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This study investigates the free vibration of the Two-Dimensional Functionally Graded Annular 

Plates (2D-FGAP). The theoretical formulations are based on the three-dimensional elasticity theory 

with small strain assumption. The Two-Dimensional Generalized Differential Quadrature Method 

(2D-GDQM) as an efficient and accurate semi-analytical approach is used to discretize the equations 

of motion and to implement the various boundary conditions. The fast rate of convergence for this 

method is shown and the results are compared with the existing results in the literature. The mate-

rial properties are assumed to be continuously changing along thickness and radial directions simul-

taneously, which can be varied according to the power law and exponential distributions, respec-

tively. The effects of the geometrical parameters, the material graded indices in thickness and radial 

directions, and the mechanical boundary conditions on the frequency parameters of the two-

dimensional functionally graded annular plates are evaluated in detail. The results are verified to be 

against those given in the literature.  
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1. Introduction

In the last decade, the Functionally Graded Mate-
rials (FGMs) were employed in various engineering 
applica-tions and were first reported in 1984 by 
Japanese material scientists [1]. The FGMs are het-
erogeneous materials in which, the thermo-
mechanical properties vary con-tinuously and gen-
erally as a function of position throughout the mate-
rial. A typical FGM is created by smoothly changing 
the volume fraction of its materials constituents. 

This new type of materials can be applied to avoid 
in-terfacial stress concentration appeared in lami-
nated struc-tures, and therefore, a great promise is 
proposed by FGMs in applications where the work-
ing conditions are severe[2], including spacecraft 
heat shields, heat ex-changer tubes, plasma facings 

for fusion reactors, engine components and high-
power electrical contacts or even magnets. 

Compared with the analysis of functionally grad-
ed rectangular plates [3-11] and functionally graded 
spheres [12] as well as functionally graded cylindri-
cal shells [13-17], the investigations of functionally 
graded annular plates are limited in number. More-
over, the proposed semi-analytical 2D-GDQ has led 
to obtain more accurate results with appropriate 
rate of convergence. Prakash and Ganapathi [18] 
investigated the asym-metric free vibration behav-
iours and the thermo-elastic stability of the func-
tionally graded circular plates based on the first-
order shear deformation theory using the finite el-
ement method. The material properties were sup-
posed graded in the thickness direction according to 
the simple power law distribution. Eraslan and Akis 
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[19] obtained the closed form solution of the func-
tionally graded rotating solid shaft and rotating sol-
id disks under the generalized plane strain and 
plane stress assumptions, respectively. Efraim and 
Eisenberger [20] investigated the FGM plate with 
the material properties varying smoothly through 
the thickness of the plate. The equations of motion 
including the effect of shear deformations using the 
First-order Shear Deformation Theory (FSDT) were 
derived and solved exactly for various arrange-
ments of the boundary conditions. The solution was 
obtained.  

Nie and Zhong [21] studied the three – dimen-
sional vibration of the functionally graded circular 
plates using the semi-analytical approach. The dy-
namic analysis of the multi-directional functionally 
graded annular plates was obtained using the state 
space-based differential quadrature method based 
on the three-dimensional elastic theory and on the 
assumption that the material properties have an 
exponent-law variation along the thickness, radial 
direction or both directions. Dong [22] studied the 
three-dimensional free vibration of functionally 
graded annular plates with various boundary condi-
tions using the Chebyshev–Ritz method. Two types 
of variations were considered for the material prop-
erties in the thickness direction of the plates. Yas 
and Tahouneh [23] studied the free vibration of the 
functionally graded annular plates based on the 
elastic foundations, using the differential quadra-
ture method for various boundary conditions. The 
foundation was defined by Pasternak or a two-
parameter model. A semi-analytical method com-
posed of Differential Quadrature Method (DQM) and 
series solution are em-ployed to solve the equations 
of motions. The material properties were continu-
ously varied through the thickness of the plate. Hos-
seini-Hashemi et al. [24] presented a solution to 
investigate the free vibration analysis of the radially 
functionally graded circular and annular sector thin 
plates of variable thickness based on the Classical 
Plate Theory (CPT) using the Differential Quadra-
ture Method (DQM).  

Jodaei et al. [25] presented a three-dimensional 
anal-ysis of functionally graded annular plates using 
State-Space based Differential Quadrature Method 
(SSDQM) and a comparative behaviour modelling 
using Artificial Neural Network (ANN) for various 
boundary conditions. The material properties were 
supposed to have an exponent-law variation along 
the thickness. Malekzadeh et al. [26] studied the free 
vibration of Functionally Graded (FG) thick annular 
plates subjected to thermal environment based on 
the 3D elasticity theory. The material properties 
were assumed to be temperature dependent and 
graded in the thickness direction. The Differential 
Quadrature Method (DQM) as an efficient and accu-

rate numerical tool was used to solve both the 
thermo-elastic equilibrium and the free vibration 
equations.  

