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In this study, a dynamic stiffness method for free vibration analysis of moderately thick function-
ally graded material plates is developed. The elasticity modulus and mass density of the plate are 
assumed to vary according to a power-law distribution in terms of the volume fractions of the 
constituents whereas Poisson’s ratio is constant. Due to the variation of the elastic properties 
through the thickness, the equations of motion governing the in-plane and transverse defor-
mations are initially coupled. Using a new reference plane instead of the mid-plane of the plate, 
the uncoupled differential equations of motions are derived. The out-of-plane equations of mo-
tion are solved by introducing the auxiliary and potential functions and using the separation of 
variables method. Using the method, the exact natural frequencies of the Functionally Graded 
Plates (FGPs) are obtained for different boundary conditions. The accuracy of the natural fre-
quencies obtained from the present dynamic stiffness method is evaluated by comparing them 
with those obtained from the methods suggested by other researchers. 
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1. Introduction    

Functionally Graded Materials (FGMs) are inho-
mogeneous composites made from different phases 
of material constituents (usually ceramic and met-
al). The FGMs were initially designed as thermal 
barriers for aerospace structures and fusion reac-
tors. In the plate form the Functionally Graded 
Plates (FGPs) are widely used in structural applica-
tions and their behaviour has been studied by sev-
eral investigators. Mizuguchi and Ohnabe [1] used 
Galerkin method to analyse a clamped rectangular 
plate subjected to an arbitrary symmetrical temper-
ature and a load distribution about the midpoint of 
the plate, while the plate was prevented from in-
plane motions on the boundaries. Parveen and Red-
dy investigated the response of functionally graded 
ceramic metal plates using a finite element tech-
nique that accounted for the transverse shear 
strains, rotary inertia and moderately large rota-
tions. The static and dynamic responses of the FGPs 
were investigated by varying the volume fraction of 

the ceramic and metallic constituents using a simple 
power law distribution [2]. In this regard, Yang and 
Shen dealt with the dynamic response of initially 
stressed functionally graded rectangular thin plates 
subjected to partially distribute impulsive lateral 
loads resting on an elastic foundation [3]. Then, they 
analysed free and forced vibration for initially 
stressed FGPs in thermal environment [4]. The 
third-order shear deformation plate theory was em-
ployed to solve the axisymmetric bending and buck-
ling problems of functionally graded circular plates 
by Ma and Wang [5]. Kitipornchai et al. [6] investi-
gated the nonlinear vibration of imperfect shear 
deformable laminated rectangular plates compris-
ing a homogeneous substrate and two layers of 
FGMs. The thermal buckling of circular plates com-
posed of FGMs was considered by Najafizadeh and 
Heydari [7]. A recently developed plate theory using 
the concept of shape function of the transverse co-
ordinate parameter was extended to determine the 
stress distribution in an orthotropic FGP subjected 
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to the cylindrical bending by Bian et al. [8]. Based on 
the three-dimensional fundamental equations of 
anisotropic elasticity, a state equation with variable 
coefficients was derived in a unified matrix form by 
Chen et al. [9]. The free vibration analysis of arbi-
trary shaped thick plates by differential cubature 
method was analysed by Wu and Liu [10]. Abrate 
[11] investigated a functionally graded isotropic 
elastic rectangular plate with in-plane material in-
homogeneity. An closed-form procedure was pro-
posed by Hosseini-Hashemi et al. [12] for the free 
vibration analysis of moderately thick rectangular 
plates simply supported at the two opposite edges 
(i.e. Levy-type rectangular plates). Their procedure 
was based on the Reissner–Mindlin plate theory. 
Then, Hosseini-Hashemi et al. [13] worked on free 
vibration analysis of moderately thick rectangular 
plates, which were composed of functionally graded 
materials and supported by either Winkler or 
Pasternik elastic foundations.  

The finite element based simulation of the dy-
namic response is regularly employed by the FGM 
manufacturers in order to improve their products' 
comfort and reliability. For instance, the asymmetric 
free vibration characteristics and thermo-elastic 
stability of functionally graded circular plates were 
investigated using finite element procedure by Par-
kash and Ganapathi [14]. Shariyat [15] analysed the 
vibration and dynamic buckling of functionally 
graded rectangular plates using a finite element 
formulation based on a higher-order shear defor-
mation theory. Afsar and Go [16] focused on the fi-
nite element analysis of thermo-elastic field in a thin 
circular FGM disk subjected to a thermal load and an 
inertia force due to the rotation of the disk. Moreo-
ver, the large amplitude flexural vibration charac-
teristics of FGPs were investigated by Parkash et al. 
[17] using a shear flexible Finite Element Method 
(FEM). The FEM is a powerful tool to analyse a com-
plex geometry of modelled structures which is es-
sential for industrial applications. However, with 
high-frequency excitation, many structures of inter-
est require very large computer models which re-
duce the computational efficiency when the finite 
element technique is used for discretization. Hence, 
for specific geometries, periodic or semi-infinite 
boundary conditions, the frequency domain meth-
ods such as dynamic stiffness matrix, strip element 
and spectral finite element were developed to over-
come the problem. 

