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1. Introduction try including energy storagd7], nano electrone-
The invention of carbonnanotubes (CNTSs) init- chanical systemd8], strain, mass and pressure se
ated a new era in the nano world[1]. Since then, sors[9, 10], wolar cells[11], photo-catalytic degrada-
many studies have been performed in the field of tion of organic dye[12], composite materials[13]
the mechanical, electrical, physical and chemical and ect. The continuum modeling of the nam
behaviors of the nanostructures. The primary std- materials has received a great deal of attention of
ies show that the mechanical properties of the the scientific community because the controlled %
nanostructures are different from other well-known periments in nanoscale are difficult and molecular
materials [2]. The superior properties of these dynamic simulations are highly expensive compu&-
structures have led to their applications in many tionally. There are various size dependent contin-
fields such as nanodevices, nanoo#lators, nano- um theories such as couple stress theorjl4], strain
bearings, hydrogen storage, and electrical batteries. gradient elasticity theory [15], modified couple
The platelike nanostructures such as nanoplates or stress theory [16] and nonlocal elasticity theory
nano-scale sheets are very important types of the [17]. Among these theories, the nonlocal elasticity
nanostructures with two-dimensional shapes. They theory has been widely applied[18-24]. To ove-
possess extraordinary mechanical prperties[1-6] come the shortcomings of the classical elasticity
and these unique properties make them ideal carnd theory, Eringen and Edelefil7] introduced the non-
dates for multifarious field of nanotechnology inds- local elasticty theory in 1972. They modified the
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classical continuum mechanics for taking into e
count the small scale effects. According to the ne
local elasticity theory, the stress tensor at an aib
trary point in the domain of nanomaterial depends
not only on the grain tensor at that point but also
on the strain tensor at all other points in the @-
main. Both the atomistic simulation results and the
experimental observations on phonon dispersion
have shown the accuracy of this observatiorj25,
26]. The Functionally Graded Materials (FGMs) are
the new generation of novel composite materials in
the family of engineering composites, whose pio
erties are varied smoothly in the spatial direction
microscopically to improve the overall structural
performance. These materials offer a great promise
in high temperature environments, for example,
wear-resistant linings for handling large heavy
abrasive ore paticles, rocket heat shields, heat»e
changer tubes, thermeelectric generators, heat heat
engine components, plasma facings for fusion rea
tors, and electrically insulating metal/ceramic
joints, and also these are widely used in many stod
tural applications such as mechanics, civil enginee
ing, optical, electronic, chemical, biomedical, energy
sources, nuclear, automotive fields, and ship buit
ing industries to minimize the thermomechanical
mismatch in metatceramic bonding. Most stre-
tures, irrespective oftheir use, are subjected to ¢-
namic loads during their operational life. Increased
use of naneFGMs in various structures such as
thermo-nanoactuators, thermenanosensors,
thermao-pressure sensors andetapplications ne-
cessitates the development of accuratéheoretical
models to predict their responseln past decades,
the free vibration of functionally graded materials
has been studied extensively. Malekzadeh and e
darpour [27] investigated the free vibration analysis
of rotating functionally graded cylindrical shells
subjected to thermal environment based on the
First-order Shear Deformation Theory (FSDT) of
shells. The formulation included the centrifugal and
coriolis forces due to therotation of the shell. The
differential quadrature method was adopted to ds-
cretise the thermoelastic equilibrium equations and
the equations of motion. Ungbhakorn and wa
tanasakulpond28] presented thermo-elastic vibra-
tion response of functionally graded plates carring
distributed patch mass based on thirdorder shear
deformation theory. The solutions were obtained
using the energy method. In addition, the forced
vibration analysis with external dynamic load acting
on the subdomain of the patch mass was also sh
cussed. Kumar and L&29] predicted the first three
natural frequencies of the free axisymmetric viba-
tion of the two-directional functionally graded an-
nulr plates resting upon winkler foundation using

