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In this study, nonlinear vibration of a composite cable is investigated by considering nonlinear 

stress-strain relations. The composite cable is composed of an aluminum wire as reinforcement 

and a rubber coating as matrix. The nonlinear governing equations of motion are derived about to 

an initial curve and based on the fundamentals of continuum mechanics and the nonlinear Green-

Lagrangian strain, using the Hamilton's principle. The equations of motion of the system are 

reduced into the ordinary differential equations using the Galerkin method, and solved by the 

perturbation method (multiple scales). Time-response diagrams are presented for the composite 

cable with different volume fractions of the matrix and the reinforcement. It is predicted that the 

more volume fraction of the matrix is, the more nonlinear quadratic and cubic terms in the 

governing equations of motion affects the vibration of the cable. Results indicate that increasing 

the length of the cable would decrease the amplitude of the time response of the system.  
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1. Introduction 

Cables play an important role in the various 
applications, such as mechanical, civil and electrical 
engineering. Since, the cables are used in numerous 
engineering applications, vibrational behavior of 
them have been extensively studied by the 
researchers. 

A major material of the cables used in different 
applications is composite which consists of two or 
more than two parts such as metal and rubber. The 
metal acts as a conductor or reinforcement and 
rubber is as protector or matrix. So, this makes the 
study of vibrations of this engineering structure a 
great importance. 

The cables are subjected to tention and are very 
deformable. This is one of the reasons that the 
cables have nonlinear vibration. The nonlinear 
vibration introduces cubic nonlinear terms to the 
equations of motion [1]. On the other hand, an intial 
curvature of the cables adds quadratic nonlinear 

terms to the equations of motion and the nonlinear 
terms significantly affect the vibrational behavior of 
the system. 

Studying the nonlinear vibrations of the cables 
and also composite structures has been of great 
interest in recent years by many researchers. Rega 
and Srinil have investigated the nonlinear hybrid-
mode resonant forced oscillations of sagged inclined 
cables at avoidances. They conclude that the chaotic 
dynamics were endowed with remarkable 
asymmetry of spatially nonuniform, strongly time-
varying, tensile/compressive oscillation-induced 
tensions [2]. 

Wang and Zhao [3] have analized the nonlinear 
planar dynamics of suspended cables by the 
continuation technique. They observed that sag-to-
span ratio of the cable plays a significant role in the 
drift of the frequency-response curves and the effect 
of the quadratic non-linearity. Also, the amplitudes 
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of the non-linear response are related to the sag-to-
span ratio of the cable. 

Transverse vibration of nonlinear strings has 
been modeled by Chen and Ding [4]. They concluded 
that the errors of the two models are both relatively 
small even for reasonable large vibration amplitude, 
the model errors increase with the vibration 
amplitude and the Kirchhoff string equation yields 
better results. Chen et al. [5] have investigated the 
nonlinear dynamics for transverse motion of axially 
moving strings. They summarized latest progress on 
nonlinear dynamics for transverse motion of axially 
moving strings and presented a uniform governing 
equation incorporated arbitrary forms of the 
constitutive law of the string material. Rega [6] have 
studied the theoretical and experimental nonlinear 
vibrations of sagged elastic cables. 

Salehi Ahmad Abad et al. [7] have performed a 
nonlinear analysis of cable structures under general 
loadings. The acceptable convergence of the 
proposed models in their research, simplicity and 
direct equations reflect their capability, found 
through making comparison with other models, in 
analyzing some given numerical examples. 
Nonlinear response of elastic cables with flextural-
torsional stiffness has been analized by Arena et al. 
[8]. Their work presented a fully nonlinear model of 
cables based on the special Cosserat theory of rods. 
As such, the model conceives the elastic cable as a 
very slender rod that suffers extension, bending, 
shear and twist. It was shown that the initial 
prestress state of the cable drives differently the 
onset of the boundary layers, the stress peaks 
within them and their spatial extension. Yashavanta 
Kumar and Satish Kumar [9] have studied free 
vibration of smart composite beams. The modal 
analysis of the smart cantilever beam was 
performed using the ANSYS s to reveal the 
fundamental modal frequencies and modal shapes. 

