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The dynamic instability regions of composite laminated skew flat plates subjected to uniform in-
plane axial end-loading are investigated. The in-plane loading is assumed as a combination of a 
time-invariant component and a harmonic time-varying component uniformly distributed along 
two opposite panel ends’ width. In case of some loading frequency-amplitude pair-conditions, the 
model is subjected to instabilities. The dynamic instability margins of the skewed flat panel have 
been extracted using a developed semi-analytical finite strip formulation. The method has been 
developed based on a full-energy approach through the principle of the virtual work. The effects 
of thickness have been included by utilizing a third-order Reddy type shear deformation theory. 
The effects of boundary conditions as well as geometry on the instability load-frequency regions 
are derived using the Bolotin's first-order approximation. In order to demonstrate the capabili-
ties of the developed method in predicting the structural dynamic behavior, some representative 
results are obtained and compared with those in the literature wherever available. 
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1. Introduction   

The thin-walled structures especially those made 
of the laminated composite materials are widely in 
used in air, space and marine structures. These 
structural products are advantageous due to their 
least structural weight whilst providing the re-
quired strength. Periodic time-varying loads are 
prevalent in case of the pre-mentioned mechanical 
structures as well as fluid-structural interactions. A 
thin-walled panel, under in-plane dynamic loading 
where a constant mean load is added to a harmoni-
cally varying excitation with a constant frequency, 
meets situations where the instability conditions 
may appear even while the amplitude of the corre-
sponding dynamic instability load is not exceeding 
the value corresponding to the panel static bifurca-
tion point. The panels of non-rectangular plan-form 
such as skew plates find wide application as me-
chanical structures. 

Heuer et al. (1993) [1] studied the nonlinear 
random vibrations characteristics of thermally 

buckled skew plates. Using the Galerkin-procedure 
follows by assuming an effective white noise excita-
tion, the probability of first occurrence of dynamic 
snap-through has been determined. Hu and Tzeng 
(2000) [2] used a finite element method approach to 
investigate the static buckling phenomenon in skew 
plates subjected to the uniaxial compressive in-
plane loads. The ABAQUS software was used and the 
effects of skew angles, laminate layups, plate aspect 
ratios, plate thicknesses, central circular cutouts, 
and end conditions on the buckling of skew compo-
site laminate plates were presented. Dey and Singha 
(2006) [3] considered the simply supported skew 
plate subjected to periodic in-plane loads and ex-
tracted the dynamic instability regions of the struc-
ture. The finite element approach including the ef-
fects of transverse shear deformation, in-plane and 
rotary inertia has been utilized. The Bolotin’s first 
and second-order approximation has been imple-
mented in order to extract the boundaries of the 
instability regions for various skew angles, thick-
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ness-to-span ratios, fiber orientations and static in-
plane loadings. Lee (2010) [4] used the finite ele-
ment method to investigate dynamic stability of 
laminated skew plates. The skew structures were 
assumed to be subjected to in-plane pulsating forc-
es. A higher order shear deformation plate element 
and Bolotin’s approximation was utilized. These 
structures also assumed to have cutout zones and 
the effect of different geometry and loading parame-
ters was studied. Tahmasebinejad and Shanmugam 
(2011) [5] conducted the problem of elastic buck-
ling behavior of uniaxially loaded skew plates with 
openings subjected to uniaxial longitudinal com-
pression. Circular and skew shape cutouts of differ-
ent sizes have been considered through the applica-
tion of finite element software package ABAQUS. 
The effectiveness of skew angle, size, shape and po-
sition of openings and aspect ratio of the plates on 
the buckling critical load has been examined. Noh 
and Lee (2014) [6] carried out the dynamic instabil-
ity problem of delaminated composite skew plates 
subjected to in-plane periodic loadings. The effect of 
various parameters on the dynamic stability of de-
laminated composite skew structures has been in-
vestigated. The formulation was based on the higher 
order plate theory and the Bolotin’s approximation. 