differential quadrature method and Chabyshev de
location technique. Frequency equations for a plate
clamped at both the edges and another plate simply
supported at both the edges were obtained. Based
on the three-dimensional theory of elasticity and
assuming that the mechanical properties of the &
terials varied continuously in the thickness dire-
tion and had the same exponentaw variations, the
three-dimensional free and forced vibration analysis
of functionally graded circular plate with various
boundary conditions was achieved by Nie and
Zhondg30]. Hung et al[31] investigated the free -
brations of rectangular FGM plates through internal
cracks using the Ritz method. Thre€limensional
elasticity theory was employed, and new sets ofdca
missible functions for the displacement fields were
proposed to enhance the effectiveness of the Ritz
method in modelling the behaviors of the cracked
plates. Matsunaga[32] analysed the natural fe-
quencies and buckling stresses of plates made of
functionally graded materials by taking into account
the effects of transverse shear and normal defe
mations and rotatory inertia. By using the method of
power series expansion of displacement congp
nents, a set of functionally graded (FG) plates was
AROEOAA OOET C
Alibeyqi[33] presented the free vibration of furc-
tionally graded arbitrary straight-sided quadrilat-
eral plates under the thermal environment and
based on the firstorder shear ddormation theory.
The differential quadrature method was adopted to
discretise the equilibrium equations. The free viba-
tion of functionally graded micro/nano plates was
also considered in recent years.Ke et §84] devd-
oped a nonclassical microplate model for the a&-
isymmetric nonlinear free vibration analysis of a-
nular microplates made of functionally graded ma-
terials based on the modified couple stress theory,
Mindlin plate theory and vonKarman geometric
nonlinearity theory. The non-classical model was
capable of shear deformation and rotary inertia.Ke
et al [35] also studied the bendig, buckling and free
vibration of annular microplates made of functiond
ly graded materials based on the modified couple
stress theory and Mindlin plate theay. The material
properties of the FGM microplates were assumed to
vary in the thickness direction and were estimated
using the MoriTanaka homogenization technique.
Asghari and Taatj36] presented a sizedependent
formulation for mechanical analyses of inhomog-
neous micro-plates based on the modified couple
stress theory. The govering differential equations of
the motion were derived for functionally graded
plates with arbitrary shapes utilizing a variational
approach. Utilizing the derived formulation, the
free-vibration behaviour as well as the static e-
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sponse of a rectangular FG mickplate was pro-

posed. Nataraja et al[37] investigated the size

dependent linear free flexural vibration behaviour
of functionally graded nanoplates using the iso
geometric based finite element method. The field
variables were approximated by nonuniform ra-

tional B-splines. The nonlocal constitutve relation

xAO AAOAA 11 OEA
nonlocal elasticity theory.

In the present study, as a first endeavor, the free
vibration of functionally graded nanoplates is inve-
tigated based on the exponential shear deformation
theory and using the nonlocal elasticity theory. The
Navier solution is used to study the free vibration of
the functionally graded nanoplates. It is assumed
that the material properties are varying through the
thickness according to the power law distribution.
The results of the present work may be used as
bench marks for future studies.

2. Theoretical formulations

Consider a rectangular nanoplate of length,
width b, and total thickness h and composed of
functionally graded materials through the thickness
as shown in Figure 1. The properties of the nan
plate are assumed to vary through the thickness of
the nanoplate with a powerlaw distribution of the
volume fractions of the two materialsbetween the
two surfaces. In fact, the top surface £= h/2) of
the nanoplate is ceramierich whereas the bottom
surface (z= -/ 2) is metalrich.

91 01T ¢c80 11T ADOI 6O AT A
to vary continuously through the thickness as what
follows [38]

E(=(E -E)V(2 * )
r@=0¢ - IV +, )
where the subscripts m and c represent the me-
tallic and ceramic constituents, respectively, and
V, (2)is the volume fraction that may be given by

the following equation:
az 1%

Vi(9 = aﬂ’f— ¢ ®)

Where g is the power-law index and takes only

DT OAOEOA OAIl OA®is thedshnte@Odll T &

the metal/ceramic materials that are used here, so it
is assumed to be constant and is taken to be 0.3
throughout the analysid39]. The typical values for
metals and ceramics used in the FG nanoplate are
listed in Table 1.