Behravan Rad and Shariyat [27] investigated the 
bending and stress analyses of the two-directional 
Functionally Graded (FG) annular plates resting on 
the non-uniform two-parameter Winkler-Pasternak 
foundations, subjected to the normal and in-plane-
shear tractions using the exact three-dimensional 
theory of elasticity. The solution was obtained by 
employing the state space and differential quadra-
ture methods. The material properties were as-
sumed to vary in both transverse and radial direc-
tions. Three different types of variations of the stiff-
ness of the foundation were considered in the radial 
direction: linear, parabolic, and sinusoidal. Malek-
zadeh and Safaeian [28] employed a three-
dimensional (3D) discrete layer approach coupled 
with the Differential Quadrature Method (DQM) to 
investigate the free vibration analysis of the lami-
nated Functionally Graded (FG) annular plates sub-
jected to a thermal environment. The formulations 
were derived from the elasticity theory, which in-
cluded the effects of the initial thermal stresses. 
Liang et al. [29] studied the transient response of 
the FGM annular sector plate with arbitrary circular 
boundary conditions based on the semi-analytical 
methodology. The FGM annular sector plate was 
simply supported at the radial edges. At the circular 
edges, four kinds of boundary conditions were con-
sidered: Clamped–Clamped, Clamped–Simply sup-
ported, Clamped–Free and Simply supported–
Simply supported. The results obtained in this study 
can be served as the benchmark data for further 
researches.  

To the best of the author's knowledge, the 2D 
generalized quadrature method has not been yet 
employed to study the free vibration of the 2D func-
tionally graded annular plates. Therefore, the pur-
pose of this study is to investigate the free vibration 
analysis of the considered 2D-FG annular plate. It is 
supposed that the plate rests on different boundary 
conditions namely simply-simply, clamped-clamped, 
simply-clamped as well as free-clamped on the in-
ner and outer edges, re-spectively. The equations of 
the motion are obtained according to a 3D-elasticity 
theory which ultimately. They are reduced to the 
coupled differential equations. Con-sequently, a 
semi-analytical formulation based on a two-
dimensional GDQ approach for the considered sys-
tem of differential equations is derived, which re-
sults in determination of the frequency parameters. 
The material properties are assumed to be continu-
ously changing along the thickness and radial direc-
tions simultaneously and affect the material compo-
sition, which can be varied according to the power 
law and exponential distributions, which in turn are 
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evaluated in details and compared with each other. 
Also, the rate of convergence for the 2D-GDQ is 
compared with other numerical methods. 
 

2. Basic Equations 

2.1 Governing equations 
 

The equations of motion in the cylindrical coor-
dinate system have to be formulated, in order to 
employ the so-called numerical procedure 2D-GDQ. 
For this purpose, it is supposed that the 2D-FG an-
nular plate has the inner radial ri, outer radial ro and 
thickness h, with respect to the cylindrical coordi-
nates (r, θ, z) attached on the bottom of the plate 
(Fig. 1). In the form of the cylindrical coordinate 
system, the linear strain-displacement relations are 
employed as follows: 




































































z
z

zr
rz

r
r

z
z

rr
r

U

rz

U

r

U

z

U

r

U

r

UU

r

z

UU

rr

U

r

U

1

,,
1

,
1

,

 

(1) 

where
UU r , and

zU  are displacement components 

toward radial, circumferential and thickness direc-
tions and

zr   ,, are the corresponding axial 

strain components and 
  zrzr ,, are in-plane 

and out-of-plane shear strain components, respec-
tively. In the absence of the body forces, the equa-
tions of motion are obtained according to Eq. (2): 
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where
 ,r

and
z are axial stress components, 

and 
rzr   , and 

 z
 are shear stress components. 

Apparently,  denotes material density and t refers 

to time, here. 
 

 
Figure 1. The geometry and coordinate system of the annular 

plate 

 

The stress-strain relations for the mentioned iso-
tropic FGM are obtained according to the general-
ized Hook’s law as follows: 
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where ijC  denotes compliance for the isotropic FGM. 

