b4)(_/\2) +(ED

R mc 44 R bc 44 2+

3 bc 22
7o

__D 523

s$32 2
R

Py

gl 1 gl Y g v v
+R—3Db22)(—n2)+( RD +-2D,,——2D_,,— =D, —° +R—°2D

s22 s23 s28 s82 4 s88
R? R® R? R

1 1 gl g v il il
Ko :(Eszz R? —DPont RODbc22+R_03 sssz_OzD o)) Ky = R_ng21+R_ng4a)(>‘n) g
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Y 1 0l
Kzsz(Dmc44+_on44)(_)‘2) +(¥D +R_%D b;z(_n3

R mc 22
1 1 v, gt ’
+(ED523_§D528_R_03D588_EOD 53:)
1 1 1 o w 1 1
Kze:(EszngR_Dmczer Dszs+ onzzJr sgl(ﬂ) K (RDm25+RDm47)()‘n)
0 Y
Kzs = (Dm48 +EODb049(_)\2) +( _zD ma2s T R_ZD bcz)a( i i
v 0t ’
+(_§ s25 R3 D585+2 589+R_(;D 535_2E0D 539)
1 1 Y Y 0 Y Y Y
Ky :(Esze R? D525+ RODbc26+2ROD b29 R03|: s85 Rozl: s(A) Ky = R_ZDbszFR_ZDbH()‘n) ’
K, — Yop y—ad LD+ op s 4 p _1p
11_(Dmc48+E b4z)(_ 'HE me26 T R b)é_n « R 526_R2 s21
Y Y
_R_(;Dssn_SEoDsae)
3 1 1 o 1
K212 :(EDm2m+§Dmcze+§Dszn RonzeWL 03D s8 (-n), K31 :(7EDm21)(7)\) ’
- Yo 1 Yo _Jop
(7¥Dm227§Dm022 R2 D522+R2D B R 522(”) !
1 1 1 1
K33 :(Dsu)(*Az) +(E[)szz( j « - mzz ’ K (+Dsll)( -3, K =(- EDmc22+§Dsz3—¥Dszg(n) ’
1 1 1
Ka :(Dsu)(*)‘z) + ?Dszl( 4’13 « 7_D ngfﬁD mc)zz' Ky = (7RDm25+2:)sl7)( -,
1 1
8 (*EDmZG*?DSZQ(n) ’ K (D514)( >‘2) +( Dszl( 4’]3 « - mZG ’ = (33514)(_)‘) ’
1 3 1 3 1
Koy = (*EDmc26+ED326*?D szl)(”) Ky, = (Dsll()(*)‘z) + ?Dszgl( 4’13 « *ED m210 ?D mc)26’

Ko =@y (-N) H D, A1) Ky = (22D, + 12D, )00 Ky = (D)0
KM=:®MM*A6+«%DM%*n3%*43&9Kﬁziéomf+§omxAm,K%:zwmm+§DmmﬁDﬂx»,

(Dbclt')( )‘2) +( Dbca)/( 4’]? « 2D )7 ' 49 :(ZDblg_DsM)()‘)'

Ko = () (5D, (T 3D, Ky, = (2D + 2D, 00

1

= (:{)bcno R D, D sllao‘) J

il 2 1 0
K52 0:)bc44 0Db44)( )‘2) +( bc22 _(;D b;z( _nj + __zD ssz__03D s8
R R R R
1

’7 1
+ E Dssz B EO Ds33)

1 1 1 1 1
Koy = (EDbczz +?D ssZ*ED 539(4’1) K, = (EDb21+ED b43)()\n) ,
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= )(N) H oD A ~ =D gD )y Ky = Dy 5D ()

*(Dbc48)( )\2) _‘L( bczl( _ni _|( - 385+ RD 589+_1D —2D ?)39,

1 2 1 1
K = (EDbCZG +ED b29+§D sss_ﬁlD sa)( ) Ko = (EDbzs+ EDbM)()‘n) '

Kot = O N) H 5D d( 0 4 5D 8D )y Koy = (5D #=5D_)(o) Ky = (D)=

K :(fiD Yo ,ED _TJop —1D _

62 bc22 b22 mo2 me 92 s82
R? R® R R? R?
l

Jﬁg

3 ssl(q)’