Among the frequency domain methods, Dynamic 
Stiffness Method (DSM) is very suitable for solving 
dynamic problems. The method is often referred to 
as an exact method as it is based on exact shape 
functions obtained from the solution of the differen-
tial equations of motion. The DSM, which yields ex-
act results for certain class of plate structures, is 
used to analyse free vibration frequencies of various 

structures. Leung and Fung [18] extended the DSM 
to a large amplitude free and forced vibration of 
frames. A general theory to develop the dynamic 
stiffness matrix of a structural element has been 
outlined by Banerjee [19]. A direct-DSM was pre-
sented for the vibration analysis of orthotropic plate 
structures by Bercin [20]. Bercin and Langley [21] 
extended the DSM to include in-plane vibrations of 
the plate. The direct-DSM was extended to the vibra-
tion analysis of Mindlin plates by Bercin, then inves-
tigated the effects of shear distortion and rotary 
inertia on the flexural energy transmission of a rep-
resentative stiffened plate structure [22]. Later, 
Bercin employs the DSM to calculate the free vibra-
tion of various simply-supported plate and sees that 
while for the directly coupled plate assemblies the 
in-plane effects are negligible for low-order modes, 
for the stiffened plate assembly the effect of in-plane 
motion equals a reduction in the free vibration fre-
quencies [23]. Application of the DSM to turbulent 
boundary layer was presented by Birgersson et al. 
[24]. Hatami and Azhari [25] formulated the DSM 
for orthotropic plates moving on some rollers and 
an elastic foundation. Boscolo and Banerjee [26] 
developed the DSM for plates based on the first-
order shear deformation theory to carry out the ex-
act free vibration analysis of the plate assemblies. In 
addition, the dynamic stiffness formulation for both 
in-plane and bending free vibration based on the 
first-order shear deformation theory for composite 
plates was presented by the same team [27]. They 
investigated the in-plane free vibration behaviour of 
plates using the DSM. Some distinctive modes which 
were unnoticed in earlier investigations using the 
DSM were addressed by revisiting the problem and 
focusing on the special set of missing solutions [28]. 
Then, The DSM for composite plate elements based 
on the first-order shear deformation theory was 
implemented in a program called DySAP that com-
puted the exact natural frequencies and mode 
shapes of composite structures by them [29]. Based 
on a higher order shear deformation theory, Fazzo-
lari et al. [30] developed an DSM in order to carry 
out the free vibration analysis of composite plate 
assemblies. To derive the governing differential 
equations of motion and natural boundary condi-
tions, they implemented Hamilton’s principle. They 
used Wittrick–Williams algorithm [31] as a solution 
technique to compute the natural frequencies and 
mode shapes for a range of laminated composite 
plates and stepped panels. The dynamic stiffness 
matrix for isotropic rectangular plate with arbitrary 
boundary conditions undergoing in-plane free vi-
bration was developed by Nefovska-Danilovic and 
Petronijevic [32]. An exact method for free vibration 
analysis of plates with arbitrary boundary condi-
tions is presented by Liu and Banerjee [33] which 
the formulation satisfies the governing differential 
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equation exactly and any arbitrary boundary condi-
tions are satisfied in a series sense. 

In this study, the free vibration of moderately 
thick FGPs is studied by DSM using First-order 
Shear Deformation Theory (FSDT). Based on the 
knowledge of the authors, there are no studies 
available in the literature (including the articles re-
viewed in this section) developing dynamic stiffness 
matrices for FGPs using FSDT. 

