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In this research, the nonlinear dynamics of an electrostatically actuated non-uniform 

microbeam equipped with a damping film and a piezoelectric layer have been studied. The 

nonlinear behaviour of the system was modelled using the von Karman geometrical strain 

terms. In addition, the strain gradient theory was utilized and the Hamilton principle was 

applied to obtain equations of motion and boundary conditions, respectively. The obtained 

equations were reduced using the Galerkin method, and the reduced equations were solved 

with the multiple scale method. The size-dependent responses were then investigated for 

primary, super-harmonic, and sub-harmonic resonances. The influence of beam width, beam 

thickness, and distance between electrodes on the resonant frequency response was studied 

along with nonlinearity of the system. The results showed that the static and forced vibration 

behaviours of microbeams strongly depended on the size of the electrodes.  

1. Introduction 

 Nano electromechanical sensors and Micro 
electromechanical sensors (NEMS and MEMS) are 
considered a potential alternative to mechanical 
sensors for improving the sensitivity, lowering 
power consumption, and widening the 
bandwidths of conventional resistance strain 
gauges. Furthermore, design and manufacturing 
problems at the micron level has been an 
important challenge during the last decades, 
because the size of a MEMS structure is in a range 
of lower than 10 microns.  For instance, the 
thickness of the thin piezoelectric film is about 
less than 1 micron, and the particle size of an 
advanced admixture is about 1 micron.  

Therefore, notable researches have been 
conducted about static and dynamic 
characteristics of micro sized structures, such as 
microbeams, microfilms, and micro actuators, 
including a vast amount of attention paid recently 
to research and studies related to statics and 
dynamics of micro-sized structures, such as 
microbeams, microfilms, and microactuators [1]. 

In the recent years, mathematical modelling of 
the mechanical behaviour of MEMS and NEMS has 

been of great interest to researchers. Since, 
microbeams have been widely used in many 
instruments, such as vibration shock sensors, 
electrostatic actuators, and atomic microscopes.  
Additionally, micro-scaled gadgets which consume 
energy in microwatts need a small amount of 
operation power, therefore harvesting energy 
from the surrounding environment can be a 
significant source of power for such structures[2]. 
There are various environmental sources of 
energy, such as light, heat and mechanical 
vibration. Moreover, there usually exists a notable 
amount of mechanical energy in our surroundings 
in the form of mechanical vibrations that can be 
considered as an important energy source among 
other sources. As a result, by using an 
electromechanical converter, this surrounding 
source of energy can be transmuted into useful 
electrical energy [3]. 

Different instruments such as electromagnetic, 
piezoelectric, and electrostatic transducers can be 
used for transmuting mechanical energy into 
electrical energy. It can be stated that, 
piezoelectric and electrostatic transducers are the 
most commonly used tools for application in 
MEMS scale harvesters because of their viability.  

https://macs.semnan.ac.ir/article_4304.html
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Electrostatic actuation is also one of the most 
commonly applied methods for inspecting 
microscale gadgets. A flexible distortable beam 
over a firm substrate, parted by an actuated 
electrostatically dielectric embedded medium is a 
regular device used in this field. As the mentioned 
beam is actuated by electrostatic forces, it bends 
and turns toward the still electrode. At this 
moment, because of the flexible reinstating force 
restriction, the beam tends to go back to its initial 
position where it is not deformed [4]. 

Younis [5] investigated the static and dynamic 
behaviours of electrostatically actuated 
microbeam-based MEMS suggesting a logical 
technique similar to a reduced-order macromodel. 

Abdel-Rahman et al  [6] introduced a reduced-
order macromodel to estimate the dynamic 
behaviours of electrostatically actuated 
microbeam-based MEMS .  Kivi et al. [7]  studied 
the nonlinear size-dependent static and dynamic 
behaviours of an electrostatically actuated nano-
beam. The investigated deformable electrode was 
considered as a completely clamped nano-beam in 
NEMS. Ghayesh et al[8] also studied the nonlinear 
size-dependent behaviour of an electrostatically 
actuated Micro electromechanical systems 
resonator based on the  couple stress theory. 

