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The aim of this article is to analyze nonlinear electro-magneto vibration of a double-
piezoelectric composite microplate-system (DPCMPS) pursuant to the nonlocal 
piezoelasticity theory. The two microplates are assumed to be connected by an enclosing 
elastic medium, which is simulated by the Pasternak foundation. Both of piezoelectric 
composite microplates are made of poly-vinylidene fluoride (PVDF) reinforced by 
agglomerated carbon nanotubes (CNTs). The Mori-Tanaka model is employed to 
compute the mechanical properties of composite. Applying nonlinear strain-
displacement relations and contemplating charge equation for coupling between 
electrical and mechanical fields, the motion equations are derived in consonance to the 
energy method and Hamilton's principle. These equations can't be solved analytically as 
a result of their nonlinear terms. Hence, the differential quadrature method (DQM) is 
employed to solve the governing differential equations for the case when all four ends 
are clamped supported and free electrical boundary conditions. The frequency ratio of 
DPCMPS is inspected for three typical vibrational states, namely, out-of-phase, in-phase 
and the case when one microplate is fixed in the DPCMPS. A detailed parametric study is 
conducted to scrutinize the influences of the small scale coefficient, stiffness of the 
internal elastic medium, the volume fraction of the CNTs, agglomeration and magnetic 
field. The results reveal that with increasing volume fraction of the CNTs, the frequency 
of the structure increases. This study might be beneficial for the design and smart control 
of nano/micro devices such as MEMS and NEMS. 

1. Introduction

Nanocomposites hold the promise of advances 
that exceed those achieved in recent decades in 
composite materials. The nanostructure generated 
by a nanophase in the polymer matrix represents 
a radical alternative to the structure of 
conventional polymer composites. These complex 
hybrid materials integrate the predominant 
surfaces of nanoparticles and the polymeric 
structure into a novel nanostructure, which 
produces critical fabrication and interface 
implementations leading to extraordinary 
properties [1]. PVDF is an ideal piezoelectric 
matrix as a result of characteristics including 
flexibility in thermoplastic conversion techniques, 
excellent dimensional stability, abrasion and 
corrosion resistance, high strength, and capability 
of maintaining its mechanical properties at 
elevated temperature. Consequently, it has found 
multiple applications in nanocomposites in a wide 

range of industries including oil and gas, 
petrochemical, wire and cable, electronics, 
automotive, and construction. Boron nitride 
nanotubes (BNNTs) applied as the matrix 
reinforcers, apart from having high mechanical, 
electrical, and chemical properties, present more 
resistant to oxidation than other conventional 
nano reinforces such as carbon nanotubes (CNTs). 
Hence, they are applied for high-temperature 
applications [2-6]. Both PVDF and BNNT are smart 
materials since they have piezoelectric properties.  

Piezoelectricity is a classical discipline traced 
to the original work of Jacques and Pierre Curie 
around 1880. This phenomenon describes the 
relations between mechanical strains on a solid 
and its resulting electrical behavior resulting from 
changes in the electric polarization. One can 
generate an electrical output from a solid 
resulting from mechanical strains or can create a 
mechanical distortion resulting from the 
application of an electrical perturbation [7]. 
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Piezoelectric materials have been applied to 
manufacture various sensors, conductors, 
actuators, etc. in fact, they have become one of the 
smart materials nowadays [8].  

Regarding research development into the 
application of smart nanocomposite (which PVDF 
and BNNT are as matrix and reinforcer, 
respectively), Barzoki et al. [8] explored electro-
thermo-mechanical torsional buckling of a 
piezoelectric polymeric cylindrical shell 
reinforced by DWBNNTs with an elastic core. They 
concluded that the higher the in-fill core, the 
higher is dimensionless critical torsional buckling 
load. In another research, Barzoki et al. [9] 
investigated nonlinear buckling response of 
embedded piezoelectric cylindrical shell 
reinforced with BNNT under electro-thermo-
mechanical loadings applying harmonic 
differential quadrature method (HDQM). They 
discovered that the critical buckling load increases 
when the piezoelectric effect is considered. 
Ghorbanpour et al. [10] demonstrated nonlinear 
vibration and stability of a smart composite micro 
tube made of PVDF reinforced by BNNTs 
embedded in an elastic medium under electro- 
thermal loadings is inspected. They concluded 
that the stability of the system is strongly 
dependent on the imposed electric potential and 
the volume percent of BNNTs reinforcement. 

