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In this article, vibration characteristics and the parametric instability of functionally graded 
material (FGM) plates with cyclic loading in a hygrothermal field are discussed. The plate 
element is modeled in a finite element by applying the third-order shear deformation 
hypothesis. The mathematical formulation of the FGM plate is made with two material 
constituents by applying the power rule to vary in association with the thickness path of the 
plate. Hamilton’s principle is employed to develop the arbitrary equation of motion, which is 
converted into periodic constants using the Mathieu Hill equation. The derived equation of 
movement with the help of Floquet’s theorem is applied to generate the instability and 
stability separations of the FGM plate in the hygrothermal environment. The current 
proposed results are compared with existing literature results to assess its validity. The free 
vibration characteristics are reduced by the rise of moisture absorption and the temperature 
of the FGM plates in the hygrothermal atmosphere. Hence, the influence of increased 
parameters increases the parametric instability of FGM plates. Temperature rise and 
moisture absorption regarding the parametric stability and the uncertainty region of the 
FGM plates are also observed. 
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1. Introduction 

The advancement of composite materials made 
of two or more constituent materials forms FGM.  
For specific applications, the FGMs are creating, 
which is likely possible with conventional 
materials.  The FGMs were implemented on 
structural applications like automobile parts, gas 
turbine blades, aerospace and nuclear, etc. These 
structural members may be exposed to hot and 
moist conditions through their usage. The 
absorption of moisture and heat variation affects 
the mechanical characteristics of the FGMs. An 
increase in moisture concentration may generate 
deterioration; this affects the stiffness of plates 
and its dynamic stability characteristics. The FGM 
shell configurations can be applied to oscillatory 
in-plane loading. It is required to comprehend the 
parametric instability characteristics of the 
structure with different boundary conditions. This 
phenomenon is titled a parametric resonance of 
structures and has been inspected by Bolotin [1]. 
Parametric resonance is potentially hazardous, 
and the system amplitude increases exponentially 
even in the presence of damping. Some failures of 

engineering structures can be as a result of 
parametric resonance. Parametric uncertainty 
does not ensure a unique frequency value; rather, 
it follows over a range of frequencies. Hence, the 
parametric uncertainty properties of the FGM 
plate with hygrothermal loads are essential to 
study. Levinson [2] proposed a new concept for 
the dynamics of isotropic plates of constant 
thickness. The assumed displacement field allows 
for non-uniform shearing of a cross-section and 
shear-free boundary conditions. This theory 
provides an enhanced approximation with the 
concept of elasticity solution. The neutral surface 
concept is introduced by Zhang and Zhou [3] and 
applied with two constituent materials of the FGM 
plates. The temperature-dependent material 
properties proposed by Reddy and Chin [4] for 
thermo-mechanical properties investigate of FGM 
plates and cylinders. Naghdabadi and Hosseini [5] 
used a 3-D degenerated shell finite element 
applied for the thermo-elastic study of FG plates 
and shells. Senthil and Batra [6] deliberated the 
vibration analysis of supported FG shells by using 
a 3-D solution method.  

Primarily stressed, FG plates vibration analysis 
in high thermal fields was reported by Yang and 
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Shen [7]. Their study pursuant to a change of 
temperature was filed by contemplating Reddy’s 
higher-order shear deformation hypothesis. Kim 
[8] assumed the variation of temperature in a 
thickness direction of the plate for the study of 
rectangular FG plate vibration with high-
temperature fields. Abrate [9] discussed the 
deflection of static plates, free vibration, and 
buckling of FG plates. Croce et al. [10] applied for 
the study of FG Reissner–Mindlin plates proposed 
a finite element approach. Critical buckling and 
natural frequency characteristics of FGM plates 
were computed by Ramu and Mohanty [11, 12] 
using the finite element method. Annular FGM 
plates free vibration analysis with variable 
thickness was established by Efraim and 
Eisenberger [13] applying an exact solution. 
Shahrjerdi et al. [14] studied the free vibration 
characteristics of solar FG plates in high-
temperature fields by considering second-order 
shear deformation theory.  

