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A functionally graded material beam with generalized boundary conditions is 
contemplated in the present study in order to examine the deformation and stress 
behavior under thermal and thermo-mechanical load. Three discrete combinations of 
functionally graded materials have been deliberate in including a wide range of materials 
and material properties. The variation of material properties has been taken along the 
height of the beam cross-section as per power law formulation. The formulation has 
been derived, applying the principle of virtual work in order to acquire governing 
equations for FG Timoshenko beams. The development of governing equations is made 
through applying a unique method of unified formulation (Li [16]) in which the 
displacement variables are arranged in the form of aindependent variable that 
subsequently reduces the equations to a single fourth order differential equation similar 
to the equation given by classical beam theoryand is been extended to thermo-
mechanical loading in the present work. The transverse shear stress/ strain for 
Timoshenko beams have been taken care of within this unified formulation. The 
formulation employed in this research has been generalized for various loading 
conditions, and in the present work, thermal and thermo-mechanical load has been 
pondered where temperature has been varied in accordance with the beam height. Exact 
solutions of the fourth order differential equation for the deformation and stress have 
been obtained for three types of boundary conditions viz.- Clamped-Free (C-F), Simply 
Supported (S-S), and Propped Cantilever (C-S). The study has been extended to cover 
wide range of temperature distribution so as to include uniform, linear and non-linear 
temperature profiles. Deformation and stresses, axial stresses, and transverse (shear) 
stresses have been reported for different power law index values. 

1. Introduction

The advent of Functionally Graded Materials as 
high grade composite materials has revolutionized 
the researches in Materials Technology in part 
and Engineering as a whole. The naturally existing 
FGMs like bamboo, human bones, tooth, etc. 
indicate superior characteristics in their behavior 
as a result of the gradual variation in their 
properties, which is the essence of FGMs. The 
concept of FGM has been employed in mid-1980s; 
however, the general idea of gradual variation of 
properties for composites germinated way back in 
early 1970s [1]. The most common FGM consists 
of a refractory ceramic and metal so as in order to 
acquire high temperature strength and toughness 
with minimal stress concentration and residual 
stresses. Contrary to the traditional composites 

that have sharp interfaces resulting in failures, the 
FGMs have continuous or gradual change in 
properties; hence there is no interface 
phenomenon observed in FGMs. FGMs are 
produced by tailoring the distribution of the 
ingredients or the structure in the desired fashion 
and in a particular direction. The most common 
method of producing FGMs is to change the 
composition of its material constituents (by 
volume). In such materials the composition 
(volume of constituents) is varied pursuant to a 
predefined manner so as to obtain a resultant of 
properties of the parent material, which is 
governed by the percentage by volume at that 
position. FGMs owing to their superior 
characteristics as above are contemplated as 
materials for broad future engineering 
applications from bio-medical, space technology, 
and many more. 
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Beams and plates are an integral part of 
structures.  When structures are exposed to 
severe environments, consequently to sustain 
such conditions the materials must exhibit 
superior properties. If we deliberate a space 
shuttle, while entering the earth’s atmosphere, is 
exposed to very high temperature gradient 
through a small thickness. The extreme pressure 
and temperature gradient require stringent 
behavior prominently significant at the interface. 
The ceramic-metal based FGMs are especially 
suitable for such high temperature gradients with 
ceramic parts exposed to higher temperatures 
while the metal part ensures the FGM to gain its 
strength. The gradual change of material 
properties aids in sustaining the stress-
concentration, and residual stresses developed 
otherwise. The design of such structural 
components requires a thorough analysis of load-
deflection-stress behavior under various thermo-
mechanical conditions and other related 
environmental factors.  

Since their conceptualization, there had been 
substantially research on FGMs, and a large 
volume of publications on FGMs has been 
reported. A broad overview of the FGMs, their 
modeling and design, processing, and fabrication 
techniques and applications are employed in [1-
5]. Birdman et al. [6] have investigated a number 
of critical areas relevant to the modeling and 
design of functionally graded materials in general 
and FG structures in particular. However, most of 
the studies pertinent to FG structures have been 
made in last two decades. The initiation of the 
studies pertinent to structural elements like 
beams and plates that are made up of FGMs may 
be credited to Reddy and Chin [7]. In their work 
they have contemplated a first order shear 
deformable plate made up of ceramic/metal FGM 
subjected to both mechanical and thermal load. 
Later the work was extended by Reddy [8] to 
incorporate third order shear deformation and 
von Karman type geometric non-linearity. 
Shankar [9] has reported the examination of FG 
Euler Beams with exponential grading of material 
constituents and hence, material properties. In [9] 
Shankar has applied the theory of elasticity 
approach to developing constitutive equations for 
FG beams subjected to sinusoidal loading and 
presented an exact solution. Various case studies 
correlated length/height ratio has been surveyed 
to distinguish the behavior of slender and stubby 
beams.  Shankar et al. [10] have inquired the 
stresses as a result of the thermal gradient load 
applying theory of elasticity approach. In [11] Zhu 
and Shankar have presented approximate 
solutions using Fourier series and Galerkin 
method for deformation and stress analysis of FG 
beams subjected to sinusoidal mechanical load. 
There have been wide applications of finite 

element analysis to acquire approximate solution 
to examine the behavior of FG beams and plates, 
and substantially numbers of works have been 
inspected. A new beam finite element is developed 
by Chakraborty et al. [12] that can be applied in 
order to analyze the static and dynamic behavior 
of FG beams in thermal environment. A free 
vibration study of FG beams has been explored in 
[13], in which Aydogdu et al. have used Hamilton’s 
principle to derive the governing equations and 
Navier type solutions for frequencies. Both 
exponential and power laws have been 
contemplated in this study for various slenderness 
ratios. Static behavior of FG beams applying 
higher order shear deformation theory has been 
examined by Kadoli et al. [14]; Benatta et al. [15] 
have employed higher order shear deformation 
theory to validate it for short FG beams. Li [16] 
has reported a unified formulation for shear 
deformable beams so as to study the static and 
dynamic behavior of FG beams; the study reports 
the behavior of Timoshenko beam and Rayleigh 
beam. Kang et al. [17] have inquired the behavior 
of FG beams taking into account material non-
linearity and compared large and small deflection 
theories. Birman [18] has inspected the study of 
application of FG layer within two composite fiber 
layers with uni-axial load for buckling while 
Javaheri et al. [19] have applied biaxial loads to 
compute the critical buckling load of FG plates. 