In recent years, small scale effect in micro and 
nano applications of the beam, plate, and shell 
type structures has been utilized on the basis of 
nonlocal elasticity theory which was initiated in 
the papers of Eringen [11-13]. He regarded the 
stress state at a given point as a function of the 
strain states of all points in the body, while the 
local continuum mechanics assumes that the 
stress state at a given point depends uniquely on 
the strain state at the same point. Shen et al. [14] 
explored the nonlocal plate model for nonlinear 
vibration of single-layer graphene sheets (SLGS) 
in thermal environments. Their results revealed 
that with properly selected small scale parameters 
and material properties, the nonlocal plate model 
could provide a remarkably accurate prediction of 
the graphene sheet behavior under nonlinear 
vibration in the thermal environment. Pradhan 
and Kumar [15] reported vibration analysis of 
orthotropic graphene sheets applying nonlocal 
elasticity theory and DQM. Their results indicated 
that the nonlocal effect increases as size of 
graphene sheet are decreased. Amir [16] 
examined Orthotropic patterns of visco-Pasternak 
foundation in nonlocal vibration of orthotropic 
graphene sheet under thermo-magnetic fields 
based on new first-order shear deformation 
theory. The results indicate that the stability of 
single-layer graphene sheet is strongly dependent 
on applied magnetic field. Ghorbanpour et al. [17] 
investigated Pasternak foundation effect on the 

axial and torsional wave propagation in the 
embedded double-walled carbon nanotubes 
(DWCNTs) applying nonlocal elasticity cylindrical 
shell theory. They concluded that the frequencies 
are dependent on small scale coefficient and shear 
modulus of the elastic medium. 

The mentioned studies above on the 
nanostructures are on the basis of the nonlocal 
elasticity theory, which is not proper for direct 
application in the piezoelectric materials. 
Recently, Eringen’s nonlocal elasticity theory was 
extended by Zhou et al. [18-20] for the 
piezoelectric materials. In the nonlocal 
piezoelectric materials, the stress state and the 
electric displacement at a given point are, 
respectively, as a function of the strain state and 
electric potential of all points in the body. Ke et al. 
[21] employed a nonlocal piezoelasticity model to 
nonlinear vibration analyze of the piezoelectric 
nanobeams. They applied DQM to study the effects 
of nonlocal parameter, temperature change and 
the external electric voltage on the nonlinear 
frequency of the piezoelectric nanobeams. Sobhy 
and Zenkour [22] discussed the magnetic field 
effect on thermomechanical buckling and 
vibration of viscoelastic sandwich nanobeams 
with CNT reinforced face sheets on a viscoelastic 
substrate. Moreover, Differential quadrature 
method for vibration analysis of electro-
rheological sandwich plate with CNT reinforced 
nanocomposite face sheets subjected to electric 
field examined by Ghorbanpour Arani et al. [23]. 
Furthermore, in small-scales, nonlinear dynamic 
buckling analysis of embedded micro cylindrical 
shells reinforced with agglomerated CNTs 
applying strain gradient theory was researched by 
Tohidi et al. [24]. 