Researchers such as Lee studied the influence 
of a hygrothermal environment on stress, 
vibration, buckling, and dynamic stability of 
composite plates through various boundary 
conditions and Kim [15] carried out the buckling 
characteristics of FGM plates under hygrothermal 
environment. Similarly, Lee and Kim [16] 
examined the significance of combined thermal 
and moisture fields on the post-buckling 
performance of the FGM plate. Lal et al. [17] 
adopted a higher-order shear deformation 
hypothesis to investigate the post-buckling 
performance of FGM plates. Ramu and Mohanty 
[18] explored the effect of high thermal 
environments on a rotating FGM plate’s dynamic 
instability.   

Several studies have been reported the impact 
of hygrothermal fields on the vibration analysis of 
composite plates; Wanga and Dawe [19] 
introduced a finite strip arrangement of B-spline 
for the dynamic stability of prismatic plate 
structures and composite laminated rectangular 
plates. Rao and Sinha [20] inquired about the 
influence of moisture and temperature on the free 
vibration of multidirectional composites.  The 
dynamic instability of fiber laminated composite 
plates subjected to a harmonic load in a heat and 
moisture field was analyzed by Rath and Dash 
[21]. Ramu [22] examined the parametric 
uncertainty of FG plates including parametric 
excitation. Ramu et al. [23] deliberated FGM 
effects on the vibrations due to the environment 
of hygrothermal.   Mohammad and Hossein [24] 
inspected the stability analysis of higher-order 
refined FGM panels with aero-hygro-thermal 
loading. Mohammad [25] investigated the 
vibration analysis of layered plates by hygro-
thermal loads with nonlocal stress-strain relation. 

FG thermal expansion coefficients are effects that 
thermal stability of the plate’s exhibit, which was 
studied by Bousahla et al. [26]. Bellifa et al. [27] 
evaluated a four-variable discrete plate theory for 
the critical buckling examination of FG plates. 
Barati and Hossein [28] applied the nonlocal 
stress-strain gradient theory to study the hygro-
thermal vibration analysis of graded double 
refined nanoplate. Youcef et al. [29] examined the 
trigonometric plate theory variables in order to 
analyse the bending analysis of S-FGM plates 
under hygrothermal loadings. Mohamed Zidi et al. 
[30] analyzed the influence of the hygro-thermo-
mechanical loading on FGM plates applying a 
refined plate theory. Farzad and Barati [31] 
explore the vibration analysis of nanoscale beams 
with the effect of small-scale on hygro-thermo-
mechanical fields.  Barati [32] examined the 
stability analysis of porous FG nanoplates in 
hygro-thermal environments. Barati et al. [33] 
develop a higher-order refined supersonic FGM 
panel subjected to Aero-hygro-thermal loads to 
study the stability analysis. Abderrahmane et al. 
[34] inquired a new two-unknown trigonometric 
shear deformation theory to analyze the advanced 
nanobeams in the hygro-thermal environment. 
Abdelmoumen et al. [35] explored the coefficient 
of thermal expansion influence on the thermal 
stability of FG plates. 

There are remarkable works associated with 
the vibration investigation of an FGM plate under 
moisture and thermal conditions. The author has 
focused on the importance of moisture and heat 
loading on natural frequencies, critical buckling, 
and dynamic stability of FGM plates. Plate 
fundamental kinematics are chosen from third-
order shear deformation, and natural frequencies 
consequently dynamic durability study have been 
taken by a finite element method employing 
Floquet’s approach. The intended performance 
investigated the importance of the moist and 
thermal field and the power rule index value 
approaching the free oscillation features and 
parametric uncertainty regions of the FGM plates.  
In moist and thermal fields, the rise of heat with 
various temperature diffusion restrictions and 
moisture rate affects the vibration properties as 
well as the dynamic stability of the FGM plates. 

2. Mathematical Methodology  

2.1. Formulation of the Problem 

The rectangular cross-section with uniform 
thickness, having the length and width of the 
plate, has been deliberated for this analysis. 
Periodic loading on the rectangular FGM plate 
with temperature-dependent material, as 
described in Fig. 1.  

The loading condition is as follows: 
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Fig.1. Biaxial periodic loading of FGM plate 

 

  coss tW t W W t  
 (1) 

where Ws and Wt are static and time-dependent 
component of the load, correspondingly.  Ω is the 
dynamic load component of the excitation 
frequency. 