The displacement fields 
UU r , and 

zU for the free 

vibration of 2D-FG annular plates are represented 
as unknown functions along the radial and thickness 
directions and known trigonometric functions along 
the circumferential direction as follows: 
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where m denotes the circumferential wave-number 
which could specify any positive integer values 
(m=0,1,…, ).  is the natural frequency parameter 

and i is the imaginary number. It is obvious that      
m = 0 means axisymmetric vibration. Combining the 
strain-displacement relations Eq. (1) into the Hook’s 
law Eq. (3) and substituting into the equations of 
motion Eq. (2) and then using the trigonometric 
functions Eq. (4) leads to what follows:  
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(7) 
Eqs. (5)-(7) denote 3D elasticity solution for the 

equations of motion in terms of the displacement 
components and must be solved for known compli-
ances and assumptive displacement fields which 
have been supposed in Eq. (4). Then, it must be 
solved by employing the existing numerical proce-
dure. Here, 2D-GDQ procedure has been considered 
to discretize the linear system of the equations Eqs. 
(5)-(7).  

The Privileges of the 2D-GDQ approach com-
pared with one-dimensional procedure are the 
types of boundary conditions and the grids distribu-
tion toward two directions which are illustrated in 
the following sections. In order to investigate the 
free vibration of 2D-FG annular plate resting on dif-
ferent foundations, four different kinds of boundary 
conditions are considered namely Clamped–
Clamped (C-C), Simply supported –Clamped (S-C), 
Free-Clamped (F-C) and Simply supported–Simply 
supported(S-S). The boundary conditions at edges 
for the above mentioned foundations are as follows:  
Clamped-Clamped (C-C): 
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Simply supported – Simply supported (S-S): 
0,  rzoi uurrr   (11) 

 
2.2 Micromechanics of the 2D-FGM annular plate 
 

A typical FGM is made of two randomly distrib-
uted isotropic constituents, i.e. a metal and a ceram-
ic. The macroscopic response of the FGM is isotropic 
and the compositions of the considered FGM vary 
throughout the radial and thickness directions.  

Such a material allows continuous variation of 
the material composition. One important step in 
determining the micromechanical model of FG cir-
cular plate is homogenization. The approach should 
be chosen based on the gradient of composition rel-
ative to the size of a typical Representative Volume 
Element (RVE). Here, two kinds of materials distri-
butions are employed. The first type is based on the 
exponential law distribution, and the second one is 
according to the power law distribution. The mate-
rial elastic coefficients (Cij) and the mass density ( 
) are assumed to have the following exponential law 
distribution along the thickness and radial direc-
tions of the plate as the following [30]: 
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where )0,0(ijC and )0,0(ij are the reference val-

ues at the center point of the bottom plane, and 
1

and
2 denote the material property graded indexes 

in the thickness and radial directions, respectively. 
In the first step, the material properties of the 

annular plate are assumed according to the expo-
nent-law variation in the thickness and radial direc-
tions. Young’s modulus at the center of the bottom 
plane is E = 380 (GPa) and Poisson’s ratio is chosen 

as constant ( 3.0v ). The material density at the 

center of the bottom plane equals

)/(3800 3mKg .  

Defining the non-dimensional parameter
2/1)/(  hz  in the thickness direction and 

HRr /)(  in the radial directions, the density 

variation for different values of material property 
graded indexes is demonstrated in Fig. 2. 

Where R is the average radius of annular plate 
and H=ro-ri. In case of power law distribution, we 
have annular plate which its inner and outer surfac-
es are made of two distinct ceramics and two dis-
tinct metals, respectively. C1, C2, M1 and M2 denote 
first ceramic, second ceramic, first metal and second 
metal, respectively. The volume fraction of the first 
ceramic material is varied from 100% at the lower 
surface to zero at the upper surface by a power law 
function. Also, this volume fraction is continuously 
varied from inner surface to the outer surface.  

 

 



 

M. Nejati et al. / Mechanics of Advanced Composite Structures 2 (2015) 95-111 99 

 

 

 

 
(a) 

 
(b) 

 
(c) 

Figure 2. The density variation for (a) 0,8 21    (b) 8,0 21    and (c) 4,4 21    

 

The volume fractions of the other materials are 
changed in a similar way to the mentioned one in 
two directions. The volume fraction function of each 
material can be described as follows [31]: 
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where zr nn , are parameters representing the basic 

constituent distribution in r and z directions. 
The effective material properties including elas-

ticity modulus and density at each point can be ob-
tained using the simple linear rule of mixtures, in 
which the mentioned material properties, E and  , 

at any arbitrary point (r, z) in the 2D-FGM annular 
plate are determined by a linear mixture of the vol-
ume fractions. The material properties of the basic 

materials can be described as Eq. (14). It must be 
noted that, the Poisson's ratio is assumed to have a 
constant value. 
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where m and c subscripts stand for the metal and 
ceramic, respectively. The five different models sec-
tion is configured in Fig. 3.  