The basic characteristic of the “moderately thick” 
plate theories is that the rotations of plate cross sec-
tions cannot be merely expressed in terms of the 
transverse displacement. Thus, there exist three 
basic quantities at the plate edge including out-of-
plane displacement and rotations. For solving the 
equations of motion by DSM, the potential functions 
presented by Bercin [22] are used to convert the 
three out-of-plane equations in to three independ-
ent equations. Solving these independent equations 
and composing the results of each equation, the dy-
namic stiffness matrix of a plate element is derived 
which allows the calculation of the free vibration 
frequencies of the moderately thick plate. Several 
cases dealing with free vibration problems are pre-
sented in order to illustrate the accuracy of results 
obtained by the suggested method. 

 

2. Functionally Graded Materials 
In the laminated composite plates, the stress 

concentrations generate along the interfaces, more 
specifically when high temperatures are involved. 
This can lead to delamination, matrix cracking and 
other damage mechanisms which result from the 
abrupt change of the mechanical properties at the 
interface of the layers. One way to overcome this 
problem is to use Functionally Graded Materials 
(FGMs) within which the material properties have 
continuous variation from one surface to the other. 

The FGMs are composite materials, the mechani-
cal properties of which vary continuously in the 
thickness direction. However, a detailed description 
of actual graded microstructure is usually not avail-
able, perhaps except for the volume fraction distri-
bution. The FGMs are often manufactured by two 
phases of materials with different properties. Since 
the volume fraction of each phase gradually varies 
in the graded direction, the effective properties of 
the FGMs change along this direction, as shown in 
Fig. 1. In this study, a continuous variation is as-
sumed for the volume fraction of ceramic or metal, 
and the metal volume fraction can be represented 
by the following function of the transverse coordi-

nate z. 

   
1

, 2 2
2

 
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 

p

c

z
V h z h

h
 (1) 

 
Figure 1. The schematic illustration of a two-phase FGM 

 

 

Figure 2.The variation of volume fraction through the 

dimensionless thickness of the plate 
 

Where h is the thickness of the structure, and P 

 0 P    is a volume fraction exponent that de-

notes the material variation profile through the FGP 
thickness. As the variation of P is presented in Fig. 2, 
changing the value of P generates an infinite number 
of composition distributions. 

     c m c mT z T T V T  (2) 

Where the subscripts m and c refer to the metallic 
and ceramic constituents, respectively, and the ma-
terial’s property T, can be the modulus of the elastic-
ity  E , the density   , or the Poisson’s ratio ( ) . 

 

3. Equations of Motion 
According to the first-order shear deformation 

theory, the displacements of the plate are repre-
sented as the following [34]: 
      0, , , , , , ,xu x y z t u x y t z x y t   
      0, , , , , , ,yv x y z t v x y t z x y t  (3) 
    0, , , , ,w x y z t w x y t   

Where u and v are the in-plane displacements and 

w, 
x  and y  are the out-of plane displacements and 

rotations about y and x axes, respectively. The zero 
index identifies the mid-plane displacement along 
the x, y and z axes (Fig. 3). 
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The strains associated with the displacement 
field in Eq. (3) are given by the following equations: 

0 x
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 Note that the in-plane strains  , ,xx yy xy    are 

linear through the plate thickness, while the trans-

verse shear strains  ,xz yz   are constant. The 

strains in Eq. (4) can be expressed in the vector 
form as the following: 
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The stresses resultant is related to the strains by 
the following expressions: 
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Figure 3. A rectangular moderately thick plate, a) coordinate 
system of the plate, b) deformation of the plate section, c) in-

plane and out-of-plane forces on an infinitesimal element of the 
plate 

 
Where Qii is referred to as the reduced stiffness 
component. For an isotropic FGM plate they are ob-
tained as what follow:  

 

  

 
 

  

 

11 22 2

12 11 66

44 55

,
1

, ,
2 1






 


 


 

E z
Q Q

z

E z
Q z Q Q

z

Q Q G z

 (7) 

Where  and G are Poisson’s ratio and shear mod-

ules, respectively. The forces and moment resultants 
are defined by Eq. 8 as follows: 
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Where N, M and Q are the vectors of in-plane forces, 
moments and transverse shear forces, respectively 
as follows: 
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And Aii (i,j=4,5), are the shear stiffness resultants 
defined as the following: 
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For isotropic materials, there is no coupling be-
tween the shear deformations in two directions, i.e., 
A45=0 and A44=A55. Therefore, it is sufficient to iden-
tify only one of the components A44 or A55. The shear 
correction factor ks

2, is assumed to be 5 6  [34]. The 

components of extensional (A), coupling (B) and 
bending (D) stiffness matrices in Eq. 9 are defined as 
the following: 
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Using the Hamilton's principle [34], and elimi-
nating first moment of inertia, the equations of mo-
tion in terms of forces and moment resultants are 
governed by the following relations: 
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Where I0 and I2 are the mass of the plate per unit 
area and its mass moment of inertia, respectively. 