%OET CAT & Oh/z

h/2 Material 1

‘ b
Figure 1. The geometry of a FGM plate

Table 1. The material properties of the used F@late

) Properties
Material EGPa) wu  r(kg/ ni)
Aluminum (Al) 70 0.3 2702
Alumina ( Al,0;) 380 0.3 3800
Zirconia (ZrQ,) 200 0.3 5700

2.1. The nonlocal elasticittheory

In nonlocal theory stress field at each body point
body is a function of the strain field. So stress plays
a major role in the theory which is defined as what
follows [40]:

4
QI ‘XI -X|) § (X) dv )
ere @is a pomt on the body that the stress
tensor on its efficacy,(d can be any point else in the
body, wis the volume of a region of the body that

I AOO infedrdl 8 EalH onAtO Ais theQdedd btrBsd tensor,

| € &s is the nonlocal kernel functionrelated
to the internal characteristic length. With respect to
properties of nonlocal kernel function| s &s
that are discussed by Eringeftl], taking in a
Greens function of a linear differential operator fl,
can be defined as following,
il @ 71 s, (5)
Substituting Eq. (5) into Eqg. (4), the primary e-
lation (1) form of the following differential equation
is obtained as
flo , , (6)
For the nonlocal linear elastic solids, the ecar
'[IO s of jon have the following form[42]:
6 JTE)H ao, ©)
Where " is the mass density,"Qbody forces and
0 is the displacement vector. Substituting Eq. (7)
into Eq. (6) yields to what follows:
., Qa6 m, (8)
The nonlocal model with the linear differential
operator fl for the two-dimensional case is defined
by the following equation [9]:
fllp *n, 9)
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where 1 is the Laplace operator which in carte-
sian  coordinates is T T T jTw
and‘ QA is the internal characteristic length
and Q is the material constant which is specified by
the experiment. The value of the smalscale paran-
eter is dependent on the boundary condition, the
chirality, the mode shapes, the number of walls, and
the nature of motions[43]. There is no accurate way
to calculate this factor, but it is suggested that the
coefficient be determined by conducting a compar
son of dispersion curves ifom nonlocal continuum
mechanics and lattice dynamics of nanmaterial
crystal structure [43].

2.2.Theassumptions made in the proposed theory

1. The displacement component® and U are the
in-plane displacements of the middle surface i
and wdirections respectively, andy is the deflection
of the middle surface inddirection. The magnitude
of the deflection U is not of the same order as the
thickness "Qof the plate and is small with respect to
the plate thickness.

2. The inplane displacements,6 and U, include
three parts:

a) A displacement component equivalent to the gk
placement in theclassical plate theory.

b) A displacement component owing to the shear
deformation which is assumed to be harmonic in
nature with respect to the thickness coordinate.

c) The shear strains ind direction are zero in the top
and bottom surfaces of the plats.

3. The deflectiont in z direction is assumed to
be a function ofwand wcoordinates.

4. The plate is subjected to the transverse load
only.

The displacement field of the exponential shear
deformation theory is given as below44]:

6 ahiufard o, ahufa
& hh "0 60 GICFD | (10a)
O ahohad U, ahuhgo
& Bk Q4T D, (10b)
o ool 0 ao, (10c)

Where™Qa & Q and 0,0 and 0 are dis-
placements in thea wand ¢ directions respectively,
and 0,and U, are the mid-plane displacements and

%0 € [Qare the rotation functions. With the linear
assumption of vonKarman strain, the displacement
strain field will be as what follows:

& 2%(‘44 )i jxy.z (11)

Considering Hooke's Lawfor stress field, the
normal stress, is assumed to be negligible in
comparison with the plane stresses and, .Thus

stress-strain relationship will be as what follows:

] — - - (12a)
. — - - (12b)
» ¢oa - , (12c)
N ¢oa- (12d)
» ¢oa - (12e)