With respect to developmental works on 
mechanical behavior analysis of nano and micro 
plates, it should be noted that none of the 
researches mentioned above have considered a 
coupled double-plate system. Herein, Murmu and 
Adhikari [25] analyzed vibration of the nonlocal 
double nanoplate- system (NDNPS). Their study 
highlighted that the small-scale effects 
considerably influence the transverse vibration of 
NDNPS. Also, they elucidated that the boost of the 
stiffness of coupling springs in the NDNPS reduces 
the small scale effects during the asynchronous 
modes of vibration. Moreover, buckling behavior 
of the NDNPS was investigated by Murmu et al. 
[26], who indicated that the nonlocal effects in the 
coupled system are higher within creasing values 
of the nonlocal parameter for the case of 
synchronous buckling modes than in the 
asynchronous buckling modes. Furthermore, their 
analytical results indicated that the increase of the 
stiffness of the coupling springs in the double-GS-
system reduces the nonlocal effects during the 
asynchronous modes of buckling. Exact solution 
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for nonlocal vibration of double-orthotropic 
nanoplates embedded in elastic medium was 
reported by Pouresmaeeli et al. [27], who 
manifested that the frequency of double 
orthotropic nanoplates is always smaller than that 
of double isotropic nanoplates. The three papers 
[25-27] have contemplated the Winkler model for 
simulation of elastic medium between two 
nanoplates. In this simplified model, a 
proportional interaction between pressure and 
deflection of SLGS is assumed, which is 
demonstrated in the form of discrete and 
independent vertical springs. Whereas, Pasternak 
suggested taking into account not only the normal 
stresses but also the transverse shear deformation 
and continuity among the spring elements, and its 
subsequent applications for developing the model 
for buckling analysis, which proved to be more 
accurate than the Winkler model. Recently, 
analysis of the coupled system of double layered 
graphene sheets (CS-DLGSs) embedded in a visco-
Pasternak foundation is manifested by 
Ghorbanpour Arani et al. [28] who indicated that 
the frequency ratio of the CS-DLGSs is more than 
the SLGS. To the best of our knowledge, none of 
the works in the literature have contemplated the 
nonlinear terms in the governing equations for a 
coupled system. This study aims to deliberated 
nonlinear terms for vibration analysis of a 
DPCMPS in which two microplates are connected 
by an enclosing Pasternak foundation. 

None of the aforementioned studies [25-28] 
have considered smart coupled structures, while 
these structures may be applied in mechanical 
behavior control of coupled micro and nano 
structures. Recently, buckling analysis and smart 
control of SLGS using elastically coupled PVDF 
nanoplate using the nonlocal piezoelasticity were 
examined by Ghorbanpour et al. [29], who 
indicated that the imposed external voltage is an 
effective controlling parameter for buckling of the 
SLGS. Moreover, their results revealed that the 
effect of external voltage becomes more 
prominent at higher nonlocal parameter and 
shear modulus. But paper [29] is linear analysis, 
and just one of two plates is smart.   

However, to date, no study was reported in the 
literature on the vibration of an elastically coupled 
DPCMPS. Motivated by these considerations, in 
order to ameliorate the optimum design of smart 
microstructure, the authors aim to investigate the 
electro-magneto nonlinear nonlocal vibration of 
an elastically coupled DPCMPS. Herein, the two 
PVDF microplates reinforced by agglomerated 
CNTs are coupled by an enclosing Pasternak 
foundation. deliberated the nonlinear strain-
displacement relations and charge equation, the 
nonlinear governing equations are derived 
applying energy method and Hamilton's principle. 
Hence, the DQM is presented to solve the 

nonlinear governing equations and estimate the 
frequency. In the present study, the influences of 
nonlocal parameters, temperature gradient, 
elastic medium constants, agglomeration and 
volume fraction of CNTs and magnetic field in 
polymer have been taken into account. 

2. Formulation 

2.1. Nonlocal Piezoelasticity 

Pursuant to the theory of nonlocal 
piezoelasticity, the stress tensor and the electric 
displacement at a reference point depend not only 
on the strain components and electric field 
components in the same position but on all other 
points of the body as well. The nonlocal 
constitutive behavior for the piezoelectric 
material can be computed as follows [21]: 
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where 𝜎𝑖𝑗
𝑛𝑙 and 𝜎𝑖𝑗