In the current study the dynamic stability of lam-
inated skew flat panels subjected to the uniform in-
plane end-loading has been investigated through the 
implementation of finite strip formulations. The 
loading is assumed to change harmonically with 
time. The problem is formulated using a developed 
semi-analytical finite strip method. The formulation 
is based on the classical plate and shell theory while 
the Reddy type higher-order theory is also used in 
order to include the transverse shear stresses effect 
in case of the moderately thick structures. The gov-
erning equations are derived using the full energy 
concepts on the basis of the virtual work principal. 
The instability load frequency regions correspond-
ing to the assumed in-plane parametric loading are 
derived utilizing the Bolotin’s first-order approxi-
mation. The equations are extracted using eigen 
solution algorithm and some representative prob-
lems are studied. 

 

2. Theoretical Development 

The structure geometry is assumed to be com-
posed of a series of longitudinal skewed strips. Fig. 1 
depicts a general skew plate model with finite strips 
of skew angle ψ, length L, width bs and thickness t. 
Two nodal lines exist in the transverse direction of 
every strip element. 

 
Figure 1. The loading and geometry of a typical skew plate 

with thelongitudinal finite strips 

 
Strips are subjected to uniform time varying lon-

gitudinal in-plane loading at their two ends which is 
assumed to result in a corresponding uniform unidi-
rectional time-varying stress field throughout the 
strip’s area. The loading is assumed to consist of a 
constant (static) and harmonically time-varying 
(dynamic) components, which are identified with S 
and D superscript signs, respectively. These load 
component coefficients can be expressed as frac-
tions of the critical static buckling load of the struc-
ture, Ncr. Thus, the following equation is derived: 

S D
x cr crN a N a N cos t  (1) 

where , Sa and Da are the excitation frequency, 
static load fraction coefficient and dynamic load 
fraction coefficient, respectively. The static and dy-
namic components of the end-loading are consid-
ered uniform throughout the whole panel area. 

The solution of the problem of parametric insta-
bility is sought through the principle of virtual work. 
The total energy of a strip is defined with kinetic (T), 
pre-stress (Ug) and strain (U) energy components as 
what follows: 

g
U U T

 
(2) 

The kinetic energy of a flat strip with uniform 
density can be found through the following equa-
tion: 

22 2 2 2 2

122
o o o t

x y

t
T u v w dxdy= +

 
(3a) 

The pre-stress strain energy can be calculated 
using the following equation: 

22 2 2 2 2
, , , , ,2 12

o o ot t
g x x x x x x y xU N u v w dxdy=

 
(3b) 

And the strain elastic energy can be found using 
the following equation: 
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where ρ is the material mass density and '.' super-
script represents the time differentiation. The force 
resultants (i.e. N, M, O, P, Q, R, T, U) could be calcu-
lated using composite layered stiffness matrices 
through the following equations, 
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(4) 

Substituting the energy terms (Eq. (3)) into 
Eq.(2), using Eq. (4) and applying the principle of 
virtual work, factorizing with respect to degrees of 
freedom vectors and building matrices, assembling 
the strip matrices and implementing the necessary 
boundary conditions, a system of Mathieu type dif-
ferential equations is obtained as follows: 

S D( cos ) 0S D
g gM K a K a t K

 
(5) 

Where M, K, Kg
S and Kg

D are the square global struc-
tural matrices corresponding to the mass, strain, 
static and dynamic initial stress energies, respec-
tively. is the global vector of unconstrained de-
grees of freedom. Whenever initial stress state is 
ignored, eq. (5) reduces to a free vibration problem 
whilst in case of excluding the effects of time and 
mass, with the presence of initial stress, the problem 
changes to an eigen value static buckling one. 

By implementation of Bolotin’s first-order ap-
proximation corresponding to twice the loading pe-
riod (2P), Eq. (5) is changed to a set of eigen-value 
problems as follow: 

21 1
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 (6) 

Solving the abovementioned eigenvalue system 
with respect to the three unknown parameters 
(i.e.aS, aD,  ) results in two stability bounds in the 
space of loading frequency- loading amplitude. 