2.2. The constitutive law for FGM plate  

The simple power law for varying ceramic 
volume portion described as below: 
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where k index value of power law.   
The effective material properties are obtained by 
applying the simple rule of the mixture as follows: 

         c c m mP z P z V z P z V z   (3) 

where Pc(z)  is the ceramic material constituents 
and Pm(z) metal material constituents about 
whatever location z of the neutral plane of the 
plate having FG material, the effective material 
property can be represented as P(z); it may be 
mass density ρ, coefficient of moisture expansion 
Ф, Poisson’s ratio v, the elasticity of modulus E and 
thermal expansion coefficient Ѱ of the FGM plate. 
The rule of the mixture would be as follows: 

    1C MV z V z   (4) 

2.3. Concept of the physical neutral plane 

In this study, the concept of the neutral plane has 
been contemplated. The neutral plane concept has 
been adopted for this study. Fig. 2 illustrated the 
center plane and the neutral plane of the FGM 
plate. 
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Here d represents the neutral and geometric 
middle surfaces distance. 

 

Fig. 2. The design of FG material distribution along with the 
thickness of the plate 

2.4. The material properties are temperature-
dependent 

The material properties, which are 
temperature-dependent, acquired by the 
following equation: 
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where P0, P−1, P2, and P3 are the constants of 
temperature and are distinctive to each 
constituent. T = T0 + T(z), wherever T(z) is the 
thermal increment at any location z in accordance 
with depth way, and T0 is the ambient heat.  

Regarding the comparison equation (3), the 
active substantial features between two 
ingredients for FG material plates presented being 
developed as below:  
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(7) 

where the subscript m and c represent metal and 
ceramic properties, consequently. 

2.5. Fundamental kinematics  

The higher progression shear deformation 
condition is assumed for the basic constative 
relation of the plate element. The normal and 
transverse displacement components of in-plane 
transposition components of the plate can be 
denoted as. 
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 (8) 

where un, vn, wn, ϴx and ϴy denote the purpose of x 
and y., un, vn moreover wn represent the 
displacements with respect to the inactive face of 
the plate. ϴx and ϴy are the circumrotation of 
transverse common about the y- and x- axis, 
accordingly.  
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The relationships of in-plane and transverse 
shear strain displacements remain expressed as 
below:  
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The stress resultants are expressed as follows: 
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Substitution of eq. (10) in eq. (11) and eq. (12) 
yields the following relations: 
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Stiffness components are all represented as 
below: 
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2.6. Thermal analysis 

The thickness direction is assumed to vary 
temperature distribution for this analysis. 
Uniform, linear, and nonlinear thermal 
environment circumstances are deliberated for 
this study. 

2.7. Distribution of temperature uniformly 

The temperature rise in accordance with 
thickness in the uniform temperature 
environment is assumed as follows: 

   0T z T T z   (16) 

wherever ΔT(z) =Tc-Tm, represents the grade of 
temperature. Tc is the heat at the ceramic plane, 
and Tm is the temperature at the metal plane, 
correspondingly. 

 Analysis of temperature linearly 

The linear rise of heat on the depth is 
represented below as below: 

   
1

2
m

z
T z T T z

h

 
    

 
 (17) 

 Distribution of temperature nonlinearly 

The nonlinear heat rise along the depth 
direction can be denoted as follows: 
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2.8. Finite Element Analysis 

FGM plate model analysis has been performed 
by finite element procedure applying a 
rectangular element with four-node as depicted in 
Fig.3. Each node contains seven degrees of 
freedom. The normal displacements fields are u, v 
and w is the oblique displacement, ϴx and ϴy 
circumrotation with respective x and y-axis, 

correspondingly. Similarly, 
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where {q(e)}={ui, vi, wi, 
𝜕𝑤𝑖

𝜕𝑥
, 

𝜕𝑤𝑖

𝜕𝑦
 }i=1,2,3,4 nodal 

displacement vector.  
Ni, i=1, 2, 3, 4 denote the part nodal profile 
functions.  
 

 
Fig.3. Rectangular element geometry 
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The part shape function matrix [N] can be 
written as follows: 
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By applying higher-order shear deformation 
condition, the vibratory stresses of the plate 
element in strain energy can be expressed as 
below: 
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The nodal displacement vector in the strain 
vector is expressed as below: 
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here, [B(bd)]= [B(b1)]+z[B(b2)]+z3[B(b3)] and [Bsh]= 
[Bs3] + z2[Bs4]. 