Kumar et al. [10] studied the nonlinear bending 
and vibration analysis of quadrilateral composite 
plates. Piraccini and Sante [11] measured the 
nonlinear vibration response in aerospace 
composite blades using pulsed air flow excitation. 
Nonlinear vibration of sandwich plates with FG-GRC 
face sheets in thermal environments was studied by 
Wang and Shen [12]. They discussed in details the 
effects of distribution type of reinforcements, core 
to face sheet thickness ratio, temperature variation, 
foundation stiffness and in plane boundary 
conditions on the nonlinear vibration characteristics 
of sandwich plates with piece-wise functionally 
graded GRC face sheets. Mao and Zhang [13] 
investigated the linear and nonlinear free and 
forced vibrations of graphene reinforced 
piezoelectric composite plate under external voltage 

excitation. They used Halpin Tsai's parallel model to 
predict the effective Young's Modulus and the 
effective mass density, poisson's ratio and 
piezoelectric properties were calculated by the rule 
of mixture. Governing equations of motion were 
derived based on the first-order shear deformation 
plate theory, Von Karman nonlinear geometric 
relationship and Hamilton's principle. Zhang et al. 
[14] analysed the nonlinear vibrations near internal 
resonances of a composite laminated piezoelectric 
rectangular plate. Using Reddy's third order shear 
deformation plate theory and Hamilton's principle, 
the nonlinear governing equations of motion were 
derived. The influences of the transverse, in-plane 
and piezoelectric excitations on the bifurcations and 
chaotic behaviors of the composite laminated 
piezoelectric laminated rectangular plate were 
investigated numerically. Sheng and Wang [15] 
studied the nonlinear vibration of FG beams 
subjected to parametric and external excitations. In 
their study, nonlinear frequency-response of FG 
beams was investigated using the method of 
multiple scales. Nonlinear free vibration of bi-
directional functionally graded beams was 
discussed by Tang et al. [16]. They presented a novel 
model of Euler-Bernoulli beams made of bi-
directional (2D) functionally graded materials to 
study the nonlinear free vibration. They found that 
nonlinear dynamic properties are highly dependent 
on materials properties and also the numerical 
examples in this research show the influences of 
various physical parameters, such as the material FG 
indeices, on the dimensionless nonlinear frequency 
of the 2D FG beam. Wang et al. [17] investigated the 
vibration response of a functionally graded 
graphene nanoplatelet reinforced composite beam 
under two successive moving masses. They used a 
modified Halpin-Tsai micromechanics model to 
evaluate the effective Young's modulus of the beam. 
This research showed that the geometry of the 
graphene nanoplatelet plays an important role on 
the dynamic response of the beam. Fan et al. [18] 
studied the nonlinear forced vibration of FG-GRC 
laminated plates resting on visco-Pasternak 
foundations. The analytical results of this research 
showed that the FG distribution pattern of 
graphene, the temperature variation, the foundation 
stiffness and the damping factor have significant 
influence on the dynamic responses of FG-GRC 
laminated plates. Nonlinear vibration of a composite 
plate to harmonic excitation with initial geometric 
imperfection in thermal environments was studied 
by Liu et al. [19]. The effects of the temperature, 
equivalent in plane boundary stiffness and initial 
geometric imperfection on the dynamic behavior 
were investigated through a detail parametric study. 
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They showed that the critical buckling temperature 
of a perfect plate decreases with increasing the 
equivalent in-plane boundary stiffness significantly. 
Bayat and Ekhteraei Toussi [20] investigated a 
nonlinear analysis on structural damping of SMA 
hybrid composite beams. First-order shear 
deformation beam theory and large deflection Von 
Karman strain displacement were utilized to obtain 
the stress field. The governing equation of forced 
vibration in a beam under transient dynamical 
loading was developed and discretized using the 
method of differential-integral quadrature. 

The existing literature show that they are all 
based on simple cables made by single materials. 
The assumption of elastic cable, makes it simpler to 
solve the equations of motion and prevents the 
appearance of nonlinear terms caused by material 
of the cable, in the equations of motion. 
Sincecomposite cables are used in various 
engineering applications, in this article, a two-end 
clamped composite cable is considered and the 
effect of composite material on the free vibration of 
the cable is investigated by considering the 
nonlinear Green-Lagrangian strain. 