In this step, the effects of the FGM configuration 
are studied by investigating the natural frequencies 
of the five different FGM models as follows: 
- Model (1): The 2D-FGM annular plate has ceramics 
on its inner surface and metals on its outer surface 
- Model (2): The 2D-FGM annular plate has metal on 
its inner surface and ceramics on its outer surface 
- Model (3): The 2D-FGM annular plate has ceramics 
on its bottom surface and metals on its upper sur-
face 
- Model (4): The 2D-FGM annular plate has metal on 
its bottom surface and ceramics on its upper surface 
- Model (5): The 2D-FGM annular plate has ceramics 
on the corner at the left on the bottom surface, in 
the corner at the right on the upper surface and 
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metals on the corner at the right on the bottom sur-
face, on the corner at the left on the upper surface. 

The basic constituents of the 2D-FG annular 
plate for two kinds of distributions (exponential and 
power law) are presented in Table. 1 and it should 
be noted that the Poisson’s ratio is assumed to be 
constant ( 3.0v ). 

Fig. 4 illustrates the distribution of the effective 
density of the 2D-FG plate versus two non-
dimensional parameters  and   for different val-

ues of the power exponents 
zn and

rn . 
 

 
Figure 3. The FGM annular plate with the two-dimensional mate-

rial distribution (Models 1-5) 

 
 

Table 1. The material properties of the FGM plate for different 
distributions 

Distribution Constituents E(GPa) (kg/m3)
 

Power-law 
distribution 

[31] 

M1 115 2715 
M2 69 4515 
C1 440 3210 
C2 150 3470 

Exponent-law 
distribution 

[30] 

center point 
of the 

bottom 
plane 

380 3800 

 

 
Figure 4. The distribution of the effective density for

4,4  zr nn  
 

2. Solution Procedure 
It is difficult to solve the equations of motion an-

alytically. Hence, one should use a numerical proce-
dure in order to discretise the partial differential 
equations in terms of displacement components. 
Then, the set of discretized algebraic equation must 
be solved as an Eigen-value problem to find the nat-
ural frequencies. Apparently, Eqs. (5)-(7) are a line-
ar set of the partial differential equations of motion 
which ought to be solved with one of the numerical 
solver. Here, the 2D-GDQ procedure is used to dis-
cretize the motion equations and followed by relat-
ed boundary conditions. Choosing the solution pro-
cedure i.e. the 2D-GDQ method is first based on the 
type of boundary conditions and secon meshing the 
plate in two directions (Here the grids are distribut-
ed toward the material variations namely, the radial 
and thickness directions). The differential quadra-
ture method (DQM) is a semi-analytical solution 
technique for initial and/or boundary value prob-
lems [32]. It was first developed by Richard Bellman 
and his associates in the early 1970s [33]. The DQ 
method is originated from the idea of conventional 
integral quadrature and approximates the deriva-
tive of a function at any discrete points by a 
weighted linear summation of the functional values 
in the whole domain [34]. A simple and accepted 
choice of the grid distribution is the uniform grid 
spacing rule; however, it is found that the non-
uniform grid spacing yields results with a better 
accuracy. Hence, in this study, the Chebyshev–
Gauss–Lobatto quadrature points are employed, the 
following equations are derived [32]: 

zr
z

i

zr
r

i

NjandNifor
N

j

NjandNifor
N

i

,...,2,1,..,2,1,
1

)1(
cos1

2

1

,...,2,1,..,2,1,
1

)1(
cos1

2

1







































































(15) 
where i and i are the distribution of nodes along 

the r and z directions, respectively. As one can ob-
serve, with this non-homogeneous distribution of 
nodes, by approaching to the internal and external 
boundaries of the FGM annular plate with various 
boundary conditions and also the upper and lower 
boundaries with free boundary condition, the densi-
ty of nodes increases while it causes the boundary 
conditions to be better satisfied. Getting far from 
boundaries, less density in the node of grid is gener-
ated. In the 2D-GDQ method, in order to approxi-
mate the first-order derivatives of the function f (r,z) 
with respect to r in a node of grid, according to Eq. 
(16), the summation of multiplication of function 
values in all nodes in the r direction is parallel to the 
target node with the weighting coefficients in the 
direction r. 
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(16) 

In order to obtain the weighting coefficients, a 
set of test functions should be employed. For the 
polynomial basis functions DQ, a set of Lagrange 
polynomials are employed as the test functions. The 
weighting coefficients for the first-order derivatives 
in r-direction can be described as follows [32]: 

 

(17) 

where
rL is the length of domain along the r-

direction and  

 

(18) 

According to the DQ method, for higher-order 
derivatives, higher-order weighting coefficient 
should be employed, i.e. for second-order deriva-
tives, the weighting coefficient can be expressed as 
below: 

 

(19) 

In the similar way, the weighting coefficients can 
be obtained for the z-direction.  