The density,  z , can potentially vary through the 

thickness. 
Substituting Eqs. (5) and (8) to Eqs. (12a-12e), 

the equations of motion for a rectangular moderate-
ly thick FGM plate, based on the mid-plane dis-
placements are obtained as what follow: 
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Even when in-plane inertias are ignored, these 
equations of motion (Eqs. 14) show that in-plane 
and out-of-plane are coupled. Nevertheless, Abrate 
[35] shows that the equations of motion can be un-
coupled if a different reference surface rather than 
the mid-plane of plate is selected. He uses a new 
reference plane (z'=0) with a distance of   from 

mid-plane (z=0), as shown in Fig. 4. The distance is 
calculated as the elements of the coupling matrix are 
zero according to the new reference surface. 

 
Figure 4. The new coordinate system (z') which B'ii=0 
 
To obtain the stiffness properties of the plate ac-

cording to the new reference plane (A'ii,B'ii,D'ii), as 
proposed by Abrate [35], z is replaced with z   in 

Eq. (11); then, we have the following: 
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Eqs. (15) and (16) yield what follows: 

ij ij ijB B A   (17) 

Also 
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Using Eqs. (15), (17) and (18) we can obtain the 
following: 

22    ij ij ij ijD D B A  (19) 

or 
22   ij ij ij ijD D B A  (20) 

Where z't and z'b are the values of z' on the top and 
bottom surfaces of the plate, respectively. Aij and A'ij 
are equal, because both of Aij and A'ij are the area 
under Qij function when z or z' varies along the plate 
thickness. 

Setting B'ij in Eq. (17) to zero, the distance of the 
mid-plane to the new plane is  =Bij/ Aij.  is not 

dependent on ij subscript in the case of constant 
Poisson's ratio. In this case, all elements of B' be-
come zero only with a single . Even though the 

Poisson's ratio varies along the plate thickness, by 

considering 11 11/  B A ; 11
B , 22

B  , 12
B  and 66

B  also 

become small amounts.  
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 0z   
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So, substituting 0 ijB and /  ij ijB A into Eq. 

(19), ijD can be rewritten as follows: 

2

2    
ij

ij ij ij ij

ij

B
D D A D

A
 (21) 

Using Eqs. (11) and (21), the following relations 

are obtained for the elements of ijD : 

 11 22 12 66 02       D D D DD  (22.a) 

16 26 0  D D  (22.b) 

In which D'
0 is just introduced for simplicity of 

the notations.  
Using flexural rigidity around new reference 

plane from Eqs. (22) and setting B'ij to zero, Eq. (8) 
gives us the bending moments around the new ref-
erence plane. Replacing those bending moments 
into Eqs. (12 c, d, e), out of plane free vibration dif-
ferential equations for a moderately thick FGM are 
obtained as follows: 
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In these relations,       x yx y  and 

2 2 2 2 2     x y
. 

The basic characteristic of “moderately thick” 

plate theories is that the rotations x  and y  (Fig. 5) 

of the plate cross sections about the in-plane coor-
dinate axes x and y cannot be merely expressed in 
terms of the normal deflection w. Thus, there exist 

three basic quantitiesy , x and w (transverse dis-

placement) at the plate edge rather than just w as in 
the thin plate theory. So, for solving the equations of 
motion presented in Eqs. (23.a, b, c) by DSM, there is 
a need to uncouple these equations. Introducing 
some potential functions, Mindlin [36] developed a 
method for uncoupling such equations. Using the 
Mindlin method and the formulation presented by 

Bercin [22], Eqs. (23) can be written as the follow-
ing: 

 2 2

1 1 0  W  (24.a) 

 2 2

2 2 0  W  (24.b) 

 2 2

3 0  H  (24.c) 

Where W1, W2 and H are potential functions. 1 , 2

and 3 represent the wave numbers, which are 

given by the following equations: 
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S  (26) 

Where 
2 12 hS  , 

2 o sR D k Gh  , and   is the clas-

sical plate flexural wave number defined as what 
follows: 

1

2 4 
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 o

h

D
 (27) 

The rotations x  and y , and the normal deflec-

tion w are calculated from the potential functions as 
the following: 
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(28) 

In which 
4 4

1 22 2

1 2

,
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R R
 (29) 

 

 
Figure 5. Nodal displacement and forces acting on the edges of a 

thick plate element 
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4. Dynamic Stiffness Method 
The DSM is similar to the FEM in that the struc-

ture is discretised into the number of elements or 
substructures at the natural structural boundaries. 
Since the mode shape of a member varies with the 
vibration frequency, the FEM requires a subdivision 
of a structure into many finite elements for accurate 
solution of the free vibration equations. Alternative-
ly, using the DSM in which the shape functions are 
frequency dependent, the exact solution is obtained 
employing only a few elements. 