Replacing equations (13), (22) and (23) in 
equation (21), the potential energy of the plate 
part can be described as follows:  
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The stiffness matrix of the element can be 
determined as below: 
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Hygrothermal stresses on the FGM plate when 
exposed to moisture and temperature. Those 
stresses are derived as follows: 
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(26) 

where q11=q22=
𝐸(𝑧)

(1−𝑣2(𝑧))
, q12=q21=

𝑣(𝑧)𝐸(𝑧)

(1−𝑣2(𝑧))
 

q66=
𝐸(𝑧)

2(1+𝑣(𝑧))
, ΔC=Cc-Cm, similarly ΔT=Tc-Tm,  

anywhere Tm and Cm are the implication of heat  
and the represents moisture concentration at the 
metal surface, Tc and Cc are the temperature and 
moisture concentration at ceramic surface, 
respectively. Moreover, Ѱ is the coefficient of 

thermal expansion of the plate; Ф is the moisture 
expansion coefficients of the FGM plate. 

As a result of moisture concentration, the 
resultants of force, moments and moments of 
higher order are expressed as 
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Substituting eq. (26) in eq. (27) yields the 
following relations as follows: 
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(28) 

The hygrothermal stiffness elements are 
computed as below: 
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The relationships of strain-displacement with 
a respective neutral plane can be derived as 
follows: 
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(30) 

The expression for strain vector is formulated 
in expressions of a nodal vector of displacements 
{q(e)} can be described as: 
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(31) 

where [Bb] =[Bb] +z’[B1] +z’3[B2]  

The component strain energy (𝑈𝐻𝑇
(𝑒)

) of the 
element due to temperature rise and moisture 
concentration is expressed as below: 
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(32) 

Replacing comparisons of Eq. (30) and Eq. (31) 
in Eq. (32), the element strain energy as a result of 
moisture concentration can be formulated as 
below: 
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Expression of matrix [𝐾(ℎ𝑦)
(𝑒)

] is given in element 

resultant strain energy (U(e)).  
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where [𝐾(𝑓𝑛)
(𝑒)

]= [K(e)]- [𝐾(ℎ𝑦)
(𝑒)

]              

The plate element kinetic energy is derived as 
follows: 
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The shape functions and nodal velocity vectors 
𝑢̇, 𝑣 ̇  and 𝑤̇  are represented as below: 
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anywhere [M(e)] is the matrix of element mass. 
The elemental work done can be written in 

terms of nodal displacement vector as follows: 
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here [𝐾(𝑒𝑙)
(𝐺)

] is the matrix  of the stiffness related  to 

geometry.  
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3. Directing Equation of Motion 

In the hygrothermal environment, the 
governing equation of movement about FGM plate 
has been established applying Hamilton’s 
principle.  
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( 40) 

In-plane loading on FGM plate, an arbitrary 
equation development of plate element 
represented as below: 
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 (41) 

The global matrices and displacement vector 
are obtained by assembling the element matrices, 
then the governing equation of motion of the plate 
element attained is expressed as: 

         0ef gM q K q W t K q        
 (42) 

Here W(t) =αPcr + βPcr cosΩt, the static load 
factor is α and the dynamic load factor is β, 
correspondingly. 
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 (43) 

3.1. Analysis of dynamic stability 

The solution of the governing equation of 
motion is acquired by Floquet’s theory with 
periodic function. Fourier series with period 2T is 
deliberating for the periodic solution, and it can be 
expressed as below: 

     
1,3,..

sin cos
2 2

b b

b

b t b t
q t c d





  
  

 
  (44) 

Contemplating first-order term (b=1) and it 
can be substituted in the Fourier series expansion 

of Eq. (44) in eq. (43). The coefficients of cos
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2
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 terms comparison, solutions with period 2T 
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The dynamic stability region would be 
obtained by plus and minus sign. The solution of 
the equation can be computed by the instability 
boundaries. 

4. Results and Discussion 

4.1. Validation of present work   

For this study temperature, dependent 
materials are deliberated in order to analyze an all 
side’s fixed FGM (Si3N4/SUS304) plate with a 
constant temperature field. Table 1 presents the 
material coefficients of temperature-dependent 
properties.  