Substuting Egs. (11) into Eqg. (12)the displace-
ment stress field will be as what follows:
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Using Eqg. (6) the stresglisplacement constiu- RE:! ng a
tive relation of a nonlocal FG plate can be written as: n éﬁjr} o B FE+ S &
2
Tésl“xL ? ?LlZ_WJruﬂNQ 25, der2 s 02, kixdyd
P fE e g dl v .
fgm 1 e ﬁw: - Sfh , Br@(¢F # W) dxdydg dt 0
e PE vy B :
! ! 1 Wy Y (16)
i Pl _E@ T s where the dottop index contract indicates the
@- mB) gy 1 =—%2 2w : s : . .
i i 1-n (i -0 differentiation with respect to the time variable.
i i T XM Exertion of variation operator on Eq. 16 should be
Toh o as follows:
152 q 7 rog 1
T i 1 g e Q%6 FQ o (17a)
| N |, I’O| ¢ o
%y Y 1 e iR 0 (17)
aé aw 5 Qoo
@ f (Do +ut g et L (17¢)
o L S T 7o Cief b e ol
g f(z)éuy ry y 0 : Using Egs. (17a)17c) and substituting Eq. (10)
a2 aeg Ly " O and (11) into Eq. (14), the following equations are
& . . i obtained as follows,
E@ Rl v, , W !
g2 8y ow g rgghnj [ﬁxxaﬁ(aio)- T
a&1- udf(2) 1
22 : +f(z)&(d19 5 Eﬁ( W -
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g? 2 dz )l pyz Ly )16
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~ p_X M ee
I P
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[Sad M ¢ . ~
A = au df (2
fa-waw, | W £ *S.Lge () — 2 d@
+] > w—w -W_pg[ ;p c ;
1 ¢ +s ap af df (2) d J xdydz
,:\(l- U)% g yzéﬁ( 0) dz g Y
P2 P 10 0 &y fu,
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| — D
2 Wy
f ¥ PR @;
(14) (;UX 2“
where 'O & is the Young's modulus, is the Pois- \2F L2V, iy
son's ratio, and'Oa Odajgp ' s the shear 2f(Z)—2dL5 -2 p;’ d +22—{1 o +
modulus of the plate.

4EA (AIEIOTT80 DPOET AEDI A Zgac’BlWAé DéféZ?Lb‘ﬂoAdyQ*(z) ﬁ(QQOAAo
the equation of motion. The( Al E1 O1 1 8 O E)OEI
case of local form is obtained as what follow{s14]:

ap’w oy a’w
Y1 oG 1 0 2 g S g B 1
1Y @0 e - (15) Txp D T 2
where is the variation operator, "Yis the strain A B i
energy,w is the work done by external forces, andY - zf(z) H “(a’vg « f( 2) —E% d

is the kinetic energy.
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Using integration by parts and lemma of calculus

of variations can be derived the equations of motion
and boundary conditions from Eq. (16).

The relations between stress resultants in local
and nonlocal theories can be find in Eq. (18)y cd-
culating the coefficients of au,, av,,] 41 %b [, in
Eq. (16), the nonlocal equations of motion may be
expressed as Egs. (19g(19e).
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N and Rare the force andM is the moment thatis
acting on the body. The following sets of boundary
conditions at the edges of the plate are obtained as a
i £#7 OEA APPI EAAOQEI I

OAOOI O

Either 'Y TI0r %dprescribed at
® T

Either 'Y Ttor[ prescibed at
® T

(19d)

(19¢)

(20a)

(20b)

(20c)

(20d)

(20e)
(20f)

(209)

(21a)
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Substituting Egs. (22a)(22d) into Eqgs. (19ax
(19e), yields to the following equations:
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It can be seen that Eqgs. (24a)24e) are coupled
functions of displacements. Thepermissible dis-
placement and rotation functions that can be sat-
fied with the simply supported boundary conditions
at all edges of the plate are trigonometric series.
Using Navier's solution, the explanation of the ds-
placement and rotations is as what fllows:

0, 6 ATr0cOET WOE]L o (25a)
(25b)
0, 0 OEToATIOMOE]L o
0 w OETwOEIOOEI o (25¢)
(25d)
%o AT100O0ET OOEL o
(25e)
r OFET wAifOWOE]l o

Wherer ¢ 496 andf & “j @are the num-
bers of half wave correlation to x and y directions.
6 ,0 andw are the amplitudes of translation
and and are the amplitudes of rotations.
_ isthe frequency of the linear free vibration.®is
the width of the edge andwis the length of the edge.
Substituting Eqgs. (25a)(25e) into Egs. (24a)
(24e)yields to what follows:

o _ 0 Y m, (26)