𝑙  are, respectively, the nonlocal 

stress tensor and local stress tensor, 𝐷𝑘
𝑛𝑙 and 𝐷𝑘

𝑙  are 
the components of the nonlocal and local electric 
displacement. 𝛼(|𝑥 − 𝑥 ,|, 𝜏) is the nonlocal 
modulus. |𝑥 − 𝑥 ,| is the Euclidean distance, and 𝜏 =
𝑒0𝑎/𝑙 is defined that l is the external characteristic 
length, e0 denotes a constant appropriate to each 
material, and a is an internal characteristic length 
of the material. Consequently, e0a is a constant 
parameter that is acquired with molecular 
dynamics, experimental results, experimental 
studies, and molecular structure mechanics.  In 
order to gain a constitutive equation of the nonlocal 
elasticity can be written as [30]: 
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where the parameter μ=(e0a)2 denotes the small 
scale effect on the response of structures in nano/ 
micro size and ∇2 is the Laplacian operator in the 
above equation. Similarly, Eq. (2) can be written as 
[20]: 
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2.2. Classical Plate Theory 

Based on the classical plate theory (CPT), which 
satisfies Kirchhoff assumption, the displacement 
field is expressed as [31]: 
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where (u, v, w) denote the total displacements of a 
point along with the (x, y, z) coordinates and (u0, v0, 
w0)   are the displacements of points on the mid-
plane. The von-Kármán nonlinear strains 
associated with the above displacement field can be 
expressed in the following form [32]: 
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On the basis of the CPT, shear strains εxz, εyz are 
contemplated negligible. Hence, the strain 
equations in terms of the mid-plane 
displacements are derived by substituting the Eq. 
(5) into the Eq. (6) as follows: 
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The strain components εxx, εyy, and γxy at an 
arbitrary point of the sheet are related to the 
middle surface strains and curvatures tensor as 
follows: 

,

1

1

1

0

0

0
























































xy

yy

xx

xy

yy

xx

xy

yy

xx

z



















 

(8) 

where (𝜀𝑥𝑥
0 , 𝜀𝑦𝑦

0 , 𝛾𝑥𝑦
0 ) are components of the 

membrane strains (middle surface strains) tensor 
and (𝜀𝑥𝑥

1 , 𝜀𝑦𝑦
1 , 𝛾𝑥𝑦

1 )  are components of the bending 

strain (curvature) tensor. 

2.3. Modeling of the Problem 

An elastically coupled DPCMPS having the 
length l, the width b, and the thickness h, assuming 
that ℎ ≪ 𝑙, 𝑏  [32], is illustrated in Fig. 1. 

The origin of the Cartesian coordinate system is 
contemplated at one corner of the middle surface of 
the microplate. The x, y, and z axes are taken in 
conformity with the length, width, and thickness of 
the microplates, respectively. The two microplates 
are created of PVDF and reinforced by CNTs in x-
direction so that both microplates are identical. 

 

 

Fig. 1. Schematic of double-smart composite microplate-
system. 

The DPCMPS is subjected to uniform 
temperature change and polarized in x-direction. 
The two microplates are coupled by an elastic 
medium, which is simulated by the Pasternak 
foundation. As is well known this foundation model 
is characterized by two parameters: the Winkler 
constant kw and shear constant kg. 

2.4. Constitutive Equations for Piezoelectric 
Materials 

In a piezoelectric material, the application of an 
electric field to it will cause a strain proportional to 
the mechanical field strength, and vice versa. 
Pursuant to a piezoelectric microplate under 
electro-thermal loads, constitutive equations can be 
represented as [33]: 
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where eij, ϵij (i, j=1…,6), αk (k=x, y), and ΔT are 
piezoelectric constants, dielectric constants, 
thermal expansion coefficients, and temperature 
gradient, respectively. Cij is a component of stiffness 
tensor. Electric field tensor E can be written in term 
of electric potential ϕ as [34]: 

.E  (11) 