Using the 2D-GDQ method for the spatial deriva-
tives, the discretized form of the equations of mo-
tion at each domain grid point can be obtained as 
shown in Appendix A. Similarly, the boundary condi-
tions can be discretized. For this purpose, using the 
2D-GDQ discretization rules for spatial derivatives, 
one can obtain: 
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For simply support edge at r= ri: 
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For z=0, h: 
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where z
kp

r
jl AA  , , r

jlB and z
kpB are the first and second-

order DQ weighting coefficients in the r and z direc-

tions, respectively. The expressions of the z
kp

r
jl AA  , ,

r
jlB and z

kpB formula are available in the literature 

[32, 34]. 
In order to carry out the eigenvalue analysis, the 

domain and boundary degrees of freedom are sepa-
rated and described in vector forms. They are de-
noted by {d} and {b}, respectively. Based on these 
definitions, the discretized form of the motion equa-
tions and the related boundary conditions take the 
following forms: 
Equations of motion (Appendix A): 

 
(24) 

Boundary conditions (Eqs. (20)-(23)): 

 (25) 

Eliminating the boundary degrees of freedom in 
Eq. (24), using Eq. (25), this equation turns into: 

 
(26) 

where . The above ei-

genvalue system of equations can be solved to find 
the natural frequencies and mode shapes of the an-
nular plates. 
 

3. Numerical Results and Discussion 
 

4.1 Verification of results 
 

Free vibration analysis of Two-Dimensional 
Functionally Graded annular plates (2D-FG annular 
plate) is performed via general Differential Quadra-
ture Method (GDQ). The equations of motion are 
obtained based on the 3D elasticity theory.  
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For this purpose, a 2D-FG annular plate with ar-
bitrary dimension must be considered. All values 
including dimensions of the plate as well as fre-
quency parameters are presented as non-
dimensional form for ease of use. In order to ensure 
the accuracy of the results, comparisons have been 
performed by the literature. 

Verification of the results is performed in two 
stages. Firstly, a homogenous and isotropic annular 
plate with clamped-clamped boundary condition is 
considered and then a free-clamped FG annular 
plate with conventional material distribution (Eq. 
(27)) is investigated.  

In Tables 2 and 3, the presented results are com-
pared with the similar ones in the literature, namely 
the homogenous isotropic annular plate and one-

dimensional FG annular plate ( mo GR / ). 

The results obtained by analysis of the 2D-GDQ 
for both cases are shown in Tables 2 and 3. A faster 
rate of convergence for the proposed 2D-GDQ pro-
cedure is obvious in comparison with Chebyshev–
Ritz method ([22, 35]). Hence, a good agreement is 

achieved within the results. For this verification, the 
number of grids in radial and thickness directions 
for the 2D-GDQ is assumed 15 zr NN . The con-

stituents of the FG annular plate in the second case 
are distributed according to Eq. 32 as follows: 
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4.2 Parameter studies 
 

In this section the effects of different parameters 
such as BCs as well as power exponent coefficients 
are studied on the natural frequency parameters. 
There are several efforts in which the mechanical 
dynamic response of FGMs has been studied, but in 
the case of vibration analysis of the 2D-FG plate us-
ing the 2D-GDQ method, a lack of knowledge is per-
ceived.

 
 

Table 2. The first eight non-dimensional frequencies for the isotropic annular plates with the clamped-clamped condition 

( 5.0/,5.2/  oio RhRR ) 

m method      6  7  8  

0 present 4.6582 8.9505 11.3915 14.3382 17.2782 19.2184 19.4718 21.8688 
 Ref. [22] 4.661 8.952 11.40 14.34 17.29 19.22 19.48 21.87 
 Ref. [35] 4.660 8.950 11.40 14.34 17.28 19.22 19.48 21.87 

1 present 4.7482 8.5359 9.1248 11.2232 12.7365 14.4148 16.7438 17.6333 
 Ref. [22] 4.752 8.536 9.127 11.23 12.74 14.42 16.75 17.64 
 Ref. [35] 4.750 8.536 9.126 11.23 12.74 14.42 16.75 17.64 

2 Present 5.0865 9.0963 9.7069 11.1450 13.6461 14.6436 16.5603 18.1813 
 Ref. [22] 5.089 9.097 9.709 11.15 13.65 14.65 16.56 18.18 
 Ref. [35] 5.088 9.096 9.708 11.15 13.65 14.65 16.56 18.18 