As ceramic-metal FG beams and plates are 
most suitable in high/severe temperature 
environments, this has leaded wide researches in 
the study of behavior of FG beams in thermal 
environment. It has been observed that most of 
these studies have considered temperature 
gradient (across the cross-section) load assuming 
the distribution of temperatures to be either 
linear or non-linear. The non-linear temperature 
distribution is acquired by solving one 
dimensional steady state heat transfer equation. 
These researches can be broadly classified into 
two types of studies viz. - coupled (or temperature 
dependent properties, TD) and uncoupled 
(temperature independent properties, TID). In the 
former case, material properties are functions of 
both space and temperature, while in the latter 
case they vary along the space only with an 
external temperature distribution overlapping on 
the system.  Chin et al. [7], Praveen et al. [20], and 
Reddy [8] have surveyed the response of FG 
cylinders and plates in thermal load with thermo-
mechanical coupled properties to report that 
uncoupled case over-estimates the temperature 
and stress fields. Shen [21] has investigated the 
non-linear bending response of FG plate subjected 
to mechanical load in thermal environment. Shen 
applied TD properties using higher order shear 
deformation theory and solution applying 
Galerkin’s –perturbation theory. Shankar [10], in 
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his study, has assumed exponential distribution of 
properties and of temperature (assuming TID 
case) and reported that there is reduction of 
thermal stresses if the gradation of temperature 
and that of material property are in the opposite 
direction. Sundararajan et al. [22] have studied 
vibration analysis of FGM plates using von 
Karman non-linearity and TD material properties; 
non-linear temperature distribution is assumed as 
well; material gradation using Mori-Tanaka 
scheme has been applied to compute the effective 
material properties. Li et al. [23] have inspected 
the thermal post-buckling analysis of FG beams 
considered the effect of shear deformation using 
geometrically non-linear formulation. The beam is 
subjected to both mechanical and TID thermal 
loading; temperature distribution being non-
linear profile. Mahi et al. [24] have investigated 
exact solutions for free vibration analysis of 
symmetric FG beams with TD material properties. 
Three types of distributions viz. – power law, 
exponential and sigmoid variation are considered; 
in conformity with non-linear temperature 
distribution across the beam height. Nonlinear 
strain displacement relations are applied to derive 
the governing equations for buckling analysis 
under thermal load, and a number of publications 
are reported in this area. Javaheri et al. [25,26], 
Kiani et al. [27,28], Wattanasakulpong et al. [29], 
Majumdar et al. [30], Paul et al. [31] have 
examined the buckling of FG Beams using non-
linear strain-displacement relations and non-
linear temperature profiles.  

The concept of physical neutral surface in FG 
beam analysis causes the stretching-bending 
coupling parameter vanishes in the governing 
equations, and the resulting equations are largely 
simplified. Applying this theory, the neutral 
surface is assumed to be one of the coordinate 
axes which hence is slightly shifted from the 
geometrical center. However, the geometrical 
middle surface and physical neutral surface 
coincide for isotropic/ homogenous beams. The 
concept of physical neutral surface has been 
utilized by Zhang et al. [32], Ma et al. [33, 34], and 
Fu et al. [35]. Different studies have been made on 
thermal analysis of beams that are resting on non-
linear elastic foundations as- Fallah et al. [36] 
have examined the buckling analysis under 
thermo-mechanical load applying TID properties; 
Zhang et al. [37] have investigated the thermal 
post-buckling cases based on physical neutral 
surface and higher order shear deformation 
analysis using TD material properties; Sun et al. 
[38] have surveyed the study of thermal buckling 
of FGM Timoshenko beams with nonlinear 
temperature distribution and TID properties. 
Niknam et al. [39] have also inquired the thermo-
mechanical loading effect on the behavior of non-
linear FG tapered beams. Nasirzadeh et al. [40] 

have examined the stability conditions for FG 
beams in thermal and electrical field 
simultaneously and reported the results for 
various end conditions and power law indices. 
Nguyen et al. [41] have inspected the application 
of higher order hierarchal beam element for the 
dynamic analysis of FG beams subjected to non-
linear temperature distribution along the cross-
section height and TD material properties. 

After an exhaustive review of the published 
works in the area of thermo-mechanical analysis 
of FG beams, it has been observed that studies 
pertinent to cumulative thermal and mechanical 
loading have been relatively less. Deliberating the 
scope of applications of beams in wide areas of 
severe/ critical standards the possibility of beams 
exposed to amalgamated thermal and mechanical 
loading cannot be foreseen. In other words, when 
an FG beam is subjected to constant mechanical 
load in thermal environment the study of 
deformation and stresses with changes in 
temperature distribution can be quite significant 
in its design analysis and synthesis. The present 
work reveals the effect of change of temperature 
distribution on stress and deformation behavior 
of an FG Timoshenko beam loaded with a constant 
mechanical load. The governing equations are 
derived applied principle of virtual work in the 
frame of Timoshenko beam theory to incorporate 
transverse shear strains in thermal environment. 
The formulation is derived applying the unified 
approach as reported by Li [16] in which a single 
governing equation is derived by reducing the 
three differential equations of displacement 
variables into a single fourth order equation. 
Poisson’s ratio is assumed to be a constant and 
material properties are assumed to be 
independent of temperature change. Exact 
solutions are acquired, assuming beam to be 
subjected to various boundary conditions. Three 
types of FG materials viz.- Aluminum/Steel 
(metal-metal), Stainless Steel/ Silicon 
Nitride(metal-ceramic) and Stainless Steel/ 
Zirconia (metal-ceramic) have been contemplated 
in the study under linear and non-linear 
distribution of temperatures and for dissimilar 
ranges of temperatures and volume 
concentrations of material constituents.  