2.5. Mori-Tanaka Approach 

In this section, the effective modulus of the 
composite shell reinforced by CNTs is developed. 
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Different methods are available to estimate the 
overall properties of a composite [1]. As a result of 
its simplicity and accuracy, even at high volume 
fractions of the inclusions, the Mori-Tanaka method 
[1] is applied in this section. To begin with, the 
CNTs are assumed to be aligned and straight with 
the dispersion of uniform in the polymer. The 
matrix is assumed to be elastic and isotropic, with 
Young’s modulus Em and the Poisson’s ratio νm. The 
constitutive relations for a layer of the composite 
with the principal axes parallel to the r, θ and z 
directions are [1]: 
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where σij, εij, γij, k, m, n, l, and p are the stress 
components, the strain components, and the 
stiffness coefficients, respectively. In consonance to  
the Mori-Tanaka method, the stiffness coefficients 
are shown by [1]: 
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where Cm and Cr are the volume fractions of the 
matrix and the CNTs respectively, and kr ، lr ، nr ، pr , 
mr are the Hills elastic modulus for the CNTs [1]. 
The experimental results reveal that most of the 
CNTs are bent and centralized in one area of the 
polymer. These regions with concentrated CNTs 
are assumed in this section to have spherical 
shapes and are deliberated as ‘‘inclusions’’ with 
different elastic properties from the surrounding 
material. The total volume Vr of CNTs can be 
divided into the following two parts [1]: 

inclusion m

r r rV V V   (14) 

where 𝑉𝑟
𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛  and 𝑉𝑟

𝑚  are the volumes of CNTs 
dispersed in the inclusions, concentrated regions, 
and in the matrix, respectively. Introduce two 

parameters ξ and ζ describe the agglomeration of 
CNTs: 

,inclusionV
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Despite that, the average volume fraction Cr of 
CNTs in the composite is: 

.r
r

V
C

V


 

(17) 

Assume that all the orientations of the CNTs are 
completely random. Hence, the effective bulk 
modulus (K) and effective shear modulus (G) may 
be written as: 
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where: 
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where χr, βr, δr, ηr may be calculated as: 
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where Km and Gm are the bulk and shear moduli of 
the matrix which can be written as: 
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Furthermore, β and α can be obtained from: 
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Finally, the elastic modulus (E) and Poisson’s 
ratio (υ) can be computed as: 
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2.6. Equations of Motion  

The governing differential equations of motion 
are derived applying Hamilton's principle, which is 
given as [35]: 

0)(
0


T

dtKVU 
 

(35) 

where δU is the virtual strain energy which is 
obtained by the following relation [36]: 

1

2
ij ij i i

V
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δK is the virtual kinetic energy and is defined as 
following [37]: 
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Also, δV is the virtual work operated by 
externally applied forces and is acquired by: 

 
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2
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in which qm can be written as: 

2
2

2
,m x

w
q H

x





  

(39) 

where η is the magnetic permeability; ∇ is the 
gradient operator; Hx is the magnetic field. 
Furthermore, qe can be written as: 

2 ,e w gq k w k w    (40) 

where kw and kg are spring and shear constants of 
an elastic medium, respectively. 

The motion equations can be derived by 
applying Eq. (35) as follows: 
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where: 
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(42) 

where (m0, m2) are mass moments of inertia, and ρ0 
denotes the density of the material. Meanwhile, the 
force resultants (Nxx, Nyy, Nxy) and the moment 
resultants (Mxx, Myy, Mxy) of the plate can be defined 
as: 
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Charge equation for coupling electrical and 
mechanical fields is: 

0,
yx

z

DD
D

x y
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 
 (44) 

In this study, transverse vibration is 
investigated (i.e., u0=v0=0).  
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3. DQ Method 

As can be observed, the coupled governing 
equations contain nonlinear terms and should be 
solved applying a numerical method such as DQM. 
In this method, the differential equations are 
changed into a first-order algebraic equation by 
employing appropriate weighting coefficients. 
Weighting coefficients are not correlated to any 
special problem and only depend on the grid 
spacing. For the implementation of the DQ 
approximation, consider a function f(ζ, η) which has 
the field on a rectangular domain (0 ≤ 𝜁 ≤ 1 and 
0 ≤ 𝜂 ≤ 1) with nζ × nη  grid points along x and y 
axes. According to DQ method, the rth derivative of a 
function f(x, y) can be defined as [35]: 
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where 𝐶𝑖𝑗
𝜁