On the other hand, there are major drawbacks 
of using a microbeam for electrostatic actuation. 
Therefore, using piezoelectric components in 
micro devices can be an ideal alternative because 
of lightness, fastness of response, wideness of 
bandwidth, and low power consumption. 
Moreover, the properties of theses piezoelectric 
materials make them suitable for using both in 
sensors and actuators in micro or nano-scale 
structures.[9] 

Ghorbanpour et al [9] analysed a piezoelectric 
nanobeam in a nonlinear vibration situation with 
the strain gradient theory. Ansari [10] conducted 
another study about vibrational characteristics of 
piezoelectric microbeams based on the modified 
theory of stress couple. Hosseini [11] studied the 
nonlinear forced vibrations of a microbeam with a 
piezoelectric layer on its top surface through the  
Multiple Scales method. Chorsi et al [12] examined 
the nonlinear dynamics of a two-sided capacitive 
micro-beam under electrostatic actuation. Since, 
the piezoelectric actuation imposes a longitudinal 
axial force to the micro-beam that shifts the 
primary resonance of the micro resonator, 
therefore it can be used as a tuning tool.  

Because of their electromechanical coupling 
capabilities, piezoelectric materials have a fast 
responding nature. Although piezoelectric 
materials can be extremely beneficial in 
controlling the structural behaviours of 
electromechanical systems, they have not been 
perpended much by the researchers so far. 
Therefore, creating an axial force in the structure 

for achieving higher efficiency appears to be a 
formidable concept in the design and 
improvement of such structures. So, producing 
axial force in microstructures in order to get 
higher efficiency could lead to new ideas in 
designing and improving structures using 
piezoelectric actuation, so that both electrostatic 
and piezoelectric materials could be used for 
increasing safety factors [5]. 

 Chitsaz Yazdi [13] presented an analysis for 
static and dynamic reactions of a clamped–
clamped nanocomposite microbeam with 
electrostatic and piezoelectric actuations. The 
governing equations of motion were obtained 
through the Hamilton principle in this research. 
Khodaparast [14] presented a piezoelectric 
vibration based energy harvesting system with 
the use of an electrostatic device.  Controlling the 
resonance frequency of the piezoelectric harvester 
with DC voltages applied to the electrostatic 
system for maximizing the harvested power, was 
the main objective of their study. The idea was 
implemented as a hybrid system including a 
cantilevered piezoelectric harvester, an 
electrostatic harvester, and a variable voltage 
source. Hoshiar et al. [15] also presented a 
nonlinear analysis for a micro-system under 
piezoelectric and electrostatic actuations. 

Because of the lack of size related parameters 
in the constitutive correlations of microstructures, 
classical flexible theories have not been able to 
explain the effects of size on material properties. 
Therefore, finding a theoretical model forming a 
quantitative relationship between the material’s 
microstructure and macromechanical properties 
seems to be necessary. Recently, modelling of 
MEMS structures and devices with size dependant 
continuum mechanics theories has received an 
increasing attention particularly regarding some 
higher-order continuums. 

Moreover, the size-dependent behaviour that 
takes place in sub-micron and micron scales 
cannot be predicted and explained by the classic 
continuum mechanics theories. However, the size-
dependent behaviour can acceptably be 
considered by some non-classical continuum 
theories such as the higher-order gradient and 
couple stress theories. The higher-order gradient 
and couple stress theories can acceptably take the 
size-dependent parameters into account. In the 
1960s many researchers like Touplin and Koiter 
[16] presented the modified theory of couple 
stress proposing the use of two high-order 
material length scale parameters in the 
constitutive predicaments besides the two 
classical constants of Lame. As some previously 
used implementations, this theory was used by 
Zhou and Li [17] for examination and inspection 
of both the static and dynamic behaviour of a 
micro-bar in torsion. In addition, some other 
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examinations were conducted by Asghari et al 
[18]. Yang et al [19] also used the size-dependent 
modified couple stress theory for the  modelling of 
Timoshenko beams. The additional predicament 
in this study was the motion of the coupled 
equation. Moreover, the couple stress theories 
constitutive predicaments were modified and new 
constitutive predicaments were presented with 
only one material length scale parameter. 