2. Formulation 

2.1. Modeling of Functionally Graded Materials 

A functionally graded beam of length ‘L,’ 
rectangular dimensions of width ‘b,’ and height ‘h,’ 
having three dimensional Cartesian coordinate 
systems as illustrated in Fig. 1 and material 
property gradation across the cross-section is 
reviewed for static analysis. This beam is assumed 
to be loaded uniformly with a constant load 
intensity ‘q’ kN/m. 
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Fig. 1. Schematic diagram of FG beam and its coordinate 

system (a) Front view (b) Side view 

A thermal field is also assumed in such a way 
that the temperature of top surface and bottom 
surface is prescribed initially; the variation of 
temperature is assumed to be uniform, linear, or 
non-linear, depending on the case assumed. 
Functionally Graded Materials are advanced 
composite materials whose properties are tailored 
in a desired manner to obtain specific properties. 
The composition of the parent materials is varied 
in a specified manner to achieve such variation in 
the properties. In this paper the variation of 
material properties is assumed to be in 
consonance with power law function and 
simultaneously the beam height. The expression 
for power law is presented by (e.g. see Fig. 2): 

   
1

2

 
    

 

β

b t b

z
P .

h
PP z P                                  (1) 

where ‘P’ is any material property, ‘z/h’ 
represents the normalized distance from 
geometrical center.  

The subscripts ‘b’ and ‘t’ refers bottom and top 
fiber, respectively, and ‘β’ is the power law index. 
As the Table 1 displays, the values of Poisson’s 
ratio for the materials are very close to each other. 
In order to keep the analysis simpler, Poisson’s 
ratio is assumed to be constant. However, to 
generalize the idea to wider arena, the variation of 
Poisson’s ratio ((z), where its variation is as per 
power law depth dependent) can be easily be 
incorporated in the governing equations. The 
effect of variation of Poisson’s ratio will be 
observed in rigidity modulus and shear correction 
factors [16] as presented below- 

2 1 




E( z )
G( z )

( ( z ))
                                              (2) 

5 1

6 5









s

( ( z ))
k ( z )

( ( z ))                                               (3) 

2.2. Governing Equations 

The above beam is deliberate to be 
Timoshenko beam i.e., the effect of shear 
deformation will be accounted for the 
displacement variables; loading and 
corresponding deflection is constrained in the x-z 
plane. Let ‘u,’ ‘w,’ and  represent the axial and 

transverse deflection and rotation of the cross-
section at the mid-plane, respectively. A subscript 
‘0’ with the variable (for e.g. u0) will account for 
the corresponding variable value at mid-plane. 
The transverse deflection ‘w’ and the shear 
deformation ‘γ’ are assumed to be functions of ‘x’ 
and are uniform for a cross-section.  

Based on Timoshenko beam theory- 

     0  u x,z u x z x
           (4) 

0

0




 
   
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xx

uu
z ( z )[T (z)-T ]

x x x          (5) 




 


xz

w
γ

x            (6) 
In the above equations ϵxx and γxz represent the 

normal and shear strain respectively, α(z) is the 
coefficient of thermal expansion, and T(z) is the 
temperature; both of these depend on the material 
configuration shown by power law equation (Eq. 
1). T0 is reference temperature. Virtual work 
principle states that the variation in strain energy 
is equal to the work done by the load to cause an 
infinitesimal deflection of beam, i.e.: 

 

Fig. 2. Variation of Modulus of Elasticity across the cross-

section with power law index, β
  

Table 1. Mechanical Properties of Materials 

Material 
𝝻 E 

(GPa) 
α 

x10-6 

(0C-1) 

K 
(Wm1K-1) 

Ref. 

Steel 0.3000 207 12.3 51.90 [42] 
Aluminum 0.3300 69 23.6 222.00 [42] 
Stainless Steel 0.3262 201.04 12.330 15.379 [7] 
Silicon Nitride 0.2400 348.43 5.8723 13.7230 [7] 
Zirconia 0.2882 244.27 12.766 1.7000 [7] 
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The thermal force and thermal moment can be 
expressed as- 
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Eqs. (14-17) are introduced for the decoupling 
of ‘x’ and ‘z’ parameters.  
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Here ‘ks’ is the shear correction factor. 
Substituting the decoupling parameters in Eqs. 12 
and 13 to acquire- 
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After substituting for Nx and Mx in Eq. 11, 
followed by simplification and grouping of similar 
quantities, the following governing equations 
(Eqs. 21-23) are obtained- 
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The following boundary conditions are 
computed (Eq. 24-26)- 

   0 0 xN or u
  (24) 

   0 0 xM or
  (25) 

   0 0 xz or wQ
  (26) 

In the above Eqs. (21-23), NT represents the 
thermal force; MT is the thermal moment shown 
by- 
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Equations (21-23) are governing differential 
equations and Eqs. (24-26) are respective 
boundary conditions for functionally graded 
beams whose solutions provide an insight to their 
static responses under dissimilar conditions of 
thermo-mechanical load. It can be observed from 
Eqs. 27 and 28 that thermal force and moment 
vary only accompanying the beam height and are 
independent of ‘x’; hence, the last term of Eqs. 21 
and 22 vanish. On that account, the governing 
equations for thermo-mechanical load remain 
exactly similar to the case of purely mechanical 
load. The governing equations contain three 
variables viz. – u, w, and  and can be simplified to 

reduce it into two variable formulations; i.e. if Eq. 
21 is substituted in Eq. 22, it eliminates ‘u0’, and 
the remaining equations are coupled with two 
parameters, viz. ‘w’ and.‘’ The following 
substitutions applying an independent variable ‘F’ 
(Reference [16]) can be incorporated to reduce it 
to a single variable equation. 
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 
dF

dx   (30) 

In the above equations ‘F’ is an auxiliary 
function similar to transverse deflection and is 
applied only for simplification; while D* is a 
material property and a function of ‘z’ only and is 
given by- 

2

11

11

11

 * B
D D

A
  (31) 

After the above substitutions, the governing 
equation for a shear deformable FG Timoshenko 
beam under thermo-mechanical load is reduced to 
a single fourth order differential equation as 
follows- 
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Using Eqs. 22 and 23 the bending moment and 
shear force will take the form- 
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xz
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Equation33 is acquired after assuming that the 
net axial force vanishes, which is the case for 
cantilever beams, propped beams, and simply 
supported beams (with at least one roller support 
in the latter). Once the independent variable ‘F’ is 
computed, the other dependent variables can 
easily be determined. Exact solution of Eq. 32 is 
derived for each of the above three boundary 
conditions after contemplating the beam to be 
loaded with constant mechanical load in thermal 
environment.  