Frequency parameter: 𝜛 =
𝜔𝑊2

П2
√

𝐼0

𝐷
,  

Here 𝐼0 = 𝜌ℎ, 𝐷 =
𝐸𝑚 ℎ3

12(1−𝑣2)
 and base material as 

metal SUS304 at room temperature T = 300 K is 
assumed.  

The expansion coefficient of moisture 
constants for ceramic Ф𝑐 = 0    and for metal 
Ф𝑚 = 0 are adopted from literature [22].  



R. Inala / Mechanics of Advanced Composite Structures 7 (2020) 89 – 101 

95 

A 10×10-element discretization gives 
satisfactory convergence for the natural 
frequencies of the plate. The contemporary 
computational purpose acquired outcomes are 
correlated by published outcomes. For 
comparative study, the first six mode natural 
frequencies of all sides’ fixed FGM plates are 
contemplated. The present method results are 
accomplished by applying a third-order shear 
deformation hypothesis. Senthil, Batra [6], Yang, 
and Shen [7] results matched the present 
mathematical results. 

Table 2 results reveal the primary six 
fundamental frequency parameters of a plate 
made of (Si3N4/SUS304) FGM, here, the ceramic 
rich of an upper surface and metal-rich of the 
bottom surface. The uniform temperature rise 
environment is chosen for this study with index 
values k = 2 and 10 and geometric properties L/W 
= 1.0 and 1.5. Senthil [6] and Yang [7] results are 
compared with the present computational method 
and found to be in good agreement.    

The influence of moisture percentage on the 
fundamental natural frequency of the laminated 
composite (Graphite/Epoxy) plate is listed in 

Table 3. The results are in agreement with the 
earlier work of reference [16]. 

4.2. FGM plates free vibration and buckling 
study 

An FGM (Al2O3/SUS305) plate with 
geometrical properties of thickness 0.02m and 
0.2m of length has been deliberating for this 
analysis. The computational results of natural 
frequencies are obtained with various thermal 
fields. All sides simply supported FGM plate by 
nonlinear, linear and uniform thermal fields are 
contemplating and the analyzed results are 
presented graphically. The thermal environment 
of nonlinear, linear and uniform fields are 
presented in Figs. 4 (a), 5 (a) and 6 (a) for the 
deviation of primary regularity parameter with 
index value k=1 and 5, correspondingly. 
Moreover, the depicted Figs. 4 (b), 5 (b), and 6 (b) 
display the distinction of frequency parameters in 
the secondary mode of simply defended FGM plate 
by linear, constant and nonlinear heat 
circumstances with k=1 and 5 index values, 
respectively. 

Table 1. Material properties of temperature-dependent Reddy and Chin [4] 
Materials Units P0 P-1 P1 P2 P3 

Al2O3 

E (Pa) 349.55X109 0 -3.853x10-4 4.027x10-7 -1.67310-11 

  (/K) 6.8269x10-6 0 1.838x10-4 0 0 

ѵ 0.26 0 0 0 0 

ρ(kg/m3) 2700 0 0 0 0 

Si3N4 

E (Pa) 348.43X109 0 -3.070x10-4 2.160x10-7 -8.94610-11 

 (/K) 5.872x10-6 0 9.065x10-4 0 0 

ѵ 0.24 0 0 0 0 

ρ(kg/m3) 2370 0 0 0 0 

SUS304 

E (Pa) 201.04x109 0 3.079x10-4 -6.534x10-7 0 

  (/K) 2.33x10-6 0 8.086x10-4 0 0 

ѵ 0.3262 0 -2.002x10-4 3.797x10-7 0 

ρ(kg/m3) 8166 0 0 0 0 

Table 2. comparison of all side clamped (Si3N4/SUS304) FGM plates of first six frequency parameters 

L/W k Source  

Frequency parameters 

1  2  3
  

4  5  6  

1 

2 Yang [7] 3.663  7.254 7.254 10.392 11.705 12.317 
 Senthil [6] 3.720  7.301  7.301  10.334  12.225  12.356  
  Present  3.661 7.283 7.283 10.254 12.520 12.655 
 10 Yang [7] 3.183 6.300 6.300 9.017 10.237 10.678 
 Senthil [6] 3.139 6.185 6.185 8.765 10.372 10.486 
 Present  3.103 6.278 6.278 8.821 10.565 10.682 