In order to include the effects of through the 
thickness transverse shear strains as parabolic vari-
ation functions of the thickness dimension, a Higher-
order Shear deformation theory (HST) of Reddy's 
type is assigned for the displacement field approxi-
mation. The strip displacement field at any arbitrary 
point can be expressed as follows: 
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(7) 

The linear strains at the mid-surface of the skew 
strip can be simply expressed as follows: 
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(8) 

The strip’s mid-plane displacement approximat-
ing functions are composed of a multiplication of 
approximating terms in the longitudinal as well as 
the transverse directions (eq. 9). In the longitudinal 
directions, the trigonometric functions are utilized 
while in the transverse direction, Lagrangian as well 
as Hermitian functions are employed for in-plane 
and out of plane displacements, respectively.  
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(9) 

where T(x) is longitudinal displacement functions 
that satisfies the kinematic conditions prescribed at 
the strip ends and the parameter n represents, the 
number of longitudinal terms is kept equal to three 
in the current study (i.e. n=3). The boundary condi-
tions at the two loaded ends are assumed here to be 
of simply supported type, thus cosine function for 
u0, βx and sine function for the other functions are 
presumed. In order to support other kinds of end 
conditions, different trigonometric functions could 
be utilized. It is also to be noted that the strip side 
lines can accommodate any kind of boundary condi-
tions, namely simply supported, clamped or free. 

Oblique coordinate system (Fig.2) is used where 
the skew angle, , is measured in relation to the lon-

gitudinal direction. The transformation relation-
ships between the global coordinate system (x,y,z) 
and the oblique coordinate system (x’,y’,z’) are as 
follows: 

cos 0 0 '

sin 1 0 '

0 0 1 '

x x

y y

z z





     
    

    
         

 
(10) 

The first and second derivatives of any typical 
function f(x,y) maybe expressed in the term of nor-
mal coordinate as a function of the skew angle as 
follows [7], 
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3. Results and Discussions 

A semi-analytical based finite strip numerical 
code is developed based on the HST assumptions. 
Some case studies are studied and the results are 
presented in this section. 

Large amplitude free flexural vibration charac-
teristics of moderately thick laminated composite 
skew plates are studied. The material properties, 
unless specified otherwise, used in the present an 
alysis areas what follows: 
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(12) 

Subscripts 1 and 2 represent the longitudinal and 
transverse directions with respect to the fiber orien-
tation, respectively. All layers are assumed to be of 
equal thickness. The fiber orientation is measured 
from longitudinal axis. The plate is opposed to simp-
ly supported conditions on all its boundaries. The 
plate is assumed moderately thick with L/t ratio of 
10. The cross-ply layup [90/0/90/0/90] and varia-
ble skew angles are considered. 

Table 1 presents the non-dimensionalized first 
five natural frequencies of the skew plate from the 
First-order Shear deformation plate Theory (FST) 
data available in the literature as well as HST sa-
FSM calculated results. The results show that the 
HST-FSM predicts lower and more conservative fre-
quencies related to the FST results. 

 

 
Figure 2. The normal and oblique local coordinatesystems ofa 

typical skew finite strip 

 
 
 

The principal region of the dynamic instability of 
simply supported 8-layered cross-ply [90/0]2s 

square as well as 30degrees-skew plates (L=b, 
L/t=10, aS=0) are presented in Fig. 3. The results 
from the FST finite element method analysis is also 
provided for the sake of comparison. The results 
show a good consistency of prediction of instability 
regions. 

A symmetric crossply laminated [90/0]s panel is 
considered using material properties of eq.(12) and 
geometrical characteristics of L/t=10 and b/L=1. The 
simply supported boundary conditions are consid-
ered. A number of sensitivity analyses are made on 
different parameters including the panel aspect ra-
tio, panel skew angle, panel layup and side bounda-
ry conditions. The static loading coefficient is as-
sumed to be zero. A FSM model with 10 strips is uti-
lized to extract results. 

First, the simply supported square as well as 10 
degrees skew panel with three aspect ratios of 
b/L=0.5, 1.0 and 2.0 are studied.  