2.3. Temperature Profile 

The top surface is assumed to be at 
temperature, Tt, while the bottom surface 
temperature is Tb. Here it is assumed that Tt<Tb. 
Both Tt and Tb are more significant than the 
ambient temperature T0. Three temperature 
profiles are deliberated in the present study- 
uniform temperature rise, linear temperature 
distribution, and non-linear temperature 
distribution. Generally, the temperature 
distribution in a component is computed applying 
steady state heat conduction equation, assuming 
the heat flow to be one-dimensional along the 
beam height. In a limiting case when beam is 
slender the temperature distribution can be 
approximated to be linear in accordance with the 
beam height. 

 
 

2.3.1. Linear temperature distribution(LTD) 

The two surfaces (top and bottom) of the beam 
are assumed to be at an initial temperature that is 
higher than the surroundings, and the 
temperature distribution is assumed to follow a 
linear distribution pursuan to the expression- 
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 
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 
b t b

z
T T

h
Tz T .  

 (35) 
If both the temperature Tt and Tb are kept at 

same value (i.e., the entire beam temperature is 
same) and higher than the ambient temperature, 
will also lead to bending as a result of uneven 
thermal expansion as the constituents have 
different expansion coefficients which are a 
limiting case of uniform temperature rise. 

2.3.2. Non-linear temperature distribution 
(NLTD) 

Assuming there is no heat generation and heat 
flows uni-directionally from the bottom layer to 
the top layer such that it follows steady state one 
dimensional heat conduction equation shown by - 

2 20 

 
   

 
( h / ) b ( h / ) t

d dT
K( z ) ,T T ,T T

dz dx  (36) 

In the above equation, K(z) is the thermal 
conductivity of FGM at any point along the cross-
section. The variation of thermal conductivity is 
assumed to be given by Eq. 1, as well. Eq. 36 can 
be solved applied polynomial series solution [25, 
26, 28] and assuming that the first seven terms 
(Np) of the series provide accurate solutions, the 
temperature profile across the beam height is: 
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where- 
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and Ktb = Kt-Kb

 (38) 

3.  Solution of Governing Equation 

Equation 32 represents the governing equation 
of a shear deformable FG Timoshenko beam 
subjected to mechanical load in thermal 
environment. It is also observed that for those 
beam end conditions in which the axial force is 
negligible, the bending moment is a function of 
thermal load and moment as given by Equation 
33. This is the same for three end conditions viz. – 
a) cantilever or clamped-free (C-F); b) propped 
cantilever or clamped-simply supported (C-S) and 
c) Simply supported-simply supported (S-S). In 
order to have zero axial force one of the ends must 
be free to move in horizontal direction; hence the 
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present study focuses on these end conditions 
only.  

3.1. Solution procedure 

Integration of the governing equation of FG 
beams (Eq. 32) leads to the following solution- 

3

13


 

 *

F q
x C

x D   (39) 
2 2

1 22 2


  

 *

F q x
C x C

x D  (40) 
4 3 2

1 2 3 4
24 6 2

    
*

q x x x
F C C C x C

D  (41) 

whereCj (j=1,2,3,4) are constants to be computed 
from the end conditions. In the present study, 
three boundary conditions are deliberated as 
above to find the exact solution for thermo-
mechanical loading of FG Timoshenko beams. The 
beams are subjected to an external uniform 
mechanical pressure of ‘q’ kN/m intensity 
throughout the span and are also subjected to 
various temperature distributions superimposed 
on the beam. The constants may be computed 
applying the specified boundary conditions and ‘F’ 
can be acquired easily. Once ‘F’ is determined 
transverse deflection and rotation of cross-section 
can be obtained using Eqs. 29 and 30. The 
resulting deformations and stresses are observed 
hereafter for a wide range of parameters.  

3.2. Various end conditions 

3.2.1. Clamped-Free (C-F) 

For a cantilever beam slope and deflection at 
the fixed end are zero while shear force and 
bending moment at the free end are zero. Hence 
we have the following end conditions for a C-F 
beam- 

0 0 0 0   x xzw( ) ( ) ,M (l ) Q ( l )
 (42) 

The above boundary condition (Eq. 41) can be 
substituted by Eqs. 29, 30, 33 and 34 respectively 
in order to acquire the following- 
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 (43) 

Substituting the Eqs. 39-41 in Eq. 43 to obtain 
four simultaneous linear equations in Cj (j=1,2,3,4) 
which can be solved easily to obtain- 
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and using Eqs. 5 & 8- 
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Applying the axial stresses obtained in Eq. 45, 
shear stresses can easily be derived by 
integrating- 
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Hence an expression for shear stress is 
obtained as- 
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The above Eqs. 44-45 and 47 represent 
respectively the transverse deflection, normal 
stresses and shear stresses in an FG Timoshenko 
Beam subjected to thermo-mechanical load with 
C-F boundary conditions. It is clear from Eqs. 44 
and 45 that in the absence of mechanical load 
(q=0), the transverse deflection and axial stresses 
are non-zero. On the other hand, if thermal load is 
zero (i.e. surface temperatures are equal to 
ambient temperature) then the Eqs. (44-47) 
exactly resemble that of Reference [16]. For 
isotropic beams D*=EI, K55 = ksGA, and B11=0, 
hence for isotropic materials the above equations 
are reduced to- 
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For isotropic beams, the last two terms of Eq. 
49 are equal and hence cancel each other, and 
terms with thermal moment are acquired. The 
above equations can be easily verified from 
standard text-books [42, 43]. 