 are weighting coefficients and defined as: 
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where M(ζi) is Lagrangian operators which can be 
presented as: 
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The weighting coefficients for the second, third, 
and fourth derivatives are defined as: 
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In a similar method, the weighting coefficients 
for y-direction can be acquired. The coordinates of 
grid points are chosen as:  
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In order to carry out the eigenvalue analysis, the 
domain and boundary points are separated, and in 
vector forms, they are denoted as {d} and {b}, 
respectively. Hence, the discretized form of the 
motion equations together with the boundary 
conditions can be expressed in matrix form as: 
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(50) 

in which [M], [KL], and [KNL] are the mass matrix, 
linear stiffness matrix, and nonlinear stiffness 
matrix. This nonlinear equation can now be solved 
by applying a direct iterative process as follows: 

 First, nonlinearity is ignored by taking [KNL]=0 
to solve the eigenvalue problem expressed in 
equation (50). This yields the linear eigenvalue (ΩL) 
and associated eigenvector. The eigenvector is 
consequently scaled up so that the maximum 
transverse displacement of the microplate is equal 
to the maximum eigenvector, i.e., the given 
vibration amplitude 𝑊𝑚𝑎𝑥

∗ .  
 Applying linear eigenvector [KNL] could be 

evaluated. The eigenvalue problem is then solved 
by substituting [KNL] into equation (50). This would 
give the nonlinear eigenvalue (ΩL) and the new 
eigenvector.  

 The new nonlinear eigenvector is scaled up 
again, and the above procedure is repeated 
iteratively until the frequency values from the two 
subsequent iterations ‘r’ and ‘r+1’ satisfy the 
prescribed convergence criteria [38] as: 

0

1


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

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r

rr

 

(51) 

where ε0 is a small value number, and in the 
present analysis, it is taken to be 0.1%. 

4. Numerical Results and Discussion 

Mechanical, thermal, and electrical properties of 
PVDF matrix and CNT reinforcement are chosen 
from Ref. [9]. The final converged solution applying 
the numerical procedure above is illustrated as the 
influences of the elastic medium, nonlocal 
parameter, volume percent of CNT, CNTs 
agglomeration and temperature change on the 
frequency of the structure. 

Since no reference to such a work is found to-
date in the literature, its validation is not possible. 
Despite that, the present work could be partially 
validated based on a simplified analysis suggested 
by Shen et al. [14] on thermal nonlinear vibration 
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of the SLGS for which the coupled plate and 
volume percent of CNTs in the polymer were 
ignored. For this purpose, a SLGS with Cr=0, T=300 
K, l=9.496 nm, b=4.877 nm, h=0.145 nm, ρ0=5624 
kg/m3, kw=kg=0 and e0a=0.67 nm is considered. 
Table 1 reveals the result of validation exercise by 
showing nonlinear-to-linear frequency for 
dissimilar dimensionless amplitude (w/h) and 
temperature. As it can be observed, the results 
acquired are in good agreement with those 
expressed in [14].  

Fig. 2 manifests the effects of the nonlocal 
parameter on the frequency versus the orientation 
angle of CNTs. 

As can be observed, the frequency of the system 
decreases with considering size effects. This is due 
to the fact that the contemplating of nonlocal 
parameter decreases the interaction force between 
microplate atoms, and that leads to a softer 
structure.  

The effect of volume percent of CNTs on the 
frequency versus the orientation angle of CNTs is 
shown in Fig. 3. It is clear that the frequency 
increases with increasing the volume percent of 
CNTs, and the influence of volume percent of CNTs 
on the frequency become more prominent at the 
middle angle. It is because with increasing the 
volume percent of CNTs, the stiffness of structure 
increases.   

Fig. 4 manifests agglomeration effects on the 
frequency versus orientation angle of CNTs. As can 
be seen, contemplating agglomeration effects leads 
to lower frequency since the stability of the system 
decreases.  