2. Problem Formulation 

The modeling and vibration of cables are much 
more complex than strings because of its initial sag. 
In this reaesrch, the composite cable made of two 
layers is considered as shown in Fig. 1. 

Equivalent elastic modulus and equivalent 
density of the composite cable along its length are 
obtained by the rule of the mixtures as [21]: 

Eeq = EfVf + EmVm (1) 

ρeq = ρfVf + ρmVm (2) 

 
Fig. 1. Two layered composite cable [21]. 

where Ef, Em, ρf, ρm, Vf and Vm are the elastic 
modulus, the density and the volume fractions of the 
fiber and the matrix in the composite material of the 
cable, respectively. 

The composite cable is suspended between two 
fixed supports and deformed configuration of the 
composite cable and the cartesian coordinate 𝑋1, 𝑋2 
are shown in Fig. 2. 𝑝0 is a point that shows position 
of a particle of the cable when the cable is not 
loaded. Point p̂ indicates the deformed position of 𝑝0 
when the cable is under static loads, and point 𝑝 is 
the deformed position of 𝑝0 under static and 
dynamic loads. Coordinates of the �̂� and 𝑝 are 
considered to be (α1, α2) and(x1, x2), respectively. 𝑆 
represents the undeformed arclength measured 
from point M to the place of observed particle at 
thepoint 𝑝0; ŝ denotes deformed arclength under 
static loads; s̃ represents the deformed arclength 
under dynamic loads [1]. 

Dynamic displacements of the 𝑝 along the x1 and 
x2 axes are indicated by 𝑢1 and 𝑢2, respectively, thus 
[1]: 

xi = αi + ui        for  i = 1,2 (3) 

Considering the nonlinear Green-Lagrangian 
strain as [22]: 

ε11 =
(ds̃)2 − (ds)2

2(ds)2
 (4) 

And applying Eq. (3), the nonlinear strain of the 
composite cable is given by: 

ε11 = α1
′ u1

′ + α2
′ u2

′ +
1

2
[(u1

′ )2 + (u2
′ )2] (5) 

where ( )′ ≡
∂( )

∂s
 . 

 
Fig. 2. Deformed configuration of the composite cable. 
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Assuming the strain energy function of the Saint-
Venant Kirchhoff model is [22]: 

W(ε) =
λ

2
(trε)2 + μ(trε2) (6) 

where ε is the strain and λ, μ are the Lamme 
constants, respectively. The second Piola-Kirchhof 
stress is given by [22]: 

P =
∂W(ε)

∂ε
 (7) 

In order to derive the governing equations of the 
motion, the Hamilton's principle is used through Eq. 
(8) as follows [1]: 

∫ (δT − δΠ + δWnc)dt = 0
t2

t1

 (8) 

where δT, δΠ and δWnc are the variations of kinetic, 
strain and nonconservative energy, respectively. 
Assuming planar displacement and neglecting 
horizontal motion of the composite cable, the only 
nonzero displacement will be 𝑢2, so, the variation of 
the kinetic energy is obtained as: 

δT = ∫ ρeqA0[(
∂u2

∂t

∂(δu2)

∂t
)]ds

L

0

 
(9) 

where L and A0 are the length and the initial cross 
section of the cable. Using Equations (5), (6) and (7), 
the variation of the strain energy is obtained as 
follows: 

δΠ = ∫ P11A0[(
∂α2

∂s
+

∂u2

∂s
)(

∂(δu2)

∂s
)]ds

L

0

 (10) 

In Eq. (10), P11 is the second Piola-Kirchhof 
stress in the axial direction of the cable. The 
variations of the non-conservative energy in the 
Hamilton's principle is calculated as follows [1]: 

δWnc = ∫ (f2δu2)ds
L

0

 (11) 

where f2 is the sumation of f2̂ and 𝑓2̃ that represent 
static and dynamic loads. Substituting equations (9), 
(10) and (11) in equation (8) and integrating by 
parts would give the equation of motion as: 

ρeqA0ü2 = EeqA0 [(α2
" u2

′ + α2
′ u2

" )(α2
′ +u2

′ )

+ α2
′ u2

′ (α2
" +u2

" )

+ (u2
" u2

′ )(α2
′ +u2

′ )

+
1

2
(α2

" + u2
" )((u2

′ )2)]

+ f2 

(12) 

where Eeq in Eq. (12) indicates the equivalent 

elastic modulus of the composite material of the 
cable. 