3.2.2. Clamped-Simply supported (C-S) 
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For a propped cantilever beam (C-S) slope and 
deflection at the fixed end are zero while 
transverse deflection and bending moment at the 
roller ends are zero. Hence we have the following 
end conditions for a C-S beam- 

0 0 0 0   xw( ) ( ) ,w( l ) M (l )  (50) 

The above boundary condition (Eq. 50) can be 
substituted by Eqs. 29, 30, 33 and 34 respectively 
to obtain the following- 

2

2

00

2

2

1

55

2

1

2

1

55

1

0

*

xx

*

x l

*

T T

x l

d F dF
F

dxdx

d F
F

dx

B
D N

D

M
Ax

D

K

K

F







   
     

  

 
 

 

 
    

 

 (51) 

Solving the simultaneous equations obtained 
by substitution of Eqs. 39-41 in 51 which can be 
simplified to obtain the expressions for deflection 
and stresses as below- 
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The following substitutions have been made in 
Eqs. 52-54  
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If we neglect the effect of shear deformation in 
the above analysis for C-S beam, hence the 
corresponding beam will be Euler-Bernoulli beam 
(EBB). For such beams the value of K55 will be 
infinite hence the value of ξ=l2/3 and its 
substitution in Eqs. 52-54 will simplify them to 
those for EB beams-  
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Further, if the beam is assumed to be isotropic 
then the following substitutions can be made- 
D*=EI, K55=ksGA, and B11=0, as in the previous case. 
It has been observed that the resulting equations 
for isotropic beam with C-F boundary condition, 
consequently the resulting /equations for 
transverse deflection, axial and shear stress are 
exactly similar to that in [43]. 

3.2.3. Simply supported -Simply supported (S-S) 

A similar analysis as above for S-S type 
boundary condition whose at least one end is 
roller supported is discussed in this section. The 
boundary conditions associated with such beam 
are as below- 

0 0 0 0   x xw( ) M ( ) ,w( l ) M (l )  (59) 

Equation 59 can be converted into a relevant 
form by substitution of Eqs. 29 & 33 as- 
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The final expressions obtained for transverse 
deflection and stresses after solution and 
simplification of the linear simultaneous 
equations (using Eqs. 39-41) acquired as follows- 
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4. Results and Discussions 

In order to gain a deep insight into the 
behavior of FG beams when it is subjected to 
mechanical load, and the temperature distribution 
across the beam height is varied, a number of 
numerical results based on the above analysis are 
presented in this section. In order to provide a 
clear perspective, the examination has been 
categorized into different cases so that the 
behavior of FG beam is investigating by varying 
one of the parameters (relevant to FGM) with a 
progressive rise of temperature and TID 
properties. The parameters that are of interest 
are- a) volume fraction of constituents governed 
by power law index, β (Eq. 1); b) comparison of 
different material combinations for constituents 
and hence material properties (Eq. 1); c) 
comparison of EB and Timoshenko beams for the 
same aspect ratio (l/h); d) linear and non-linear 
temperature profiles (Eqs. 35 & 38). A comparison 
of variation in load parameters viz. - purely 
mechanical/ purely thermal/ thermo-mechanical 
behavior has been employed for four sets of 
temperature ranges. Three combinations of FGM 
has been selected for study viz. – a) Metal-metal 
FGM applying Aluminum-Steel; b) Metal- Ceramic1 
using Stainless Steel and Silicon Nitride; c) Metal-

ceramic2 applying Stainless Steel and Zirconia; 
their nomenclature as FGM-1, FGM-2, and FGM-3 
respectively. The study of behavior of FG beams 
with different end conditions (Section 3) has also 
been concluded. For computational purpose a 
beam of length L = 0.5 m and height h = 0.125 m, 
temperature of the surroundings T0 = 30 oC, and 
uniform pressure of intensity q = 10 kN/m have 
been assumed. The material properties are 
mentioned in Table 1. The temperature of the top 
and bottom surfaces are kept at constant values 
and observations are made for four sets of 
temperature as mentioned in Table 2. The axial 
stresses and shear stresses are normalized using 
the following relations- 

 
  

 
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norm norm
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ql N ql N
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It is observed that even with the slightest of 
the rise in temperature of surface (above ambient 
temperature), results in appreciable variations in 
the deformation and stress features of FG beam. 
For instance, when the above FG beam (cantilever 
end condition) is kept near a heat source such that 
the temperature of bottom surface rises by 10C 
and let us assume that the temperature of top 
surface is same as the ambient, then the thermal 
gradient (assumed to be linear in this case) 
induces a net moment (due to the difference in 
coefficient of thermal expansion of the layers) that 
deflects the beam in upward direction. 
Notwithstanding, as the temperature of the top 
surface rises by 10C the deflection is again in 
downward sense as well. Thus, a small rise in 
temperature will cause significant changes in the 
behavior of the FG beam. Fig. 3(a-b) are plotted in 
order to detect the deflection and stresses 
corresponding to a unit rise of temperature. FGM-
1 is metal –metal composite with Aluminum at the 
top and Steel at the bottom. When the bottom 
layer is heated above ambient (Tbot=310C, 
T0=300C, Ttop = 300C), it expands while the top 
layer being at ambient temperature remains un-
deformed. This results in deflection of beam in 
upward direction. 