Fig. 3(a) shows a FGM rectangular plate with 
simple boundary conditions along the x direction. 
For such a plate, the general form of the three po-
tential functions of Eqs. (24) may be expressed as 
the following[22]: 
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mnA , mnB  and mnC  (m=1,2) are coefficients of 

the equation solution, nk n L  is the wave num-

ber of the n th mode in y direction (n=1,2,…), and  
is the frequency of vibration. Substituting Eq. (30) 
into Eq. (24), the problem then essentially becomes 

one-dimensional where nr  , n  and n  are given 

by the following equations: 
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 (31) 

Substituting Eqs. (30) into Eqs. (28) implies that 
the form of the potential functions satisfies the sim-
ple boundary conditions along the x direction i.e. the 

displacements  , , yz x w  since vibration varies 

sinusoidally in the y -direction. Also, using Eqs. (5) 

and (8), it is evident the moments and transverse 
shear forces (Mxy, Mx, Qx), which are dependent on 
the displacements, vary sinusoidally in this direc-
tion. Satisfying the boundary conditions on two 
sides of the plate edges parallel to y-axis, the dynam-

ic stiffness matrix of the element can be obtained. As 
shown in Fig. 5, these boundary conditions are what 
follow: 
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So, the edge displacements and forces vectors 
can be defined as the following: 

  21 21 1 2, ,, , ,
T

n yz n x n n yz nn x nd w w    (34) 

  1 1 1 22 2, , , , ,
T

n xy y x xy y xp M M S M M S  (35) 

Using expressions (8) and (30)-(35), for the case 
of isotropic FGPs, the edge displacements and forces 
vectors may be written as the following: 
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n nd d e e e   (36) 
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(39) 

Combining Eqs. (38) and (39) by eliminating 

   , we may have what follows: 

    n n np S d
 

(40) 

Where 

    
1

n n nS Y X



 

(41) 

Here, [Sn] is the dynamic stiffness matrix of a 
component of the plate. Assembling the stiffness 
matrices of all components of a FGM plate and im-
posing the boundary conditions, the overall stiffness 
matrix of the FGM plate is obtained. The exact natu-
ral frequencies,  , for lateral vibration of the plate 

are extracted by the following equation: 

  0nS    Det  (42) 
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5. Numerical Results 
5.1 General 

The following non-dimensional variables are 
used in the results: 

t

t

L h
, , h

b L E


       (43) 

Where   denotes dimensionless natural frequency, 
and  and   are the aspect ratios of the plate. 

In the present method, the parameter n deter-
mines the number of half-wavelengths along y-
direction. The symbol CSFG, for example, identifies a 
plate with edges clamped, simply supported, free 
and guided; start counting counter clockwise from 
the left edge of the plate. 

Table 1 summarizes the mechanical properties 
of metal and ceramics used in the FGP. According to 
the literature reviewed in the current study, most 
researchers use the power-law function as stated in 
Eqs. (1) and (2) to describe the material properties 
and volume fraction of the plate. Therefore, in the 
current study, FGPs with power-law function is con-
sidered.  

 
5.2 Validity  

To demonstrate the reliability of the present 
DSM in the analysis of FGPs, the natural frequencies 
of isotropic SSSS plates are compared with those 
obtained by Reddy [34] using the Mindlin method. 
The natural frequencies for different aspect ratios
 , are shown in Table 2. The shear correction fac-

tor is equal to 5 6 . The DSM results are obtained 

from the first mode n = 1 and show a good agree-
ment with the results of Ref. [1].  