Since free vibration of the cable is considered, f2 
will be zero. Statical deformed configuration of the 
cable is assumed to be: 

α1(s) = s 

α2(s) = acosh (
s

a
) 

(13) 

where a is a parameter that determines how quickly 
the catenary opens up, and it is changed between 
0.05 and 1. Substituting Eq. (13) in Eq. (12), the 
equation of the motion becomes: 

ρeqü2 = Eeq[(
2

a
) sinh (

s

a
) cosh (

s

a
)

+ (
1

a
) cosh (

s

a
) u2

′

+ sin2h (
s

a
) u2

"

+ 3 sinh (
s

a
) u2

′ u2
"

+
3

2
(u2

′ )2u2
"

+ (
1

2a
) cosh (

s

a
)(u2

′ )2] 

(14) 

By considering mode shape o φ(s) = sin
πs

L
f that 

satisfies boundary condition of the system and 
applying the Galerkin method, time response 
equation of the system is given as follows: 

ξ(t) + ω0
2ξ(t) + k2ξ2(t) + k3ξ3(t)̈ = 0 (15) 

where 

ω0
2 = (

Yπ3

4ρeqL2
) (

a2πcosh (
2L

a
)

a2π2 + 4L2
+ (

a2π

a2π2 + 4L2
) −

2

π
)

+ (
π2Eeq

a2π2ρeqL + 4ρeqL3
) (Lcosh (

2L

a
)

+ aL2) + (
π2Eeq

2ρeqL
)(

Lsinh(
L

a
)

a2π2 + L2
) 

 (16) 
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k2 = − (
3Eeqπ4

2ρeqL4
) (

a2Lπ sinh (
L

a
)

4a2π2 + L2
)

− (
Eeqπ3

8ρeqL3
)(

L2 sinh (
L

a
)

4a2π2 + L2

+ sinh(
L

a
)) 

(17) 

k3 =
Eeqπ4

2ρeqL4
 (18) 

In Eq. (15), the quadratic and the cubic nonlinear 
terms are observed and affect the behavior of the 
system significantly. 

3. Perturbation (Multiple Scales) Method 

By assuming = ϵq , where ϵ is a finite and small 
parameter; and substituting it in Eq. (15), the 
following equation is obtained [23]: 

𝐪 + 𝛚𝟎
𝟐𝐪 + 𝐤𝟐𝛜𝐪𝟐 + 𝐤𝟑𝛜𝟐𝐪𝟑 = 𝟎 (19) 

In order to apply multiple scales method, q is 
considered to be [23]: 

𝐪 = 𝐪𝟏(𝐓𝟎 , 𝐓𝟏 , 𝐓𝟐) + 𝛜𝐪𝟐(𝐓𝟎 , 𝐓𝟏, 𝐓𝟐)
+ 𝛜𝟐𝐪𝟑(𝐓𝟎, 𝐓𝟏 , 𝐓𝟐)
+ 𝐨(𝛜𝟐𝐭) 

(20) 

Substituting Eq. (20) into (19) and following the 
method of multiple scales [13], Eq. (19) leads to 
lower order linear equations [23]: 

𝐃𝟎
𝟐𝐪𝟏 + 𝛚𝟎

𝟐𝐪𝟏 = 𝟎 (21) 

𝐃𝟎
𝟐𝐪𝟐 + 𝟐𝐃𝟎𝐃𝟏𝐪𝟏 + 𝐤𝟐𝐪𝟏

𝟐 + 𝛚𝟎
𝟐𝐪𝟐 = 𝟎 (22) 

𝐃𝟎
𝟐𝐪𝟑 + 𝟐𝐃𝟎𝐃𝟏𝐪𝟐 + 𝟐𝐃𝟎𝐃𝟐𝐪𝟏 + 𝐃𝟏

𝟐𝐪𝟏

+ 𝐤𝟑𝐪𝟏
𝟑 + 𝟐𝐤𝟐𝐪𝟏𝐪𝟐

+ 𝛚𝟎
𝟐𝐪𝟑 = 𝟎 

(23) 