3 Present 5.7206 9.7439 10.5762 11.4287 14.7313 15.0190 16.5436 18.7558 
 Ref. [22] 5.723 9.745 10.58 11.43 14.73 15.02 16.55 18.76 
 Ref. [35] 5.722 9.744 10.58 11.43 14.73 15.02 16.55 18.76 

 
Table 3. The first eight non-dimensional frequencies for the FGM annular plates having the free-clamped condition 

 ( 5.0/,5.2/  oio RhRR ) 

P m method 1  2  3  4  5  6  7  8  

1 0 present 3.6499 8.6838 10.6489 15.0467 16.7138 17.7982 18.0660 21.0876 
  Ref. [22] 3.652 8.684 10.650 15.045 16.711 17.795 18.063 21.087 
 1 present 4.4508 7.2983 9.2262 10.6320 13.6344 14.1947 15.2558 16.6110 
  Ref. [22] 4.453 7.298 9.226 10.632 13.633 14.193 15.255 16.608 
 2 present 6.2567 7.7562 10.5431 11.5508 14.5422 15.7763 16.1538 17.0964 
  Ref. [22] 6.259 7.756 10.543 11.550 14.542 15.775 16.152 17.094 
 3 present 8.4036 8.9101 12.3127 13.2659 15.3383 16.6047 17.5216 18.2774 
  Ref. [22] 8.406 8.910 12.313 13.265 15.338 16.602 17.519 18.275 

5 0 present 4.4804 11.2575 12.5651 19.5573 21.0189 23.0737 23.5991 28.3433 
  Ref. [22] 4.482 11.254 12.565 19.548 21.007 23.058 23.589 28.359 
 1 present 5.4668 9.1670 11.7041 12.9115 17.2524 18.8533 19.6915 20.9746 
  Ref. [22] 5.468 9.165 11.701 12.910 17.244 18.843 19.684 20.960 
 2 present 7.6872 9.8504 12.9084 14.7923 18.6025 20.0166 21.4650 21.7318 
  Ref. [22] 7.689 9.848 12.904 14.788 18.596 20.006 21.456 21.715 
 3 present 10.3284 11.4778 14.9668 17.4532 19.5565 21.5712 22.8608 23.2461 
  Ref. [22] 10.329 11.475 14.962 17.447 19.550 21.558 22.851 23.231 

 

   
 

1 2 3 4 5
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Table 4. The convergence study of the first three non-
dimensional frequencies for the FGM annular plates having the 

free-clamped condition 

( 1,1,5.0/,5.2/  PmRhRR oio ) 

  1  2  3  

The number of 
Chebyshev poly-
nomial terms as 

shown in Ref. [22] 

I*J=8*4 4.474 7.317 9.278 

I*J=20*12 4.453 7.298 9.227 

I*J=30*15 4.453 7.298 9.226 

The number of 
nodes in GDQ 

method 

Nr*Nz=7*7 4.446 7.300 9.226 
Nr*Nz=9*9 4.449 7.298 9.225 

Nr*Nz=11*11 4.450 7.298 9.226 
Nr*Nz=13*13 4.450 7.298 9.226 

 
Two studies dealing with the free vibration anal-

ysis of homogenous and FG isotropic annular plates 
are presented in previous section in order to vali-
date the results. Hence, we are satisfied with the 
results which are presented in previous section. 
Two functions of constituent distribution namely 
exponential and power law introduced and present-
ed in previous section, reveal the functionality of 
material distribution with respect to the radial and 
thickness directions. 

It is assumed that the plate stands in ambiance 
temperature with different mechanical boundary 
conditions are introduced in section 2. The signifi-
cant difference within the numerical results is re-
vealed in the rate of convergence. The generalized 
differential quadrature method due to the few num-
ber of grids, for convergence and also the accurate 
solutions in comparison with other numerical 
methods is more popular. 

Fig. 5 shows the rate of convergence for the first 
natural frequency of the annular plate obtained in 
terms of different values of    when    has speci-
fied constant values.  
 

 
Figure 5. The effect of the GDQ grids on the rate of convergence 

for the first natural frequency, h=0.2, 121   , ri/ro=0.2 
 

 
 
 

 

According to the figure, reasonable converged 
results and accurate natural frequency are obtained 
in at least 15 nodes along the thickness and 9 nodes 
along the radius directions and that would be ac-
ceptable in differential quadrature method. Moreo-
ver, Table 4 compares accuracy and convergence 
rate of the presented method and a popular numeri-
cal method for frequency analysis of the FGM annu-
lar plates. In this table, 30*15 number of Chebyshev 
polynomial terms in Chebyshev-Ritz is tantamount 
to 11*11 nodes in the GDQ method for analysis of 
the first three natural frequencies in the FGM annu-
lar plates which means the GDQ method solves few-
er equations and consequently it leads to accurate 
answers faster than the other method.   