Assuming that the continuum’s strain energy 
density does not solely depend on the strain, but 
on the strain tensor’s first spatial derivative as 
well, Fleck and Hutchinson [20] presented a strain 
gradient theory in which five higher-order 
material constants were brought into the 
constitutive predicaments of the continuum.  
Later, Lam et al [21] offered a modified strain 
gradient theory based on the modified couple 
stress theory depending on three lone higher-
order material constants disregarding additional 
higher-order terms. 

The large deflection forced vibrations of a 
rectangular uniform cross-sectional microbeam 
was analysed by Kahrobaiyan using the 
perturbation technique [22]. Yonus and Nayfe 
[23] presented a nonlinear model for analysing 
electrostatic micro-beams including the  stored 
force in a microbeam.  
In this current study, the main activity was to 
employ both piezoelectric and electrostatic 
excitations for analysing the feasibility of their 
applications. The size-dependent nonlinear 
dynamics of a non-uniform piezoelectric 
microbeam were studied based on the strain 
gradient theory. The strain gradient theory was 
used in this study because of its high accuracy. 
This work also employed the multiple scale 
method to study nonlinear dynamics of a non-
uniform piezoelectric microbeam such as primary, 
sub-harmonic and super-harmonic resonances.  

2. The Strain gradient theory 

The studied model was a non-uniform 
microbeam that was coated by a piezoelectric 
layer illustrated in Fig. 1. A non-uniform 
microbeam with length (L), thickness (h), width 
(b), 𝐸𝑏and 𝐸𝑝 were the elasticity modulus of the 

microbeam and the piezoelectric layers, hp and 

hbwere the thickness of the piezoelectric layer 
and microbeam, respectively. The total height of 
the micro-beam was h = hp + hb. A density ρp and 

piezoelectric coefficient equivalent to e31, g0 was 
the initial gap between the microbeam and the 
stationary electrode. The vacuum gap had the 
permittivity of the vacuum piezoelectric 
coefficient equivalent to εv. A voltage (V) was 
applied to the beam while a voltage (V_p) was 
applied to the piezoelectric layer.  

In addition, the strain gradient elasticity 
theory, proposed in 2003 by Lam et al.  [22], was 

more comprehensively compared to the modified 
couple stress theory. According to the strain 
gradient theory, U is the energy density in a tensor 
(bound with stress regarding force) and 
symmetric curvature tensor (bound with stress 
regarding coupling) function. The strain energy U 
for a homogeneous deformed matter in the 
domain Ω is as follows:  [24] 

𝑈 =
1

2
∭ (𝜎𝑖𝑗𝜀𝑖𝑗 + 𝑝𝑖𝛾𝑖 + 𝜏𝑖𝑗𝑘

(1)
𝜂𝑖𝑗𝑘

(1)
+

Ω

𝑚𝑖𝑗
𝑠 𝜒𝑖𝑗

𝑠 ) 𝑑Ω  
(1) 

Where Ω in the occupied region and ε, σ, χ, m is 
Classical strain tensor, Cauchy stress Deviation 
part of couple stress and Symmetric curvature, 
respectively. The terms of the (1) are defined as 
follows[19]: 

𝛾𝑖 = 𝜀𝑚𝑚,𝑖  (2) 

𝜂𝑖𝑗𝑘
(1)

=
1

3
(𝜀𝑗𝑘,𝑖 + 𝜀𝑘𝑖,𝑗 + 𝜀𝑖𝑗,𝑘) −

1

15
𝛿𝑖𝑗(𝜀𝑚𝑚,𝑘 + 2𝜀𝑚𝑘,𝑚) −

1

15
[𝛿𝑗𝑘(𝜀𝑚𝑚,𝑖 +

2𝜀𝑚𝑖,𝑚) + 𝛿𝑘𝑖(𝜀𝑚𝑚,𝑗 + 2𝜀𝑚𝑗,𝑚)]  