The requisite for answering equation (26) except
the obvious answer is that the determinant of coeif
cients matrix must be zera Using this principle can
be derived the characteristic equation.
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3. Numerical example form p =a #/ W/ D, D=ER /1201 #©?) are the
Since the results of nanoplate made of FGate flexural rigidity. The nanoplate is made of the fb

not available in the open literature,to validate the lowing material properties: E = 210Gpa, U = 0.3and
results, in this paper have used two separate ' '

parts;in the first part, have been validatedsotropic r =7800(kg/ n?). The calculated frequencies
rectangular nanoplate, and in the second part, it based on the nonlocal exponential shear defo
does for FGM one. mation theory are compared with those reported by
HosseiniHashemi et al[40] based on Mindlin Plate
3.1. Isotropic rectangulananoplate Theory (MPT). Also, the Frequency Ratio (FR) el

tion between the nonlocal and local dimensionless

Only homogeneous plate § =0) is used herein frequencies is expressed as whdbllows:

for the verification. Tables 24 list the first three M (27)
non-dimensional frequency and Frequency Ratios FR= J

(FR) for simply supported boundary condition with

various values of aspect rdb (/1=b/ a), specified where p™ is the nondimensianal nonlocal fie-
values of nondimensional nonlocal parameter guency parameter, and 4" is the nondimensional
(z= ma) and the thickness to lenghth ratio local frequency parameter.

h/a=0.1 on rectangular nanoplates. The natural
frequency parameters expressed in dimensionless

Table 2. The variationsof the non-dimensional frequency (6 = a ﬁ// I/ D ) and the frequency ratio (FR) for the nonlocal platefi=1,n=1)

z=0 z=0.2 z=04 z=0.6 z=0.8
Method NL

b FR FR FR FR FR
h=06 Present 35.015 1.0000 0.6335 0.3789 0.2633 0.2005
Exact[40] 35.0643 1.0000 0.6335 0.3789 0.2633 0.2005
h=0.8 Present 24.2084 1.0000 0.7051 0.4451 0.1346 0.2412
Exact[40] 24.2330 1.0000 0.7050 0.4451 0.3146 0.2412
h=1 Present 19.0684 1.0000 0.7475 0.4904 0.3512 0.2708
Exact[40] 19.0840 1.0000 0.7475 0.4904 0.3512 0.2708

Table 3. The variations of the nordimensional frequency (b = a ﬁ// I/ D) and the frequency ratio (FR) for the nonlocal platefi=2,n=1)

z=0 z=0.2 z=04 z=0.6 z=0.8
Method NL

b FR FR FR FR FR
h=06 Present 60.1556 1.0000 0.5216 0.2923 0.1997 0.1511
Exact[40] 60.2869 1.0000 0.5216 0.2923 0.1997 0.1511
h=08 Present 50.2147 1.0000 0.5594 0.3197 0.2194 0.1663
Exact[40] 50.3100 1.0000 0.5594 0.3197 0.2194 0.1664
h=1 Present 45.5048 1.0000 0.5799 0.3353 0.2308 0.1752
Exact[40] 45.5845 1.0000 0.5799 0.3353 0.2308 0.1752

Table 4. The variations of the nordimensional frequency (b = a ﬁ// I/ D) and the frequency ratio (FR) for the nonlocal platefi=2,n=2)

z=0 7=0.2 z=0.4 z=0.6 z=0.8
Method NL

b FR FR FR FR FR
h=06 Present 121.356 1.0000 0.3789 0.2005 0.1352 0.1018
Exact[40] 121.7700 1.0000 0.3789 0.2006 0.1352 0.1018
h=08 Present 86.9898 1.0000 0.4451 0.2412 0.1635 0.1233
' Exact[40] 87.2357 1.0000 0.4451 0.2412 0.1635 0.1233
h=1 Present 69.8517 1.0000 0.4904 0.2708 0.1843 0.1393

Exact[40] 70.0219 1.0000 0.4904 0.2708 0.1844 0.1393
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According to the Egs. (1) and (2),when the pe-
er law index Japproaches zero or infinity,the plate
is isotropic composed of fully ceramic or metal, &-
spectively.Three fundamental frequency parameters
b of SSSAL/ AL, o, square plate (7 =1) are pre-
sented in Table 5 ford =0.1land 0.2.Theresults are
compared with those obtained by Shufrin and E
senbergef45] based on the HSDT. It is found that
when gradient index approaches z® or infinity the
frequency parameters of FG plate converge to =l
vant isotropic one. The excellent agreement among
the reults confirms the high accuracy of the current
analytical approach.