The natural frequency parameters of the SSSS 

square FGPs  1   for different values of the 

thickness to length ratios including 0.05, 0.1 and 0.2 
are presented in Table 3. The fundamental frequen-
cy and the lowest second frequency parameters are 
given when  = 0.05, 0.1 and 0.2 respectively. The 

values of power law index P are selected as 0, 0.5, 1, 

4, 10 and  . The plates are made of a mixture of 
aluminium (Al) and alumina (Al2O3). It should be 
noted that the solutions reported by Hosseini-
Hashemi et al. [12] present an exact closed-form 
procedure for the free vibration analysis of moder-
ately thick rectangular plates based on the Reiss-
ner–Mindlin plate theory. As observed in Table 3, 
the present DSM results are almost the same as 
those obtained by the FSDT exact closed-form pro-
cedure. Zhao et al. [37] employed the FSDT using the 
element-free kp-Ritz method. For simplicity in com-
parison, we use non-dimensional frequencies  . As 
observed, when  = 0.05, the present exact results 

are in excellent agreement with those obtained by 
the numerical method based on the FSDT [37]. It is 
also seen that the present solution has a good 
agreement with that obtained by the HSDT [38] for 
the thicker FG square plates (  =0.1, 0.2), particu-

larly at the higher modes of vibration. 
 

Table 1. The material properties of the FGPs [12] 

Material 

Properties 

 E GPa    
3

kg

m

 
 
 

 

Metallic    
Steel (St) 200 0.3 7800 
Aluminum (Al) 70 0.3 2702 
Ceramic    
Alumina (Al2O3) 380 0.3 3800 
Zirconia (ZrO2) 200 0.3 5700 

 
Table 2. The free vibration  1000 of isotropic simply 

support plate for different   

 h L   Ref. [1] Present 

0.20 209.28 209.27 
0.10 56.943 56.943 
0.05 14.587 14.588 
0.04 9.4032 9.4038 
0.02 2.3508 2.3514 
0.01 0.5880 0.5828 
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Table 3. The comparison of the natural frequency parameter for SSSS, Al/Al2O3 square plates 

  Mode Theory 
Power-law index (P) 

0 0.5 1 4 10   

0.05 1 
Present 0.0148 0.0125 0.0113 0.0098 0.0094 0.0075 

FSDT [12] 0.0148 0.0125 0.0113 0.0098 0.0094 0.0075 
FSDT [37] 0.0146 0.0124 0.0112 0.0097 0.0093  

0.1 

1 

Present 0.0577 0.0490 0.0442 0.0383 0.0366 0.0294 
FSDT [12] 0.0577 0.0490 0.0442 0.0381 0.0364 0.0293 
FSDT [37] 0.0568 0.0482 0.0435 0.0376 0.0363 - 
HSDT [38] 0.0577 0.0492 0.0443 0.0381 0.0364 0.0393 

2 

present 0.1376 0.1173 0.1061 0.0915 0.0869 0.0701 
FSDT [12] 0.1376 0.1174 0.1059 0.0903 0.0856 0.0701 
FSDT [37] 0.1354 0.1154 0.1042   0.0850 - 
HSDT [38] 0.1381 0.1180 0.1063 0.0904 0.0859 0.0701 

0.2 

1 

present 0.2112 0.1805 0.1634 0.1405 0.1329 0.1076 
FSDT [12] 0.2112 0.1805 0.1631 0.1397 0.1324 0.1076 
FSDT [37] 0.2055 0.1757 0.1620 0.1371 0.1304 - 

HSDT [38] 0.2121 0.1819 0.1640 0.1383 0.1306 0.1077 

2 
present 0.4618 0.3981 0.3616 0.3078 0.2874 0.2351 

FSDT [12] 0.4618 0.3978 0.3604 0.3049 0.2856 0.2352 
HSDT [38] 0.4658 0.4040 0.3644 0.3000 0.2790 0.2365 

 
 
5.3 Numerical Results and Discussion 

Some cases of FGPs with different boundary 
conditions are considered in this study. The material 
properties of FGPs are introduced in Table 1.  

The stiffness matrix components are transcen-

dental functions of the eigenvalues. The well-known 

Wittrick–Williams algorithm [31] may be used to 

solve this nonstandard eigenvalue problem. Here, a 

trial-and-error procedure is used to derive the natu-

ral frequencies from the eigen function of the plate 

presented in Eq. (42). Fig. 6 shows the variation of 

determinant of Sn( ) in logarithmic scale with re-

spect to the free vibration frequency . The natural 

frequency  of the simply-supported square FGPs 

 1   for the thickness to length ratio of   0.2 

and the power law index of P 4.0 are also pre-

sented in this figure. The values of the natural fre-

quencies are shown as 
n
i where n is the wave 

number in the y–direction for the ith mode. As 

shown in Fig. 6, the first and the second natural fre-

quencies of this case are derived from one half wave 

in the y–direction and their values are 1
1 =7200 

radians/sec ( 1
1 =0.1405) and 1

2 =15400 radi-

ans/sec  1
2 0.3078  respectively as listed in Table 

3. Also, the third frequency is associated with two 

half waves in the y–direction (n=2). 
To demonstrate the effect of volume fraction on 

the free vibration, the first six natural frequencies of 
the FGP with SSSS boundary condition 