(3) 

𝜎𝑖𝑗 = 𝜆𝜀𝑚𝑚𝛿𝑖𝑗 + 2𝐺𝜀𝑖𝑗 (4) 

𝑚𝑖𝑗
𝑠 = 2𝜇𝑙2

2𝜒𝑖𝑗
𝑠         𝑖, 𝑗 = 1,2,3 (5) 

𝜀𝑖𝑗 =
1

2
(𝜕𝑖𝑢𝑗 + 𝜕𝑗𝑢𝑖) (6) 

𝜒𝑖𝑗  =
1

2
(𝜕𝑖𝜃𝑗 + 𝜕𝑗𝜃𝑖) (7) 

𝑝𝑖 = 2𝜇𝑙0
2𝛾𝑖 (8) 

τijk
(1)

= 2𝜇𝑙1
2𝜂𝑖𝑗𝑘

(1)
  (9) 

In which u and θ are the displacement and 
rotary vectors, respectively. The  ux, uy and uz are 

displacements along the x, y and z axes of the 
beam and are introduced as follow: 

𝑢𝑥(𝑥, 𝑧, 𝑡) = −𝑧
𝜕𝑤

𝜕𝑥
   , 𝑢𝑦(𝑥, 𝑧, 𝑡) = 0,

𝑢𝑧(𝑥, 𝑧, 𝑡) = 𝑤(𝑥, 𝑡)  
(10) 

The relations ε for the microbeam can be 
obtained by using (11): 

𝜀𝑥𝑥 = −𝑧
𝜕2𝑤

𝜕𝑥2 +
1

2
(

𝜕𝑤

𝜕𝑥
)

2

, 𝜀𝑧𝑧 = 0, 𝜀𝑥𝑦 =

𝜀𝑦𝑥 = 𝜀𝑧𝑦 = 𝜀𝑦𝑧 = 𝜀𝑥𝑧 = 𝜀𝑧𝑥 = 0  
(11) 
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Fig. 1. Schematic image of an electrostatically actuated 

microbeam with piezoelectric layer 

Also, the relations of θ for the Euler-Bernoulli 
beam can be estimated by using the following 
equation: 

𝜃 =
1

2
𝑐𝑢𝑟𝑙(𝑢) (12) 

θy = −
∂w

∂x
, θx = θz = 0 (13) 

𝜂111
(1)

=
𝜕𝜀11

𝜕𝑥
= 𝜂111

(1)
=

2

5
(−𝑧

𝜕3𝑤

𝜕𝑥3 +

𝜕𝑤

𝜕𝑥

𝜕2𝑤

𝜕𝑥2 )   
(14) 

𝜂113
(1)

= 𝜂131
(1)

= 𝜂311
(1)

=
4

15
(−

𝜕2𝑤

𝜕𝑥2 )  (15) 

𝜂122
(1)

= 𝜂133
(1)

= 𝜂212
(1)

= 𝜂221
(1)

= 𝜂313
(1)

=

𝜂331
(1)

= −
1

5(
𝜕𝑤

𝜕𝑥

𝜕2𝑤

𝜕𝑥2 −𝑧
𝜕3𝑤

𝜕𝑥3 )
  (16) 

𝜂223
(1)

= 𝜂232
(1)

= 𝜂322
(1)

=
1

15
(

𝜕2𝑤

𝜕𝑥2 )  (17) 

𝜂333
(1)

=
1

5
(

𝜕2𝑤

𝜕𝑥2 )  (18) 

𝑝1 = 2𝜇𝑙0
2 (

𝜕𝑤

𝜕𝑥

𝜕2𝑤

𝜕𝑥2 − 𝑧
𝜕3𝑤

𝜕𝑥3 )  (19) 

𝑝3 = −2𝜇𝑙0
2 (

𝜕2𝑤

𝜕𝑥2 )  (20) 