Fig. 5 illustrates the influence of the thermal 
gradient (ΔT) on the frequency versus the 
orientation angle of CNTs. It is evident that an 
increase in temperature change does not 
considerable effect on the frequency. 

Fig. 6 indicates the effect of temperature 
variations on the results. It is observed by 
increasing the temperature difference, the 
frequency enhances as a result to change in the 
mechanical properties of the structure. 

 

 
Fig. 2. The effects of the nonlocal parameter on the frequency 

versus the orientation angle of CNTs. 

 
Fig. 3. The effects of volume percent of CNTs on the frequency 

versus the orientation angle of CNTs. 

 
Fig. 4. The effects of agglomeration of CNTs on the frequency 

versus the orientation angle of CNTs. 
 

Table 1. Comparing dimensionless nonlinear frequency obtained in the present study and those of Shen et al. [14]. 

ΩNL/ΩL 
Ref. Temperature 

w/h=2 w/h=1.5 w/h=1 w/h=0.5 

1.2933 1.1742 1.0802 1.0208 Present work 

T=300 K 1.2900 1.1720 1.0798 1.0205 Shen et al. [14] 

0.256 0.188 0.037 0.029 Difference (%) 

1.4492 1.2738 1.1292 1.0339 Present work 

T=400 K 1.4485 1.2719 1.1289 1.0337 Shen et al. [14] 

0.048 0.149 0.027 0.019 Difference (%) 

1.8498 1.5372 1.2668 1.0731 Present work 
T=500 K 1.8477 1.5355 1.2663 1.0728 Shen et al. [14] 

0.114 0.111 0.039 0.028 Difference (%) 
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Fig. 5. The effects of thermal gradient on the frequency versus 
the orientation angle of CNTs. 

 

Fig. 6.  The effects of temperature variations on the frequency. 

The effect of elastic medium on the frequency 
of the structure is portrayed in Fig. 7. It can be 
found that considering elastic medium leads to 
higher frequency. Moreover, deliberating 
Pasternak medium predicts a higher frequency 
with respect to Winkler medium. It is due to the 
Pasternak medium, the normal and shear constant 
is taken into account. 

The effect of foundation constants is discussed 
in Fig. 8. It can be observed that adding the spring 
to the structure, leads the frequency to increase 
and adding the shear layer, has a similar effect on 
the results as well.  

 
Fig. 7. The effects of the elastic medium on the frequency 

versus the orientation angle of CNTs. 

 

Fig. 8.  The effects of foundation constants on the frequency. 

The effect of the magnetic field on the frequency 
of structure is illustrated in Fig. 9. It can be found 
that increasing the magnetic field, the frequency 
increases. It is due to the increasing magnetic field 
leads to higher stiffness. 

5. Conclusions 

The vibration response of piezoelectric 
nano/micro composites has applications in 
designing many NEMS/MEMS devices such as 
hydraulic sensors and actuators. In the present 
study, electro-magneto nonlinear vibration of a 
double-piezoelectric composite microplate made 
of PVDF reinforced by CNTs is inspected 
deliberating agglomeration effects. The internal 
elastic medium between two microplates is 
simulated as Pasternak foundation. Considering 
charge equation, the nonlinear motion equations 
are derived based on nonlocal piezoelasticity 
theory. The DQM is applied in order to acquire the 
nonlinear frequency ratio of the DPCMPS so that 
the effects of the small scale coefficient, stiffness 
of the internal elastic medium, the volume 
fraction, and orientation angle of the CNTs 
reinforcement, temperature change and 
agglomeration are discussed. 

 
Fig. 9. The effects of the magnetic field on the frequency versus 

the orientation angle of CNTs. 
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The results of this study are validated by Shen 
et al. [14]. The results reveal that along with 
increasing geometrical aspect ratio, the effect of 
coupling elastic medium between two piezoelectric 
composite microplates decreases. Furthermore, the 
effects of small scale parameters and volume 
percent lead to a higher frequency. It is noteworthy 
to mention that the frequency of structure 
considering the agglomeration of CNTs becomes 
lower. 
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