 
Table 1.The dimensionless fundamental natural frequency 

( 2 2

2/ /L t E    ) 

Mode 
FST 
[8] 

FST FEM 
[7] 

HST FEM 
[4] 

HST 
sa-FSM 

No skew 
1 1.5699 1.5700 1.5701 1.5531 
2 3.0371 3.0386 2.9034 2.9656 
3 3.7324 3.7422 3.7813 3.7101 
4 4.5664 4.576 4.6212 4.5066 
5 5.1469 5.1667 6.2438 4.9676 

Skew angle = 30 
1 2.0844 2.0805 2.0366 2.0634 
2 3.5127 3.5491 3.3581 3.4713 
3 4.6997 4.7107 4.6084 4.7038 
4 4.8855 4.9435 4.6943 4.9167 
5 6.2494 6.4200 5.8051 6.3376 

  
196 

elements 
 

10 strips 
180 DOF 

 

 
Figure 3. The dynamic stability boundaries of thick 8-layered 

crossply composite plate with and without skewness 
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The resulting instability regions presented in Fig. 
4 show that the higher the aspect ratio is, the nar-
rower and more critical the instability region is. Al-
so, it is shown that the skew panel instability occurs 
at higher instability frequency ranges for all aspect 
ratio case studies. 

Simply supported panel with different skew an-
gles is studied. Fig. 5 depicts the change in the fun-
damental instability region with increased skew 
angle of the panel while Figs. 6 and 7 represent the 
changes in the first three natural frequencies as well 
as many first dimension-less static buckling 
strengths of panels. The results show that the higher 
skew angles shift the instability loading frequencies 
to the higher ones but lead to the wider instability 
regions (wider frequency intervals). The results also 
show that an increase in the skew angle causes 
slight increase in both natural frequency and buck-
ling strength of the panel. There is an exception here 
for the second mode buckling strength where it is 
not followed by the rate of change in the other 
modes and meets very small changes. 

 

 
Figure 4. The effect of skew angle and aspect ratio on the 

dynamic instability regions ofthe flat panel 

 

 
Figure 5. The effect of skew angle onthe dynamic instability 

regions of theflat panel 

 
 
 
 
 

The square as well as 10 degrees skew laminated 
simply supported panel with three different layups 
are considered. The 2, 4 and 8 layer anti-symmetric 
crossply laminates are investigated while the L/t 
ratio is kept fixed. As shown in Fig. 8, the 2-layer 
model presents more critical instability region that 
is due to its stronger anti-symmetricity effects. For 
other layups, more layers means a right shifted in-
stability region with higher instability frequencies. 
The skew panels show a safer instability region with 
slightly higher instability ranges with respect to the 
square geometries. 

The symmetric laminated 10 degrees skew panel 
with the two loaded ends simply supported are con-
sidered. The two side boundary conditions have 
altered between clamped, free and simply support-
ed ones. Fig. 9 presents the resulting instability re-
gions where it clearly shows the stabilizing effects of 
tighter boundary constraints on the parametric be-
havior. The panels under the clamped side bounda-
ries reveal higher instabilizing frequencies with nar-
rower regions with respect to the simply supported 
ones. 

 

 
Figure 6. The effect of the skew angle onthe natural frequency 

of theflat panel 

 

 
Figure 7. The effect of the skew angle onthebuckling strength 

ofthe flat panel 

 



 

150 J. Fazilati / Mechanics of Advanced Composite Structures 2 (2015) 145-150 

 

 

 
Figure 8. The effect of the skew angle and the layup on 

thedynamic ‎instability regions of theflat panel 

 

 
Figure 9.The effect of theboundary conditions on thedynamic 

instability regions of the skew flat panel 

 

4. Conclusions 

The dynamic instability regions of the composite 
laminated skew plates subjected to the uniform in-
plane longitudinal end-loading are investigated. The 
dynamic instability margins of the skewed flat panel 
have been extracted using the developed semi-
analytical finite strip formulation. The effects of the 
thickness have been included by utilizing a third-
order Reddy type shear deformation theory. The 
effects of boundary conditions as well as the static 
loading on instability load-frequency regions are 
derived using the Bolotin's first-order approxima-
tion. In order to demonstrate the capabilities of the 
developed method in predicting the structural dy-
namic behavior, the obtained results are compared 
with those in the literature wherever available. It is 
shown that the sa-FSM with three approximation 

functions (i.e. n=3) is capable of precisely predicting 
the instability of thick skew plates. It is to be added 
that the accuracy of the method could be enhanced 
through using more approximating series terms (i.e. 
greater n, p versionconvergence) and more refined 
mesh (i.e. h version convergence). Also, the stabiliz-
ing effect of higher skew angle, higher laminate 
counts, and lower aspect ratios was shown on the 
parametric behavior of flat plates under harmonic 
longitudinal in-plane loadings. 
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