 
Table 2. Symbols for temperature distribution 

Temperature Symbol 
Uniform 

Tt=310C, Tb=310C TU1 
Tt=330C, Tb=330C TU2 
Tt=350C, Tb=350C TU3 
Tt=370C, Tb=370C TU4 
 Linear Nonlinear 
Tt=310C, Tb=310C TL1 TNL1 
Tt=310C, Tb=330C TL2 TNL2 
Tt=310C, Tb=350C TL3 TNL3 
Tt=310C, Tb=370C TL4 TNL4 
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(a) 

 
(b) 

Fig. 3. a) Transverse Deflection b) Normalized Axial Stress  
(at the fixed end) of C-F beam (FGM-1) for 𝞫=1 

In the other case, (Tbot=330C, T0=300C, Ttop = 
320C) both the top and bottom layer expand due 
to heating; however, expansion of top layer is 
more than the bottom owing to the fact that 
thermal conductivity of aluminum is more (almost 
double) than that of steel. Hence the beam bends 
in the downward direction. In order to gain a 
broader view of such changes in their behavior, 
the values of temperatures for uniform, linear, and 
non-linear distribution are judiciously selected. 

The following figures highlighted the behavior 
of FG cantilever beam subjected to thermo-
mechanical loading. Figures 4-12 are plotted for 
FGM-1 and the subsequent figures (Figs. 13-16) 
represent comparative behaviors of FGM-1, 2, and 
3. In order to distinguish the thermal and thermo-
mechanical behavior, the thermo-mechanical 
graphs (q=10 kN/m) are plotted with solid lines 
while thermal plots (q=0 kN/m) are with dashed 
lines. 

In Figs. 4-7, the value of power law index is 
kept constant (β=1), and temperature of top and 
bottom surfaces are varied. 

 
(a) 

 
(b) 

Fig. 4. Transverse Deflection of C-F beam (FGM-1) for 𝞫=1  
a) Uniform temperature; b) Linear Temperature Distribution 

Figs. 4a and 4b illustrate the deflection curves 
for uniform and linear distribution of temperature 
while Fig. 7b for nonlinear distribution. It is 
clearly observed that there is substantial 
difference in deflections in the above cases. In 4a, 
even with a uniform rise of temperature 
(Tt=Tb>T0) above ambient, the beam bends; this 
may be attributed to the dissimilarity in the 
expansion coefficients of the constituents. If the 
loading side is reversed then results are in 
opposite sense as expected, but their magnitudes 
are different. Furthermore, the thermal deflection 
in each case is slightly less than thermo-
mechanical because the thermal moment is 
opposite to mechanical moment (for FGM-1, 
aluminum is in top layer, and its thermal 
expansion is much higher as compared to steel).  

It can be observed from Fig. 4b that for linear 
variation of temperature, the bending can be in 
the upward direction for thermo-mechanical case 
even for small temperature gradients. 
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(a) 

 
(b) 

Fig. 5. Axial Stresses (Normalized) at the fixed end of the C-F beam (FGM-1) for 𝞫=1 a) Uniform Temperature; b) Linear Temperature 
Distribution 

 

 
(a) 

 
(b) 

Fig. 6. Shear Stresses (Normalized) at the fixed end of the C-F beam (FGM-1) for 𝞫=1a) Uniform Temperature; b) Linear Temperature 
Distribution 

 
Figs. 5a and 5b indicate the normalized axial 

stresses (maximum value at fixed end) for 
uniform and linear distribution, and Fig. 7c is that 
for nonlinear distribution. It is evident that axial 
stresses vary considerably with rising in 
temperatures. 

Moreover, it is observed from Figs. 6a, 6b, and 
7d that the shear stresses are same for mechanical 
and thermo-mechanical load. It appears as if 
purely thermal load does not generate any shear 
stress, though it is likely possible. It can be 
explained as the absence of thermal shear strain 
term while deriving the governing equations 
applying Virtual Work Principle. Despite that, in 
Fig. 6(a-b) and 7d the magnitude of shear stresses 
reduces with increase in temperature of bottom 
layer because of normalization by thermal force 
(NT). It is observed from Fig. 7(b-c) that the 
behavior in nonlinear distribution is significantly 
different from uniform and linear distributions 

owing to the profile as presented in Fig. 7a. A 
significant difference in the behavior of FGM-1 
under nonlinear distribution of temperature is 
found. In Fig. 7b the deflection of the beam is in 
downward direction, irrespective of the gradient.  

This can be explained through the NLTD for 
FGM-1 depicted in Fig. 7a. It is observed that 
temperature variations are appreciable only for 
the top half of cross-section and almost constant 
for the bottom half. This leads to compressive 
stresses at the top and bottom fiber while tensile 
stresses in the mid-layers as presented in Fig. 7c. 

 In the power law expression (Eq. 1), the value 
of βgoverns the volume of material constituents in 
FGM. 

As the value ofβincrease, the volume of 
material that forms the bottom layer increases; 
correspondingly the nature of FG beam follows a 
behavior dominated by bottom layer constituent. 
Table 3 reveals an idea of the percentage 
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composition of the constituents as per the value of 
β. The behavior of an FG component under 
thermo-mechanical load with variation in volume 
of its constituents is significant research for its 
design and development. In order to gain an in 
depth look on the characteristics of FG beams 
subjected to thermo-mechanical load with 
different proportions of the forming constituents 
is reported in the following pages. 

The variation of the tip deflection with the 
power law index for four types of temperature 
gradients (Table 2) with thermal and thermo-
mechanical load has been plotted in Fig. 8. In Fig. 
8a linear distribution of temperature (LDT) while 
in Fig 8b nonlinear distribution of temperature 
(NLDT) is contemplated. It is observed that with 
the increase in index value, the tip deflection first 
decreases up to a certain value and consequently 
increases for both the profiles. For LDT, as the 
temperature gradient increases, the tip deflection 
increases for the same index as well; and exhibits 
similar behavior for increasing index value. On the 
other hand, for NLDT and a specific gradient, there 

is a steep fall in tip deflection up to a certain index 
value then remains approximately constant as the 
index increases as depicted in Fig. 8b. In either 
case the thermal and thermo-mechanical plots are 
parallel to each other. 