3.2. FGM square plate

Table 6 shows a comparison of the frequencpa-
rameters b = um/ J1 E for AL/ AL o, square
moderately thick plates with those obtained by He-

seini-Hashemi et al.[46], Zhao et al.[47] and
Masunaga[32] when g =0, 0.5, 1, 4 and 10. In add

tion, the corresponding mode shapes m and n,ed
noting the number of halfwaves in the x and y @
rections, respectively, are present for any of the &

quency parameter55 . Also, in Table 7,a comparison

of the frequency parameters 5 = mr/ ;7 £, fora
simply supported AL/ zrQ, square plates with

those of two-dimensional higher-order theory [32],
three-dimensional theory by employing the power
series method [48], finite element HSDT method
[49], finite element FSDT methopt9] and an analy-
ical FSDT solution46] is shown. From Tables 6 and
7, it is evident that there is a very good agreement
among the results confirming the high accuracy of
the current analytical approach.

Table 5. The comparison of the fundamental frequency
parameters (b= #l\[ /1 E / h)for AL/ ALo,square

plates (7 =1)
Material Method g h/a
0.1 0.2

10° 5.7681 5.2826
10°* 5.7701 5.2843
Fuly Present -8 5.7703 5.2845

ceramic 10 . .
10°® 5.7703 5.2845
HSDT45] 0 57694 5.2813
102 2.8235 2.8235
Full Present 10° 2.7051 2.7051
metaI)I/ic 104 2.9389 2.6913

10° 2.9372  2.6900
HSDTA45] a 2.9376  2.6891

As it is seen, the present solution reports a good
agreement with those obtained by the HSDT32] for
the thicker FG square plates &=0.1,0.2,1A/ 10
particularly at the higher modes of vibration. The
difference between the present natural frequencies
from those obtained by the 3D method[48] may be
due to the estimation of the material properties at a
point where expressed by the local volume fractions
and the material properties of the phases using two
methods: Mori-Tanaka [50, 51Jand the self
consistent scheme[52], whereas, in the present
analysis, Material properties of the FGM layer are
assumed to vary in the thickness direction accak
ing to a power law distribution. The difference le-
tween the present solutiors from those obtained by
the analytical FSDT solutiong46] is caused by va-
ishing of the inplane displacement components of
FG plate in Ref46]. In fact, as the present pras
dure provided, the inplane displacement comp-
nents u and v should be taken into account and are
coupled with the transverse displacement comp-
nents w, 7, YV and m and n are wave numbers in

directions x andy, respectively.

4. Results and discussion

The vibration modes of FG plate may be divided
into two main categories: the outof-plane (trans-
verese) modes and the implane modes. For the in
plane modes, themagnitude of the transverse ds-
placement is very smaller than the magnitude of the
in-plane displacements, u and v. There is a mainfdi
ference between inplane modes of isotropic plates
and FG ones. When an isotropic plate has-plane
mode, there is no tansverse displacement and the
plate can only move along the ifplane directions
but due to the existing coupling between implane
and out-of-plane vibration in FG plate, inplane
mode includes two kinds of motion whereas in
plane vibration is dominant. InTabel 8, based on the
present navier solutions and finite element method,
the numerical results have been performed for
Al/ AlLO,square plates (7 =1) when p=1. The
lenghth of square plates is 1 m. Three different
thicknesses 0.05 m (corresponding to thin plates),
0.1 m and 0.2 m (corresponding to moderately thick
plate) and 0.3 m (corresponding to thick plates)
have been used. All of the calculations are obtained
for the first four natural frequencies.