 1, 0.2   are presented in Fig. 7. The first and 

second natural frequencies are compared with those 
obtained by an exact analytical approach [12]. The 
method developed in the present study and the one 
presented in Ref. [12] are both exact solutions of the 
differential equations of motion for the moderately 
thick FGP, thus the results are the same. It can be 
implied from Fig. 7 that increasing power-law index, 
P, results in decreasing the frequency of all modes. 
In simply-supported boundary condition (SSSS), the 
second and the third frequency parameters of a FG 
square plate are equal for every power-law index. 
Similarly, the frequencies of fifth and sixth modes of 
vibration are the same (as shown in Fig. 7). To ex-
plain the reason of this matter, mode shapes of the 
first six modes of vibration are presented in Fig. 8.  

 

Figure 6. The overall stiffness matrix determinant with respect 
to the frequency parameter 
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As it can be seen in Fig. 8b, the second mode cor-

responds to n = 1, which means there is one half 
sinusoidal wave along y-direction. In this mode, the 
plate experiences two half sinusoidal waves along x-
direction. On the other hand, the third mode of Fig. 
8c happened corresponds to n = 2 which means 
there are two half sinusoidal waves along y-
direction. In this mode, the plate experiences one 
half sinusoidal wave along x-direction. As the vibra-
tion is relevant to a SSSS square plate, there is sym-
metry with respect to x and y axes. Thus, the second 
and third modes create similar mode shapes, and 
they have the same frequencies. A similar symmetry 
exists between fifth and sixth modes (see Fig. 8e and 
8f).  

The first three dimensionless frequencies (ei-
genvalues) of the FGP with Simply-Clamped (SSSC), 
Simply-Simply (SSSS), Clamped-Guided (SCSG) and 
Simply-Guided (SSSG) boundary conditions are giv-
en in Table 4 for different values of the power law 
index P , as 0, 0.5, 1, 10 and . A squared shape 

plate is considered  1   with three different 

thickness to length ratios including 0.05 (corre-
sponding to thin plates), 0.1 and 0.2 (corresponding 
to moderately thick plates).  

It is found that when the power-law index in-
creases, the frequencies decrease for all boundary 
conditions. As it is expected, among these four 
boundary conditions, the maximum and minimum 
natural frequencies are according to SSSC and SSSG, 
respectively. The frequencies in this table are main-
ly presented to show the ability of the formulation 
to solve different FG materials and boundary condi-
tions. These results can be used as a benchmark to 
evaluate the precision of other analytical or numeri-
cal methods. 

 

Figure 7. The dimensionless frequencies for the simply-
supported (SSSS) moderately thick FGP (β =0.2) 

 
 
 
 

 

 
Figure 8. The first Six mode shapes  for free vibration of the 

simply supported (SSSS) moderately thick FGP 

 

6. Conclusion 
In this investigation, a dynamic stiffness method 

for free vibration analysis of moderately thick func-
tionally graded material plates was developed. Due 
to the variation of the elastic properties through the 
thickness, the equations of motion governing the in-
plane and transverse deformations were coupled. 
However, this coupling was due to the arbitrary se-
lection of the mid-plane as the reference plane in the 
development of plate theories. But we can always 
find a reference plane in which the out-of-plane dis-
placements are uncoupled from the in-plane dis-
placements, so that the FG plates behave as homo-
geneous plates. Then, for solving the equations of 
motion by the DSM, the potential functions were 
used to convert the three extant out-of-plane equa-
tions to three independent equations. Solving these 
independent equations and composing the results of 
each equation, the exact stiffness matrix of a plate 
element was derived and the free vibration frequen-
cies of a moderately thick plate were obtained. Us-
ing the method, the results are obtained for different 
boundary conditions. This study offers a new solu-
tion and insight into the effect of various parameters 
on the free vibration analysis of moderately thick 
functionally graded material plates. 
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Table 4. The first three dimensionless frequenciesi
 of the FGPs for different   and P values and in four boundary conditions 

Boundary 
Conditions 

P 
 0 1.     0 2.    