Solving Eq. (21) reads [24]: 

𝐪𝟏 = 𝐀(𝐓𝟏, 𝐓𝟐)𝐞𝐢𝛚𝟎𝐓𝟎 + 𝐂𝐂 (24) 

where CC denotess complex conjugate. Assuming 
A = a1eiφ [24], and solving Eq. (22) gives: 

q2 =
A2k2e2iωT0

3ω0
2 −

2AA̅k2

ω0
2 + CC 

(25) 

𝛗 = 𝛗𝟎(𝐓𝟎) 

𝐚𝟏 = 𝐚𝟏(𝐓𝟐) 
(26) 

Solving Eq. (23) results in: 

𝐪𝟑 =
𝐀𝟑𝐤𝟐

𝟐𝐞𝟑𝐢𝛚𝐓𝟎

𝟏𝟐𝛚𝟎
𝟒 −

𝐀𝟑𝐤𝟑𝐞𝟑𝐢𝛚𝐓𝟎

𝟖𝛚𝟎
𝟐 + 𝐂𝐂 (27) 

𝐚𝟏 = 𝐜𝐭𝐞 

𝛗 = (
𝟑𝐚𝟏

𝟐𝐤𝟑

𝟖𝛚𝟎

−
𝐚𝟏

𝟑𝐤𝟐
𝟐

𝟐𝛚𝟎
𝟑 ) 𝐓𝟐 + 𝛘 

(28) 

where χ is a constant [24]. It is important to 
mention that the terms proportional to eiωT0  and 
e−iωT0  in the solution of equations (22) and (23) 
would produce secular terms in the particular 
solution of q2 and q3. Thus, for a uniform expansion, 
each of the coefficients of eiωT0  and e−iωT0  must 
vanish. Putting these coefficients equal to zero 
would give some equations, since our aim is 
obtaining the time response equation of the system 
and solving these equations is not necessary for 
that, they would not be solved [24]. 

Substituting equations (24), (25) and (27) in 
equation (20) and using ξ = ϵq, the time response 
equation is obtained as [23 ]: 

𝛏

= −
𝐛𝟐

𝟐
(

𝐤𝟐

𝛚𝟎
𝟐) + 𝐛𝐜𝐨𝐬(𝛚𝟎𝐭 + 𝛗)

+
𝐛𝟐

𝟔
(

𝐤𝟐

𝛚𝟎
𝟐) 𝐜𝐨𝐬𝟐(𝛚𝟎𝐭 + 𝛗)

+ (
𝐛𝟑

𝟒𝟖
(

𝐤𝟐
𝟐

𝛚𝟎
𝟒) +

𝐛𝟑

𝟒𝟖
(

𝐤𝟑

𝛚𝟎
𝟐)) 𝐜𝐨𝐬𝟑(𝛚𝟎𝐭

+ 𝛗) 

(29) 

4. Results 

In order to show the results of the time response 
equation, assume a=1, L=1m, the fiber and the 
matrix made by aluminum and rubber with 
mechanical properties according to Table 1. 

Table 1. Properties of the rubber and the aluminium [25]. 

Material ρ(𝑘𝑔/𝑚3) E(pa) V 

Matrix (rubber) 1.1 × 107 1 × 107 0.6 

Fiber (aluminum) 2.7 × 103 6.91 × 1010 0.4 
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Applying properties represented in Table 1 into 
equations (1) and (2) gives: 

Eeq = 2.76 × 1010pa (30) 

ρeq = 6.6 × 106
kg

m3
 (31) 

Initial conditions of the cable are assumed to be: 

ξ = 0        at       t = 0 (32) 

ξ̇ = 10
m

s
        at       t = 0  (33) 

Using equations (29), (32) and (33), the time 
response diagram of the cable in the vertical 
direction and for Vf = 0.4 and Vm = 0.6 is obtained 
as shown in Fig. 3. 

In order to validate the solution obtained by the 
method of multiple scales that is solved for a cable 
that is suspended between two fixed supports and 
materials of aluminum and rubber for the fiber and 
matrix and length of one meter, it is compared with 
numerical method of the Runge-Kutta and the result 
is shown in Fig. 3. 