The percentage diference given in Table 8 is -
fined as what follows:

. |FEM - Naviet
YDIft =

3100



K. Khorshidi et all Mechanics of Advanced Composite Structurgdg2015) 79-93 89
Table 6. The comparison of the natural frequency parameter f = I}m/ JE. ) for AL/ AL,o,square plates (7 =1)
G
h/a —(mn)  Method 0 0.5 1 4 10
(1,2) Present 0.0148 0.0125 0.0113 0.0098 0.0094
0.05 FSDT46] 0.0148 0.0128 0.0115 0.0101 0.0096
FSDT47] 0.0146 0.0124 0.0112 0.0097 0.0093
(1,2) Present 0.0577 0.0490 0.0442 0.0381 0.0364
01 HSDT32] 0.0577 0.0492 0.0443 0.0381 0.0364
' FSDT46] 0.0577 0.0492 0.0445 0.0383 0.0363
FSDTA47] 0.0568 0.0482 0.0435 0.0376 0.3592
1,2) Present 0.1377 0.1174 0.1059 0.0902 0.0856
HSDT32] 0.1381 0.1180 0.1063 0.0904 0.0859
FSDT47] 0.1354 0.1154 0.1042 - 0.085
(2,2) Present 0.2114 0.1808 0.1632 0.1377 0.1300
HSDT32] 0.2121 0.1819 0.1640 0.1383 0.1306
FSDT47] 0.2063 0.1764 0.1594 - 0.1289
0.2 (1,2) Present 0.2114 0.1808 0.1632 0.1377 0.1300
HSDT32] 0.2121 0.1819 0.1640 0.1383 0.1306
FSDT46] 0.2112 0.1806 0.1650 0.1371 0.1304
FSDTA47] 0.2055 0.1757 0.1587 0.1356 0.1284
1,2) Present 0.4629 0.3993 0.3611 0.2976 0.2772
HSDT32] 0.4658 0.4040 0.3644 0.3000 0.2790
(2,2) Present 0.6691 0.5807 0.5254 0.4280 0.3947
HSDT32] 0.6753 0.5891 0.5444 0.4362 0.3981
Table 7. The comparison of the fundamental frequency parameter b = I}m/ A1 E, ) for AL/ ZrQ, square plates (7 =1)
g=1 d=0.2
Method _ 1 _ B B _ _ _ _
= o d=0.1 d=0.05 d=01 ad=0.2 g=2 g=3 g=5
Present 0.4629 0.0577 0.0158 0.0619 0.2278 0.2288 0.2301 0.2327
HSDT32] 0.4658 0.0577 0.0158 0.0619 0.2285 0.2264 0.2270 0.2281
3-D[48] 0.4658 0.0577 0.0153 0.0596 0.2192 0.2197 0.2211 0.2225
HSDT49] 0.4658 0.0578 0.0157 0.0613 0.2257 0.2237 0.2243 0.2253
FSDT49] 0.4619 0.0577 0.0162 0.0633 0.2323 0.2325 0.2334 0.2334
FSDT46] 0.4618 0.0576 0.0158 0.0611 0.2270 0.2249 0.2254 0.2265

An excellent agreement is observed between the
present Navier solution and the FEM. The freque
cies rise with an increase in the thickness of the
plate due to an increase in the stiffiness of the plate.
This phenomenon origindes from increasing the
rigidity of the plate. Although it is observed that the
present solution can be predicts the iplane modes
of the plate. From the results are presented in this
study one can be findthat the natural frequencies
are increased by increasing the thickness of the
plate. This feature is due to the fact that the strain
energy of the plate has significant sensibility with
respect to the thickness. It is to be reminded that the

out-of-plane modes depend on the bending energy,
directly. Then, the number of the ouof-plane
modes is increasedThe influence of the aspect ratio
h=alb on the frequency parametersb of a rec-

tangular Al/zrO,plate (¢=0.2, g=1) is shown in

Table 9. From Table 9, it can be inferred that with a
decrease in the aspect ratio, the frequency paraen
ter increases, whereas the plate considering here is
assumed to be simply supported in aledges, with
decrease in length in a constant width, the degree of
freedom (DOF) of the plate decreases, and it causes
to increase the stiffness and the frequency paraes
ter. In Table 10, the effects of different parameters



20 K. Khorshidi et al. / Mechanics of Advanced Composite Structures Vol 2 (Z®tS3

on the non-dimensional frequenciesof the rectangu-
lar FG nanoplate are showirrom this Table, it is
found that by increasing the nonlocal parameter, the
rate of variation of nondimensional frequencies
decreases, because by increasing the nonlocabp
rameter, the strain energy decreases, ahit causes a
decrease in the plates rigidityIn Fig. 3, the effects of
the aspect ratio and the nonlocal parameter on the
nondimensional frequancy of the rectangular nao-
plates are shown.It is shown that with an increase
in the aspect ratio, the nondimasional frequancy
increases.