1.5 

2 Yang [7] 2.733 4.223 6.633 6.633 7.908 9.812 
 Senthil [6] 2.790 4.283 6.640 6.722 7.894 9.852 
 Present  2.757 4.221 6.663 6.677 7.847 9.876 
10 Yang [7] 2.3753 3.667 5.761  5.761 6.869  8.520 
 Senthil [6] 2.3470 3.614 5.623 5.691 6.688 8.355 
 Present  2.3058 3.540 5.611 5.619 6.611 8.326 
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Table 3. Comparison of moisture effect on the natural 
frequency parameter of the laminated plate. 

 
(a) 

 
(b) 

Fig.4. FGM plate natural frequency parameter variation in the 
uniform temperature field. (a) First Mode and (b) Seconde 

Mode. 

 
(a) 

 
(b) 

Fig. 5. FGM plate natural frequency parameter in the linear 
temperature field. (a) First Mode and (b) Seconde Mode.  

 
(a) 

 
(b) 

Fig. 6. (a) FGM plate natural frequency parameter in the 
nonlinear temperature field. (a) First Mode and (b) Seconde 

Mode. 

These influence the various thermal 
environments on the natural frequencyy of the 
first mode as depicted in Fig. 7. It describes that 
the uniform thermal field is more intense 
compared with the linear and nonlinear thermal 
fields. As a result of this, the uniform temperature 
field affects more significantly on a natural 
frequency parameter than those of the nonlinear 
and linear thermal fields. 

Figure 8 (a, b) reveals the influence of the 
moisture rate on the primary and secondary mode 
natural frequencies of the plate and the operating 
temperature, including the symbol consequences 
of k=1 and k=5, respectively. It is evident that the 
rise of moisture percentage decreases the primary 
and secondary mode frequency parameter of 
plates. The effective stiffness of the FGM plate is 
reduced through the rising of moisture fraction; 
consequently, the frequency parameters are 
decreased. 

 
Fig. 7. First mode fundamental frequency parameter variation 
with temperature change for various heat filed. (K=1, ΔC=1%). 

Moisture 
percentage  

0% 0.5% 1% 1.5% 

Ref [16] 12.816 11.258 10.762 9.248 
Present  12.726 11.171 10.649 9.164 
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(a) 

(b) 

Fig. 8 Ppercentage variation of moisture versus frequency 
parameter of a plate. (a) First and (b) Secondary  

The first and secondary mode fundamental 
frequency parameter variation regarding simply 
supported plates at 500 KT  is depicted in Fig. 

9(a) and (b) with index values k = 2 and 10, 
correspondingly. The moisture concentration 
percentage varies from 0% to 1.5%. These Figures 
display that gaining moisture percentage declines 
the fundamental parameters. The presence of 
moisture concentration causes a significant 
reduction of non- dimensional parameters of the 
first two-mode frequencies, as it is observed in the 
plots. 

The stiffness of the FGM plate in the 
hygrothermal field is reduced; as a result of the 
increase of moisture percentage, so the decreased 
stiffness reduces the natural frequencies. The 
effective elasticity of the modulus is reduced with 
an increase of metal volume fraction, so the 
frequency parameters decrease. Similarly, an 
increase of index value decreased the current 
elasticity of modulus and caused the reduction of 
natural frequency parameters. 

The influence of variation regarding the 
percentage of moisture at the critical buckling of 
plates formed FGM under the hygrothermal field 
by symbol preferences k=1 also 5 as presented in 
Figs. 10 (a) and (b), respectively.  The increase of 
moisture percentage from 0% to 1.5% causes a 
reduction of critical buckling load. The Figures 
portrayed the amount of moisture percentage, an 
increase that may cause loss of its structural 
properties and reduces critical buckling load. 

 

 

 
(a) 

 
(b) 

Fig. 9. Moisture concentration variation of natural frequency 
parameter. (a) First and (b) Second Mode. 

 
(a) 

 
(b) 

Fig. 10. Moisture concentration versus a critical bulking load of 
FGM plate (a) k=1 and 5, (b) k=2 and 10. 