Table 3. Average Volume fraction of the material 
constituents [7] 

𝞫 Vt Vb 

0.0 1.0 0.0 

0.1 0.9091 0.0909 

0.5 0.6667 0.3333 

1 0.5000 0.5000 

1.5 0.4000 0.6000 

2.0 0.3333 0.6667 

3.0 0.2500 0.7500 

4.0 0.2000 0.8000 

15.0 0.0625 0.9375 

25.0 0.0385 0.9615 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 7. For 𝞫=1& Nonlinear temperature distribution, a) Distribution of temperature across the beam height; b) Transverse 
Deflection; c) Normalized Axial stresses at the fixed end; d) Normalized Shear stresses at fixed end 
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(a) 

 

(b) 

 
(c) 

 
(d) 

Fig. 8. Effect of shear deformation on variation in maximum (tip) deflection with (𝞫)- a) LTD; b) NLTD; c) LTD; d) NLTD 

 
In Fig. 8c and 8d plots to distinguish the 

response of Euler and Timoshenko beam under 
thermo-mechanical load is examined. In all the 
plots, the aspect (l/h) ratio is assumed to be ¼. It 
is observed that both the variations are very small 
and are insignificant which means both Euler 
(EBB) and Timoshenko (TB) beams respond in the 
same way to thermal gradient changes. The 
reason for such behavior is that the thermal 
expansion does not produce any shear 
deformation between the layers of beam. It is 
observed that the difference in deflection of EBB 
as well and TB is only as a result to mechanical 
load, and in the absence of mechanical load the 
response of the two is same for thermal 
variations. Fig. 8c shows the results for LTD while 
Fig. 8d for NLDT.  

Fig. 9 illustrates a plot of the variation of 
position of neutral axis with increase in βfor the 
three FGMs considered. The shifting in neutral 
axis for FGM-1 (Fig. 9) is appreciable when 

juxtaposed to the height of beam. The position of 
neutral axis is approx. 11 mm shifted below the 
geometrical center for a beam of height 125mm 
for an index value 0.85 and is roughly 9% of the 
beam height. On the other hand, the shifting for 
FGM-2 and 3 are in opposite sense, 
notwithstanding that the shift is relatively lesser. 
It is observed that the shifting of NA is a function 
of the modulus of elasticity of the parent materials 
of FGM. 

The deflection and axial stress variations for a 
C-S and S-S beam are plotted in Figs. 10 and 11. It 
is observed that the deflection and stresses for C-S 
and S-S beams behave in similar to C-F beam as 
well. Despite that, they behave in opposite sense. 
The two ends of both C-S and S-S are constrained 
as a result of which the deflection initiates in the 
direction where the elongation is more, e.g., 
Aluminum with higher coefficient of thermal 
expansion forms the top layer. For uniform rise of 
temperature, the top layer elongates more; hence, 
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the beam is deflected in upward sense. With the 
increase in temperature of lower layer and 
corresponding elongation the beam deflects 
downwards. The stresses plotted at the midspan 
reveal a corresponding behavior. The constant 
mechanical pressure is clearly the dissimilarity 
between the thermal and thermo-mechanical 
plots presented in Figs. 10 and 11. 

The surface plots for each of the gradient case 
and LTD and NLTD give a rough idea of the 
variations of the deflections, axial stresses, and 
shear stresses for the FG beams (Figs. 12-14). It is 
observed that the variations in all types of 
surfaces follow a similar trend, i.e. there is a large 
variation up to a certain value of power law index 
(β=2) and for higher values of β the variations are 
minimal.  

 

 
Fig. 9. Variation in the position of neutral axis with (𝞫) 

 

 
(a) 

 
(b) 

Fig. 10. C-S beam under the thermal and thermo-mechanical load of (FGM-1) for 𝞫=1 a) Transverse Deflection; b) Normalized Axial 
Stress 

 

 
(a) 

 
(b) 

Fig. 11. S-S beam under the thermal and thermo-mechanical load of (FGM-1) for 𝞫=1 a) Transverse Deflection; b) Normalized 
Axial Stress 
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Figures 15-17 have been plotted to compare 
the behavior of three different types of FG 
materials similarly to the change in thermal 
environment. Through this study, a generalized 
behavior of the FG beams under thermo-
mechanical loading can be assessed. In the present 
study three combinations of five different metal/ 
ceramic have been simulated for deflection and 
stresses. In order to identify each type of 
combination separated denominations viz. FGM-1, 
FGM-2, and FGM-3 have been highlighted in the 
successive graphs. Both form of LTD and NLTD 
have been examined and investigated four types 
of gradients. The behavior of FGM-2 is in contrast 
to FGM-1, while FGM-3 behaves intermediate to 
both. The variation in tip (maximum) deflection, 
with power law index, is depicted in Fig. 15a 
(LTD) and 15b (NLTD). The plots may correlate to 
the shifting of neutral axis plotted in Fig. 9 for 
FGM-2 and FGM-3 as well to reveal a sharp 
similarity. It can be concluded that shifting of 
neutral axis has a major impact on the thermo-
mechanical behavior of FG beams. This shifting is 
governed by the variation of modulus of elasticity 
and hence, through Eq. 1. The shifting of neutral 
axis is towards the side whose modulus of 
elasticity is higher for example for FGM-1, 
aluminum is on top surface and steel at bottom; 
hence NA shifts downwards; while for FGM-2 with 
silicon nitride on top which has higher value of 
elasticity, resulting in gaining NA upwards the 
geometric center line. Both LTD and NLTD display 
similar trends in variation with the increasing 
value of β. However as a result of the nonlinear 
profile for each FG beam (Fig. 7a) exhibits 
substantial difference largely due to the variation 
in thermal conductivity of the materials resulting 
in contrasting temperatures at points along the 
beam height. Hence it can be concluded that for 
nonlinear temperature variations thermal 
conductivity plays a vital role in accordance with 
elasticity modulus. 