=002 HzD J(NF A ~=D = 2D )y Ky = (2D, =D iy 4D )Y

Py

1 1 1 1
= (_ED R mcgz__zD ssg(n) ' Kee = (Ds77)(_)\2) + _2Dssl( nj « _?D bao D mgg_ED mc)92’

Ky = (D wsn)(—»,K%:(—R—iD 2D e Dt 2D J0)

m95 bc26 R R s85

=0,,)(— A2)+(—D d-n - —D -5 b

bc26 b29 R m 96 mc/99 '

1 1 1
o :(—EDbzs—D ’1'3:)37)(_)\) ’K611:(_§Db26__D —QDssﬁ(”)

mc 95 R mc 96
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1 1
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*(*EDmeziR_ogDmceziancgz ZROZD b 92 ?D 552+R_02D ssaiR_ogD 55}50)'
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341)( -\) +( D 52( -nj «{ -=D 62 RD Ko, :(_Z:)b91+Ds41)(_)\)’
1 2 1
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1 1 2
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2

O.)(~N) HozD (N A 2D =D 4D ) Koy = (Dt D )N

1 2 3
Ko = (*EDmceefﬁDbge+ ED s56 ?D sSll(n) J
1 3 1
Koy, = (Ds4l()(7)\2) + _zDssl)l( 4’]5 « *_D m 610 ?D me 666 D e 016 R b)QG’
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Ko = bc51)( -\) +( Dbc7)3( -nj, Ko Db52+ OD brd(AN) L K o z(_SDsM)()‘) ,
1
(Dbsl)( >‘2) +( b%( 4’]5 « 3D 11’ :(_DbserEwa)()‘n) )
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K :(Dbc59+EDb5273:) s47)(>‘) Ko (Dbc55>( -\) +( bc7)7( nj « 6D 27 ’

106

i = Pyed(-X) 5D, Y J 9D ), Koy = Db56+1Dwg<An>
1

1012 (3Dbc510 RD b56 D s413()‘) ’
Y 1 Y
= Dpees + RODbs)( -\) +( D e _3 bl nf « _RZD s112 RO3D s11
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+ EDssz - 3E0D563)
1 1 3 1 1
Kis = (EDb062+ ?D sllZiﬁD 86;(41) Ky, = (EDb61+EDb82)(>\n) ,
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1 3 1 1 1 3
K125 :( ? Db62 E Dmc102 ?RE Dsn;(n) ) K126 = (Dle7)( 1 2) ("F? Dsng( nz_) ( ? Db 62 3Dm 09 S Dmc_loz'
_ 1 3 1 25
K127 - ( 3Dmlos 2Dslm)( / )'1 K128 - ( E Dbcee E Dm106 ?RE D5115 = sllg(n) K 116 (_:Db 62 g —'s 1M n)

K 12 :(DsloA)(*A2> Jr( sll):':( nf « - D bees™ 5P b ESD m1060D e }og’
3
R

1210_( _D EDmc105—+_""Ds10)(_)‘)’K1211 (- _D b66 mc 106 EDslll).L(n)
1 3

Koo :(Dslol()(*)‘z) + ?Dsn){ 4’]3 « 7¥Db 669 D, 101(TED me Zoe
KlS:O’KSl:0’K111:0’K111:0’K48:0’K84:0’K57:0’K75:O’K711:0’K117:O’K81O:O’K108:0
D.2. Elements of Mass Matrix

= = = - 27y~ Yo~
Mn:Io’MM:Il’M17:|2’M110_|3’Mzz_(lojL?O +_|2)’M25:(I1+EOI 2)'
My, = (7, +2207) M, =+ ) My =1 My =1, My =1, , M, =T ;M =1, M, =
28 2 TR v Wlon 3 v Wlgg 0 Vg 17 V39 21 Wl 30 Vg 10 Vg 2

J— Ja— ’7 J— _‘ __ __ __
M47=|3’M4lo=|4’Msz_(|1+EOI ) Mg =1, M=, M =l ;Mg=l Mg =I, Mg =1,

_. __ __ __ __ o ’Y o __ __
M612=|4’M71_|2’M74_|3’M77_|4’M710_|5’Msz (ler_Ola)’Mss_ls'Mss_|4'M811_|5'

— — j— _. __ __ __ __ . "y
Mg, =1, Mg =1,, Mg =1, Mg, =1 M, =1, =1, Mg =1 My, =laMy, (I3+EO|A)'
My =1, M=l My =l g M=l M=l M=l M, =1
Other elements ofM are equal to zero.
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