1  2  3  1  2  3  

 0 0.0577 0.1376 0.1376 0.2112 0.4618 0.4618 
  (n=1) (n=1) (n=2) (n=1) (n=1) (n=2) 
 0.5 0.0490 0.1173 0.1173 0.1805 0.3981 0.3981 
  (n=1) (n=1) (n=2) (n=1) (n=1) (n=2) 

SSSS 1.0 0.0442 0.1061 0.1061 0.1634 0.3616 0.3616 
  (n=1) (n=1) (n=2) (n=1) (n=1) (n=2) 
 10 0.0366 0.0869 0.0869 0.1329 0.2874 0.2874 
  (n=1) (n=1) (n=2) (n=1) (n=1) (n=2) 

   0.0294 0.0701 0.0701 0.1076 0.2351 0.2351 

  (n=1) (n=1) (n=2) (n=1) (n=1) (n=2) 
 0 0.06762 0.14222 0.15752 0.23638 0.46858 0.49758 
  (n=1) (n=2) (n=1) (n=1) (n=2) (n=1) 
 0.5 0.05757 0.12142 0.13472 0.20318 0.40457 0.43163 
  (n=1) (n=2) (n=1) (n=1) (n=2) (n=1) 

SSSC 1 0.05202 0.10982 0.12197 0.18436 0.36781 0.39331 
  (n=1) (n=2) (n=1) (n=1) (n=2) (n=1) 
 10 0.04282 0.08972 0.09902 0.14760 0.29094 0.30711 
  (n=1) (n=2) (n=1) (n=1) (n=2) (n=1) 

   0.03452 0.07252 0.08021 0.12035 0.23861 0.25335 

  (n=1) (n=2) (n=1) (n=1) (n=2) (n=1) 
 0 0.04291 0.11002 0.12761 0.16505 0.36755 0.44565 
  (n=1) (n=1) (n=2) (n=1) (n=1) (n=2) 
 0.5 0.03642 0.09324 0.10852 0.14045 0.31965 0.38005 
  (n=1) (n=1) (n=2) (n=1) (n=1) (n=2) 

SGSC 1 0.03273 0.08432 0.09802 0.12705 0.28811 0.34395 
  (n=1) (n=1) (n=2) (n=1) (n=1) (n=2) 
 10 0.02742 0.06982 0.08091 0.10505 0.22849 0.27505 
  (n=1) (n=1) (n=2) (n=1) (n=1) (n=2) 

   0.02184 0.05570 0.06502 0.08405 0.18725 0.22495 

  (n=1) (n=1) (n=2) (n=1) (n=1) (n=2) 
 0 0.03902 0.09392 0.12552 0.15311 0.33465 0.43661 
  (n=1) (n=1) (n=2) (n=1) (n=1) (n=2) 
 0.5 0.03302 0.08002 0.10673 0.13005 0.28695 0.37517 
  (n=1) (n=1) (n=2) (n=1) (n=1) (n=2) 

SSSG 1 0.03002 0.07202 0.09632 0.11731 0.26005 0.34045 
  (n=1) (n=1) (n=2) (n=1) (n=1) (n=2) 
 10 0.02492 0.06002 0.08002 0.09735 0.20995 0.27285 
  (n=1) (n=1) (n=2) (n=1) (n=1) (n=2) 

   0.01985 0.04782 0.06392 0.08005 0.17045 0.22245 

  (n=1) (n=1) (n=2) (n=1) (n=1) (n=2) 
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Nomenclature 
h  the thickness of the structure 
p

 volume fraction exponent 

cV
 

volume fraction 

T  the material’s property 

E  the modulus of elasticity 

u and v in-plane displacements 
w  the out-of-plane displacement 

ijQ
 

the reduced stiffness compo-
nents 

G  the shear modules 

N, M, Q the vectors of in-plane forces 

ijA
 

the shear stiffness resultants 

2
sk

 
the shear correction factor 

1 2,W W and H  potential functions 

n mode in y direction 

 nS
 

the dynamic stiffness matrix 
of a component of the plate 

   the frequency of vibration 

 z
 

the mass density that can po-
tentially vary through the 
thickness 

1 , 2 , 3  
the wave numbers 

  dimensionless natural fre-
quency 

 and   the aspect ratios of the plate 


 the density 

  the Poisson’s ratio 

x and y  
the out-of-plane displace-
ments 

, ,xx yy xy  
 

in-plane strains 

,xz yz 
 

the transverse shear strains 

 
Appendix 

Some coefficients referred to in this study are 
given as follows: 
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