Meshing the plate in two directions and using the 
2D-GDQ procedure lead to obtain more accurate 
result with a fast rate of convergence. Also, the 3D 
graphs are employed in order to investigate the rate 
of convergence for this algorithm. The number of 
points required for convergence in radius and 
thickness directions is studied and the rate of con-
vergence for the first three non-dimensional natural 
frequencies in terms of different numbers of nodes 
in radial ( rN ) and thickness ( zN ) directions is 

shown in Fig. 6. The flat part of each figure in Fig. 6 
(a-c) shows the first three frequencies achieve con-
vergence for a certain number of nodes along the r 
and z directions. 

In other words, significant changes in response 
to increasing the number of nodes in the two-
dimensional grid have not been observed. For ex-
ample, in Fig. 6 (a) per nine nodes in the r direction 
and 15 nodes along the z direction the first frequen-
cy converges, or in the case of Fig. 6 (c) per 9 nodes 
along the r direction and 11 nodes along the z direc-
tion the third frequency converges. As it is observed, 
the convergence is fast and a few numbers of grid 
points along the radial and thickness directions are 
required ( 15,9  zr NN ). Variations of the first 

non-dimensional natural frequencies versus the 
material graded index (or power coefficients) in 
case of conventional FG annular plate along the 
thickness or radial and the 2D-FG annular plate in 
both directions, for different boundary conditions 
are demonstrated in Figs. (7-9) (ri=0.2, ro=1, h=0.2) .

Figs. 7-8 depict the first non-dimensional natural 
frequency variations of conventional FG annular 
plate versus the variation of the power coefficients 
along the thickness and radial directions, in terms of 
different boundary conditions, respectively.  
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Fig. 7 shows variation of the frequency versus 
the power coefficient for conventional FG annular 
plate, in which the materials are graded throughout 
the thickness direction. It is observed that the fre-
quency tends to decrease when the power coeffi-
cient increases. Also, for a plate with fully clamped 
edges, the highest natural frequency is obtained. 
Additionally, the slop of frequency graph decreases 
for a plate with fewer constraints i.e. here the F-C 
plate is less than other types of boundary condi-
tions.  

In Fig. 9, it is assumed 821  . It is observed 

that the boundary conditions have significant effects 
on natural frequency parameter of the FG annular 
plate. For the case of functionally graded plate along 
the radial direction, the frequency variation is quiet 
different. As it is observed, the first non-dimensional 
natural frequency of the annular plate under all 
boundary conditions except (S-S) increases with an 
increase in the functionally graded index in radial 
direction, but under (S-S) condition, it reduces.  

 

 
(a) 

 

 
(b) 

 
(c) 

Figure 6. The rate of convergence for the first three natural frequencies in case of simply supported–clamped condition, h=0.2, 121   , 

ri/ro=0.2 
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Fig. 9 for the 2D-FGM shows a same behavior for 
all boundary conditions, the first non- dimensional 
natural frequency gradually increases with an in-
crease in the ratio of the radial to thickness graded 
indices. It should be noticed, for an annular plate 
with a material property graded index in radial di-
rection lower than 2 (Fig. 8), and for a 2D-FGM with 
a material graded index ratio almost less than 0.5 
(Fig. 9), the first non-dimensional natural frequency 
under (S-S) boundary condition is higher than the 
natural frequency under (F-C) condition. For the 2D-
FGM in case of (S-S) condition, the first non-
dimensional natural frequency is almost constant 
for a material graded index ratio greater than 1. The 
effects of plate thickness on the first non-
dimensional natural frequency for conventional FG 
annular plate graded along thickness, or radial di-
rection and 2D-FG annular plate under different 
boundary conditions including (C-C),(F-C),(S-C) and 
(S-S) are shown in Figs. 10-12, respectively (ri =0.2,  
ro=1). 

Figs. 10 and 11 show the non-dimensional natu-
ral frequency variations of uni-directional FGM in 
thickness or radial directions, respectively, versus 
the material property graded index under different 
boundary conditions. The aforementioned graded 
index in the thickness and radial directions has an 
insignificant effect on the first non-dimensional nat-
ural frequency of thin plates (h/Ro=0.05). In case of 
the thin 2D-functionally graded annular plate in Fig. 
12, the first non-dimensional natural frequency 
gradually increases and then remains almost con-
stant for the ratio of the radial to thickness graded 
indices around 1, it remains almost constant. 