5. Conclusions 

In this paper, a beam that consists of 
functionally graded material is deliberated to 
investigate its static deformation behavior under 
purely thermal and thermo-mechanical load. The 
study has its relevance in designing of an FG beam 
subjected to varying loading and thermal 
environments. How will the beam respond if the 
temperature on both of its surface differs from 
each other as well as from vicinity, with and/or 
without mechanical load; present research 
attempts to answer this question. Although a 
number of works, cited in the literature review, 
have manifested their findings relevant to thermo-
mechanical loading in FG beams; the present work 
is unique in a way that the approach adapted in 
developing the governing equations formulates to 

a single fourth order differential equation (similar 
to classical beam theory for isotropic beams) 
acquired by substituting a dependent variable for 
the displacement variables.  

The method was applied by Li [16] for 
Timoshenko beams subjected to purely 
mechanical load, and the present work extends 
the method to thermo-mechanical load, and to the 
best of author’s knowledge, this is a novel work 
unpublished till date to the best of author’s 
knowledge. The properties of material viz. 
elasticity modulus, rigidity modulus, coefficient of 
thermal expansion, and thermal conductivity are 
made to vary pursuant to power law function 
along the height of the beam assuming a constant 
Poisson’s ratio. The beam is loaded with constant 
mechanical pressure on the top surface, and the 
temperature of top and bottom surface are 
assumed to be at higher value than the vicinity. 
The top and bottom temperatures are also kept at 
different values, and the temperature distribution 
within the beam is assumed as linear or nonlinear. 
The governing equations are derived applying 
principle of virtual work by contemplating the 
effect of shear deformation as well. The approach 
followed in the development of equations is to 
convert the displacement variables into a 
dependent variable so as in order to acquire a 
fourth order differential equation in terms of 
dependent variable. Exact solutions for different 
types of boundary conditions viz clamped-free 
simply supported, and propped cantilever has 
been obtained for thermo-mechanical load. A 
number of findings correlated to the behavior of 
FG beams subjected to thermo-mechanical load 
(linear and nonlinear temperature profiles) have 
been examined for varying thermal gradient and 
different volumes of constituents; the deflection, 
axial (bending) and shear stresses of such beams 
for a range of power law index values have been 
reported. Moreover, in order ro investigate the 
effect of different combinations of constituent 
materials for FGM, three combinations of 
materials have been examined to gain an in depth 
study of FG beams.  The following conclusions can 
be enumerated in the end. 

It has been observed that the deflection 
(transverse) of the FG beam as a result of thermal 
gradient starts with the slightest of the rise in 
surface temperature beyond the ambient value, 
irrespective of mechanical loading. 

For the same temperature dissimilarity of the 
top and bottom surface, the behavior of beam is 
largely different for uniform, linear, and non-
linear temperature profiles. The resulting 
behavior of beam is dependent on the directions 
of mechanical and thermal moment; out of these 
variations in thermal gradient is more critical. 
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Fig. 12. Variation in transverse deflection of FGM-1 with Power law index (𝞫) Linear Distribution, TL3; b)Nonlinear Distribution, TNL3 

 
 

Fig. 13. Variation in normalized axial stress of FGM-1 with Power law index (𝞫) a) Linear Distribution, TL3; b) Nonlinear Distribution, 
TNL3 

 

 

Fig. 14. Variation in normalized shear stress of FGM-1 with Power law index (𝞫) a) Linear Distribution, TL3; b) Nonlinear Distribution, 
TNL3 
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Fig. 15. Variation in transverse deflection of FGM-1 with Power law index (𝞫) Linear Distribution, TL3; b)Nonlinear Distribution, TNL3 

  
Fig. 16. Variation in normalized axial stress of FGM-1 with Power law index (𝞫) a) Linear Distribution, TL3; b) Nonlinear Distribution, 

TNL3 

  
Fig. 17. Variation in normalized shear stress of FGM-1 with Power law index (𝞫) a) Linear Distribution, TL3; b) Nonlinear Distribution, 

TNL3 

 
The thermal gradients do not produce any 

shear deformation (corresponding shear stresses) 
in the FG beam, and only mechanical load is 
responsible for the shear deformation. As a result, 
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both Euler beam theory and Timoshenko beam 
theory for FG beam give the same result for 
thermal variations. 

The behavior of FG beam is dependent on the 
loading side as well, i.e., constituent material that 
forms top and bottom surfaces. Both the 
deflection and stress profiles are dependent on 
the position of neutral axis which is a function of 
elasticity modulus of the constituents. Greater the 
elasticity differences the more will be the shift of 
neutral axis; towards the constituent with higher 
elasticity. The effect is observed for all types of 
loading conditions- mechanical, thermal and 
thermo-mechanical. 

In case of nonlinear temperature profiles, the 
thermal conductivity of the parent materials plays 
a vital role in the behavior of FG beam. Greater the 
difference in thermal conductivity, the more will 
be nonlinearity in temperature profile. Hence if 
the thermal in the thermal conductivity of the 
constituents is less, linear profile of temperature 
may be assumed for simplicity even for thick 
beams. 

Nomenclature 

u, w Linear displacement variables 
𝜙 Rotational displacement variable 
x, y, z Cartesian coordinate variables 
b, h, l Width, height and length of beam 
ks Shear correction factor 
α Coefficient of thermal expansion 

β Power law index 

q Intensity of mechanical load 
Tt 
Tb 
T0 

Temperature of top surface,  
Temperature of Bottom surface,  
Surrounding temperature 

E 
G 

Modulus of Elasticity 
Modulus of Rigidity 

𝝻 Poisson’s Ratio 
ϵ, γ Axial Strain, Shear Strain 
σ, τ Axial Stress, Shear Stress 
Nx 
Mx, 
Qxz 

Axial Force 
Bending Moment 
Shear Force 

NT, MT Thermal Force, Thermal Moment 
TU1,TU2, 
TU3,TU4 

Uniform Temperature Distribution 

TL1,TL2, 
TL3,TL4 

Linear Temperature Distribution 

TNL1, TNL2, 
TNL3, TNL4 

Nonlinear Temperature  
Distribution 
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