𝑚12 = 𝑚21 = −
𝜇𝑙2

2

2
(

𝜕2𝑤

𝜕𝑥2 )  (21) 

𝛾𝑥 = −𝑧
𝜕3𝑤

𝜕𝑥3 +
𝜕𝑤

𝜕𝑥

𝜕2𝑤

𝜕𝑥2   (22) 

𝛾𝑧 = −
𝜕2𝑤

𝜕𝑥2
 (23) 

𝜒𝑥𝑦
(𝑠)

= 𝜒𝑦𝑥
(𝑠)

= −
1

4
(

𝜕2𝑤

𝜕𝑥2 )  (24) 

𝜏111
(1)

=
4

5
𝜇𝑙1

2 (
𝜕𝑤

𝜕𝑥

𝜕2𝑤

𝜕𝑥2 − 𝑧
𝜕3𝑤

𝜕𝑥3 )  (25) 

𝜏113
(1)

= 𝜏131
(1)

= 𝜏311
(1)

=
8

15
𝜇𝑙1

2 (−
𝜕2𝑤

𝜕𝑥2 )  (26) 

𝜏122
(1)

= 𝜏133
(1)

= 𝜏212
(1)

= 𝜏221
(1)

= 𝜏313
(1)

=

𝜏331
(1)

= −
2

5
𝜇𝑙1

2 (
𝜕𝑤

𝜕𝑥

𝜕2𝑤

𝜕𝑥2 − 𝑧
𝜕3𝑤

𝜕𝑥3 )  
(27) 

𝜏223
(1)

= 𝜏232
(1)

= 𝜏322
(1)

=
2

15
𝜇𝑙1

2 (
𝜕2𝑤

𝜕𝑥2 )  (28) 

𝜏333
(1)

=
2

5
𝜇𝑙1

2 (
𝜕2𝑤

𝜕𝑥2 )  (29) 

The non-zero stresses 𝜎𝑖𝑗  of the microbeam 

that can be obtained as: 

𝜎𝑥𝑥 = 𝐸𝜀𝑥𝑥 = 𝐸(𝑧)𝜀𝑥𝑥  (30) 

For the piezoelectric layer, stress tensor is: 

𝜎𝑥𝑥 = 𝐸 (
1

2
(

𝜕𝑤

𝜕𝑥
)

2

− 𝑧
𝜕2𝑤

𝜕𝑥2 ) − 𝑒31𝐸𝑧 =

𝐸(𝑧)𝜀𝑥𝑥 − 𝑒31𝐸𝑧  
(31) 

In (31), the ε has strained the cross-section of 
the system while the 𝑒31remains constant in the 

piezoelectric layer. Also 𝐸𝑧 =
𝑉𝑝

ℎ𝑝
.  

Substituting the (13-31) in (1) and integrating 
on the volume of the micro beam, the total strain 
energy for the microbeam is calculated as: 

𝑈1 = ∫ ∫ (𝜎𝑖𝑗𝜀𝑖𝑗 + 𝑝𝑖𝛾𝑖 + 𝜏𝑖𝑗𝑘
(1)

𝜂𝑖𝑗𝑘
(1)

+
𝐴

𝐿

0

𝑚𝑖𝑗
(𝑠)

𝜒𝑖𝑗
(𝑠)

)𝑑𝐴𝑑𝑥 =
1

2
∫ ∫ {𝐸 [

1

2
(

𝜕𝑤

𝜕𝑥
)

2

−
𝐴

𝐿

0

𝑧
𝜕2𝑤

𝜕𝑥2 ]
2

+  2𝜇𝑙0
2 (

𝜕2𝑤

𝜕𝑥2 )
2

+ (2𝜇𝑙0
2 +

4

5
𝜇𝑙1

2) (
𝜕𝑤

𝜕𝑥

𝜕2𝑤

𝜕𝑥2 − 𝑧
𝜕4𝑤

𝜕𝑥4 )
2

+

8

15
𝜇𝑙1

2 (−
𝜕2𝑤

𝜕𝑥2 )} 𝑑𝐴𝑑𝑥  

(32) 