Fig. 13 (a-e) shows the first non-dimensional 
natural frequency variations versus nr and nz param-
eters for 5 considered models illustrated in Fig. 3. It 
should be noted, the dynamic behavior of two mod-
els (1) and (3) are similar and the first natural fre-
quency increases with the increase in nr and nz pa-
rameters.  It could be as a result of the increase in 
the plate stiffness. In model (5), a similar behavior is 
shown. However, more variation of the first natural 
frequency is observed with the increase in nz at con-
stant nr.  The dynamic behavior of model (2) with 
respect to nr and nz parameters variation is similar 
with model (4) with respect to nz and nr, respective-
ly. According to Fig. 13 (a-e), one can obtain an ap-
propriate design for the 2D-FGM arrangement 
among different possible cases for a variety range of 
applications. The behaviors of the first and third 
kinds of these arrangements are similar, but the 
other kinds present different characteristics which 
can be used for different goals. 

 
 

 
Figure 7. The variations of the first non-dimensional natural 

frequency parameter for the 1D-FGM versus the graded index in 

the thickness direction ( 02  ) 

 

 
Figure 8. The variations of the first non-dimensional natural 

frequency parameter for the 1D-FGM versus the graded index in 

the radial direction ( 01  ) 

 

 
Figure 9. The variations of the first non-dimensional natural 

frequency parameter versus the ratio of the radial graded index 
to the thickness graded index for the 2D-FGM 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 10. The variations of the first non-dimensional natural frequency parameter versus the graded index in the thickness direction              

( 02  ) under a-(C-C), b-(F-C), c-(S-C), d-(S-S) boundary conditions 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 11. The variations of the first non-dimensional natural frequency parameter versus the graded index in the radial direction ( 01  ) 

under  a-(C-C), b-(F-C), c-(S-C), d-(S-S) boundary conditions 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 12. The variations of the first non-dimensional natural frequency parameter versus the ratio of the radial graded index to the thick-
ness graded index for the 2D- FGM under a-(C-C), b-(F-C), c-(S-C), and d-(S-S) boundary conditions 
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(a)  

(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 13. The behavior of the first non-dimensional natural frequency versus the material property graded indexes for different models, a-
model (1), b-model (2), c-model (3), d-model (4), and e-model (5)

5. Conclusions  

The mechanical free vibration of the 2D-FG annu-
lar plates was investigated using the Generalized Dif-
ferential Quadrature method (GDQ) based on the 
two-dimensional meshing. The three-dimensional 
elasticity theory was employed in order to derive 
equations of motion for the 2D-FG annular plates. The 
mechanical properties of the 2D-FG annular plate 
were assumed to be temperature independent since 
only the mechanical vibration analysis was per-
formed. The material constituents were distributed as 

the function of r and z coordinates simultaneously by 
the power law and exponential formulation. 

A semi-analytical approach composed of two-
dimensional generalized differential quadrature 
methods (2D-GDQ) and series solution were adopted 
to solve the equations of the motion. The effect of the 
functionality of the material properties on the posi-
tion, boundary conditions including simply support-
ed-clamped, clamped-clamped, free-clamped and 
simply supported-simply supported in inner and out-
er radii, respectively as well as the aspect ratio were 
taken into account, too.  
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The results for the natural frequency parameter of 
the 2D-FG annular plate with different parameters 
have illustrated the fast convergence and high accu-
racy of the proposed approach in terms of using 2D 
grids. From this study, the following conclusion can 
be remarked: 
- The convergence of the 2D-GDQ method is fast and 
the results have a good agreement with the previous 
investigations. 
- The different distributions of four kinds of materials, 
according to the rule of mixture to form an annular 
plate with variable properties in two directions are 
employed. The results show different or same dynam-
ic behaviors in terms of different arrangement of ma-
terials and it could be seen. 

For the exponential distribution, it is concluded 
that:  
- In terms of the functionally graded indexes in thick-
ness or radial directions increase, the first non-
dimensional natural frequencies increase for all kinds 
of boundary conditions, but (s-s) boundary condition 
for the uni-directional FGM annular plate in radial 
direction, shows subtractive trend. 
- Increasing the geometrical thickness parameter 
leads to an increase in the first dimensionless fre-
quency for all kinds of boundary conditions.   
- The non-dimensional natural frequencies of thin 
uni-directional functionally graded along the radial or 
thickness directions as well as the thin 2D-FGM annu-
lar plate according to Figs.(10-12) depend on the 
functionally graded indices in thickness and radial 
directions, however, their variation against these pa-
rameters is small. 
- For the 2D-FGM under (S-S) condition, the first non-
dimensional natural frequency is almost constant for 
the material graded index ratio which is greater than 
1. 
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