Fig. 3 illustrates that the results of the multiple 
scales method are in a good agreement with the 
numerical results of the Runge-Kutta method. Of 
course, there is a very little difference between the 
results of these two methods in some points, which 
is due to the consideration of a limited number of 
sentences in the expansion of the response in the 
multiple scales method. 

Fig. 4 illustrates that considering Vf = 0.4 for 
aluminum as a reinforcement in the composite 
cable, causes harmonic time response and a 
constant amplitude for the vibrational response. It is 
predicted that the more volume fraction of the 
matrix, the more nonlinear quadratic and cubic 
terms in the governing equations of motion effect 
the vibration of the cable. 

In order to investigate the effect of changing the 
volume fraction of the fiber on the free vibrations of 
the composite cable, the time response diagram is 
represented by decreasing the volume fraction of 
the fiber from Vf = 0.4 to Vf = 0.1 and applying it 
into the equations, according to Fig. 5. 

Fig. 5 shows that decreasing the volume fraction 
of the fiber in the composite cable from Vf = 0.4 to 
Vf = 0.1 that increased the property of 
hyperelasticity, causes a nonlinear amplitude of the 
vibration and the nonharmonic response. 
Comparing Fig. 3 and Fig. 5, shows that as volume 
fraction of the rubber increases, the nonlinear terms 
in the governing equation of the motion significantly 
effect the time response of the cable. 

 

 
Fig. 3. Validation of the multiple scales solution by comparing it 

with the Runge-Kutta method 

 
Fig. 4. Time response of the free vibration of the composite cable 

in the vertical direction for Vf = 0.4 and Vm = 0.6 

 
Fig. 5. Time response of the free vibration of the composite 
cable in the vertical direction for Vf = 0.1 and Vm = 0.9 
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Comparing Fig. 4 and Fig. 5 shows the effects of 
changing in the volume fractions of the fiber and the 
matrix on the time response of the system. By 
comparing Figs. 4 and 5, it can be undrestood that 
increasing the volume fraction of the matrix causes 
a remarkable decrease in the amplitude of the 
vibrations. In order to investigate the effect of 
length of the cable on its vibration, the time 
response of the system is compared for L=1m and 
L=3m, when the volume fractions of fiber and 
matrix are Vf = 0.4 and Vm = 0.6. 

Fig. 6 illustrates that increasing the length of the 
cable, decreases the amplitude of response which 
the main reason for that is increasing sag part of the 
cable that decreases the amplitude of vibration in 
the vertical direction. 

 
Fig. 6. Comparing the time response of the free vibration of the 

composite cable in the vertical direction for L=1m and L=3m and 
when Vf = 0.4 and Vm = 0.6. 

 
Fig. 7. Comparing the time response of the free vibration of the 

composite cable in the vertical direction for L=1m and L=3m and 
when Vf = 0.1 and Vm = 0.9 

The effects of increasing the length of the cable 
from L=1m to L=3m, when the volume fractions of 
components of the cable are Vf = 0.1 and Vm = 0.9 is 
also investigated in Fig. 7. 

Fig. 7 shows that if the length of the cable 
increases, maximum amplitude of the vibrational 
cable will decrease even when the matrix volume 
fraction is much more than fiber in the considered 
composite cable. 

5. Conclusion 

In this research, the free vibrations of the 
composite cable suspended between two fixed 
supports was studied. Results showed that 
increasing the volume fraction of the fiber in the 
composite cable that increased the vibrational 
properties, caused the time response to be 
nonharmonic and showed the effects of the 
quadratic and the cubic nonlinear terms in the 
governing equation of the motion on the time 
response diagram. The perturbation method 
(multiple scales) was compared with Runge-Kutta 
method and results showed that they were in a good 
agreement. Effects of length of the cable on its 
vibration was also investigated. 

Nomenclature 

𝜌 density 
𝐸 elasticity modulus 
𝑡 time 
𝑇 kinetic energy 
ε strain 
𝛱 strain energy 
Wnc nonconservative energy 
𝐿 length of the cable 
𝑃 second Piola Kirchhoff stress 
𝜆 & 𝜇 Lamme's Constants 
𝐴 cross section of the cable 
𝑉 volume fraction 
𝑎 Catenary parameter 
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