The kinetic energy for the microbeam is also 
obtained as follows: 

𝑇 =
1

2
∫ {𝑚 (

𝜕𝑤

𝜕𝑥
)}

𝐿

0

𝑑𝑥 (33) 

Where m is the linear density of the 
microbeam defined by: 

𝑚 = 𝜌𝑝𝐴𝑝(𝑥) + 𝜌𝑏𝐴𝑏(𝑥) (34) 

Due to the piezoelectric actuation force, the 
strain energy for the piezoelectric layer can also 
be calculated as : 

𝑈𝑝 =
1

2
∫ {𝑁0𝑥 (

𝜕𝑤

𝜕𝑥
)

2

} 𝑑𝑥
𝐿

0
  (35) 

The parameter 𝑁0𝑥 is: 
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𝑁0𝑥 = −𝑏𝑒31𝑉0 (36) 

Considering the relations between T and U, by 
applying the Hamilton principle the governing 
equation of the microbeam can be achieved based 
on the strain gradient theory. The Hamilton 
principal can be estimated by using the following 
equation: 

𝑈 =
1

2
∫ ((𝐸𝐼)𝑒𝑞 + 2(𝜇𝐴𝑙0

2)𝑒𝑞 +
𝐿

0

8

15
(𝜇𝐴𝑙1

2)𝑒𝑞 + (𝜇𝐴𝑙2
2)𝑒𝑞) (

𝜕2𝑤

𝜕𝑥2 )
2

+

(2(𝜇𝐼𝑙0
2)𝑒𝑞 +

4

5
(𝜇𝐼𝑙1

2)𝑒𝑞) (
𝜕3𝑤

𝜕𝑥3 )
2

+

1

2
(𝐸𝐴)𝑒𝑞 (

𝜕𝑤

𝜕𝑥
)

4

+ (2(𝜇𝐴𝑙0
2)𝑒𝑞 +

4

5
(𝜇𝐴𝑙1

2)𝑒𝑞) (
𝜕𝑤

𝜕𝑥
)

2

(
𝜕2𝑤

𝜕𝑥2 )
2

+

(4(𝜇𝐴𝑙0
2)𝑒𝑞 +

8

5
(𝜇𝐴𝑙1

2)𝑒𝑞) (
𝜕𝑤

𝜕𝑥
) (

𝜕2𝑤

𝜕𝑥2 ) (
𝜕3𝑤

𝜕𝑥3 )  

(37) 

𝑇 =
1

2
∫ 𝑚 (

𝜕𝑤

𝜕𝑡
)

2

𝑑𝑥
𝐿

0

 (38) 

In this paper A and I were obtained with (39):  

{
A(x) = A0 (1 + α (

x

L
)

i

)

I(x) = I0 (1 + α (
x

L
)

i

)

  (39) 

For considering the system with the 
electrostatic actuation and the squeeze-film 
damping, (𝑝 = 𝑝𝑒 + 𝑝𝑐), was used, where pe is the 
electrostatically actuated force and pc is the 
squeeze film damping force. According to the 
conditions of the piezoelectric micro-beam and 
the electrode, these applied forces are written as 
follows:  

𝑝𝑒 =
𝜀0𝑏𝑍2(𝑡)

2(𝑑−𝑤)2    , 𝑝𝑐 = −
𝑐𝑠𝑏3

(𝑑−𝑤)3 �̇�  (40) 

In (40), Z(t) is the applied voltage, ε0 is the 
vacuum permittivity and cs is the viscosity 
coefficient of the air. For the AC voltage, we have: 

𝑍2(𝑡) = [𝑣𝑎𝑐 cos(𝜔𝑡)]2 =
1

2
𝑣𝑎𝑐

2 [1 +

cos(2𝜔0𝑡)]  
(41) 

Then, the variation of the work done by the 
external forces is: 

𝛿𝑊 = ∫ 𝐹(𝑥, 𝑡)𝛿𝑤𝑑𝑥

𝐿

0

 (42) 

The equation of motion can be obtained by 
using the Hamiltonian principle: 