Table 8. The first four natural frequency (Hz) for Al/ Al,O,
square plates (# =1, g=1)

Mode
2 3 4

Method

h
a
0.05 Present  359.92 889.33 1406.9 1745.7
FEM53] 357.37 883.58 1398.6 1736.2
Diff(%) 0.7130 0.6500 0.5930 0.5470
0.1 Present 703.44 1686.0 2597.5 2597.5
FEM53] 699.30 1679.7 2578.7 2592.5
Diff(%) 0.5920 0.3750 0.7290 0.1930
0.2 Present  1298.8 2575.5 2873.5 3635.2
FEM53] 1296.3 2574.6 2883.0 3633.3
Diff(%) 0.1930 0.0350 0.3230 0.0520
0.3 Present  1755.2 2569.7 3618.8 3607.4
FEM53] 1759.8 2567.7 3613.3 3613.3
Diff(%) 0.2610 0.0780 0.1520 0.1630

Table 9. The frequency parameter (b = l&z,/ M E. 1 h) for
AL/ ZrQ, square plates (@ = 0.2, g=1)

a
E 2 15 1 2/3 0.5
Mode 3.1198 3.3720 4.9325 6.9551 9.9853

Table 10. The effect of the nordimensional nonlocal parameter
Z and the power law index g on the nordimensional frequencies

of the rectangular FG nanoplate

a h Power low index

z b a 0 5 10
05 0.2 0.2114 0.1357 0.0856
0.0 ' 0.1 0.0365 0.0239 0.0231
' 10 0.2 0.2310 0.1356 0.1300
) 0.1 0.0577 0.0377 0.0364
05 0.2 0.1299 0.1239 0.0808
01 0.1 0.0345 0.0226 0.0218
10 0.2 0.1932 0.1239 0.1188
) 0.1 0.0527 0.0344 0.0332
05 0.2 0.1127 0.0728 0.0700
0.2 ' 0.1 0.0299 0.0196 0.0189
' 10 0.2 0.1580 0.1014 0.0972
) 0.1 0.0431 0.0282 0.0272
05 0.2 0.0948 0.0613 0.0589
03 ' 0.1 0.0251 0.0165 0.0159
' 10 0.2 0.1269 0.0814 0.0780
) 0.1 0.0346 0.0226 0.0218
05 0.2 0.0798 0.0516 0.0496
0.4 ’ 0.1 0.0212 0.0139 0.0134
' 10 0.2 0.1037 0.0665 0.0638

0.1 0.0283 0.0185 0.0178

It is illustrated that for the lower aspect ratios,
the influence of the nonlocalparameters decreases.
Also in Fig. 4, the effects of the aspect ratio and the
nonlocal parameter on the frequancy ratio of the
rectangular nanoplates are shown for different
modes of vibration. From this figure, it seems that
the frequancy ratios for thelower modes are more
than those for the upper modes.

From Fig. 5, it is found that for lowerpower low
index, the rate of The nondimensional frequencies
are higherand The effect of nordimensional non-
local parameter on The nondimensional frequen-
cies are significant, and diminishes with increase in
that.Because by increase in the power low index,
PpOoi PAOOU T £ i AOA ApDOI AAEAOD
ness decreases, thus itcauses to decrease Ron
dimentionalfrequencuy.

From this figure, it is shown that ininvestigating
the FG nanoplates, the effects of nonlocal parameter
cannot be ignored so the theories for macro plates
arenot suitable for nanoplates.
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Figure 3. The effects of the aspect ratio and the nonlocal
parameter on thenondimensional frequancy
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5. Conclusion
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