4.3. Influence of hygrothermal field on 
parametric instability of FGM plates 

Figures 11 and 12 would highlight the dynamic 
stability regions of the FGM plates rise of 
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temperature at k=1 and k=5, correspondingly. The 
increase of temperature 0K, 200K and 400K 
display the way the instability in the region 
changes towards the axis of the dynamic load. It 
indicates that the rise of temperature reduces the 
stability of the plate. The parametric resonance of 
excitation frequency is reduced with an increase 
in temperature. The structural stiffness is reduced 
with an increase in temperature, which causes 
more chances of loss of stability. 

The influence of moisture on the parametric 
instability of the plate formed by FGM under the 
hygrothermal condition is illustrated in Figs. 13 
and 14 with a constant temperature field (100 K).  

 
Fig. 11. The rise of temperature influences the parametric 

instability of the FGM plate at k=1. 

 
Fig. 12. The rise of temperature influences the parametric 

instability of the FGM plate at k=5. 

(a) 

(b) 
Fig. 13 Moisture concentration influence the uncertainty region 

of the plate (FG) at k=1. (a) first mode and (b) seconde mode 

(a) 

(b) 
Fig. 14 Moisture concentration influence the secondary mode 
uncertainty area of the plate (FG) at k=5. (a) first mode and (b) 

second mode. 

The moisture percentage concentration is 
depicted to be at 0%, 0.75% and 1.5%, so the 
increase of percentage concentration reduces the 
dynamic stability at value k=1 and k=5 of FGM 
plate. The parametric instability areas move near 
the axis of the dynamic load with the rise of 
moisture percentage. The excitation frequency 
lowers as a result to the boost in moisture 
concentration. 

The various combinations of the temperature 
difference and percentage of moisture (100, 
0.5%), (300, 1%) and (500, 1.5%) of hygrothermal 
environment conditions are investigated and 
depicted in Figs. 15 (a) and (b), respectively.  

The dynamic instability graphs illustrated in 
Figs. 15 (a) and (b) reveal various combinations of 
moisture percentage and difference of 
temperature. It absorbs moisture from the plots 
and the temperature rise degrades the overall 
stiffness of the structure. The tainted FGM 
structure reduces the excitation frequency; it 
causes the instability area to move toward the axis 
of dynamic load. Hence, instability is enhanced for 
the FGM plate in the hygrothermal field. In 
addition to that, the area of instability increases 
and reveals the excitation frequencies range are 
wider.  

Figures 16 (a) and (b) depict the influence of 
moisture percentage and rise of temperature on 
the parametric uncertainty of the plate by power-
law unit k=5. The lesser excitation frequencies 
occur as a result of an increase of index value. 
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(a) 

(b) 
Fig. 15 Parametric uncertainty region of FG material plate in 

the hygrothermal field by k=1. (a) Fundamental and (b) 
Secondary 

(a) 

(b) 

Fig.16 Uncertainty zone of FG material plate in the 
hygrothermal field with k=5. (a) First mode and (b) Second 

mode. 

5. Conclusions 

In this work, a finite element method applying 
a third-order shear deformation hypothesis in 
conjunction with Hamilton’s principle for 
vibration and parametric instability of the FGM 
plates has been presented. The influence of the 

hygrothermal environment and index values on 
parametric instability of the FGM plate for simply 
supported boundary conditions was studied. 

The variation of frequency parameter in 
uniform, linear and nonlinear thermal fields was 
computed; the boost of temperature difference 
decreases the primary and secondary mode 
fundamental frequencies of the FGM plate in each 
case respectively. Similarly, the fundamental 
frequencies of the initial and secondary modes are 
reduced by a rise concerning rule values. The heat 
enhancement and precipitation presence reduce 
the frequency parameters of FGM plates. The 
critical bulking load of the FGM plate is reduced 
with the rising of the moisture concentration. 

The hygrothermal field increases temperature 
and the parametric instability of the FGM plate 
under periodic loading. The presence of moisture 
concentration stable the FGM plate makes less in a 
hygrothermal field. The parametric instability 
enhanced by the accumulation of moisture 
preoccupation. The lower excitation frequencies 
occur due to the mutual consequence of moisture 
concentration and the rise of heat in the 
parametric uncertainty region. It indicates that 
dynamic stability reduces the hygrothermal 
environment. 
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