∫ (𝛿𝑇 − 𝛿𝑈 + 𝛿𝑊)𝑑𝑡 = 0
𝑡2

𝑡1

 (43) 

The equation of motion is as follow: 

𝑏𝑒31 (44) 

The boundary conditions are: 

𝑤(0, 𝑡) = 𝑤(𝐿, 𝑡) = 𝑤′′(0, 𝑡) =
𝑤′′(𝐿, 𝑡) = 0  

(45) 

To transform the equations of motion and 
boundary conditions to the dimensionless state, 
after obtaining the equations of motion and 
boundary conditions, we made them non-
dimensional (Appendix1) . 

3. Forced Vibration Analysis 

In this section, the forced vibration of the 
microbeam is studied by using the multiple scales 
method. To solve this, the original PDE can be 
converted to an ODE.  In order to obtain the mode 
shapes of the microbeam using Galerkin’s method 
the equations are: 

𝑊(𝑋, 𝜏) = 𝜑(𝑋)𝑆(𝜏) (46) 

Where 𝜑(𝑋) is the first mode shape and S(τ)  is 
the time dependent function. Therefore, we have: 

�̈� + 𝑘1𝑆 = 𝜀[𝑘2 cos(𝛺𝜏) + 𝑘3𝑆-

cos(𝛺𝜏) − 𝑘4𝑆3 − 𝑘5�̇�]  
(47) 

Where ε is a small non-dimensional parameter. 
The multiple scale method was used to approach 
an approximate solution of the domain of the 
equation. The solution of the homogeneous 
section of equation (47) is as follows: 

𝑆(𝜏) = 𝑌1(𝑇0, 𝑇1) + 𝜀𝑌2(𝑇0, 𝑇1)  (48) 

𝑇𝑛 = 𝜀𝑛𝜏, 𝑛 = 0,1 and also, 𝜀 ≪ 1, which is a 
non-dimensional parameter, small and positive 
and represents the order of the equations. We 
have: 

(𝜕^2 𝑌_1)/(𝜕𝑇_0^2 ) + 𝜀 (𝜕^2 𝑌_2)/
(𝜕𝑇_0^2 ) + 2𝜀 (𝜕^2 𝑌_1)/
(𝜕𝑇_0 𝜕𝑇_1 ) + 2𝜀^2  (𝜕^2 𝑌_2)/
(𝜕𝑇_0 𝜕𝑇_1 ) + 𝜀^2 ((𝜕^2 𝑌_1)/
(𝜕𝑇_0 𝜕𝑇_2 ) + 2𝜀 (𝜕^2 𝑌_2)/
(𝜕𝑇_0 𝜕𝑇_2 ) + (𝜕^2 𝑌_1)/(𝜕𝑇_1^2 ) +
𝜀 (𝜕^2 𝑌_2)/(𝜕𝑇_1^2 ) + 𝑘_1 (𝑌_1 +
𝜀𝑌_2 ) = 𝜀[𝑘_2  cos (Ω𝜏) + 𝑘_3 (𝑌_1 +
𝜀𝑌_2 )  cos (Ω𝜏) − 𝑘_4 (𝑌_1 +
𝜀𝑌_2 )^3 − 𝑘_5 ((𝜕𝑌_1)/(𝜕𝑇_0 ) +
𝜀 (𝜕𝑌_2)/(𝜕𝑇_0 ) + 𝜀 (𝜕𝑌_1)/(𝜕𝑇_1 ) +
𝜀^2  (𝜕𝑌_1)/(𝜕𝑇_2 ) + 𝜀^3  (𝜕𝑌_2)/
(𝜕𝑇_2 ) + ⋯ )  

(49) 

So, equally replacing equal powers of ε on both 
sides of the equation, the equations are as follows: 

𝜀0: 𝐷0
2𝑌1 + 𝑘1𝑌1 = 0, 

𝜀1: 𝐷0
2𝑌2 + 𝑘1𝑌2 = −2𝐷0

1𝐷1
1𝑌1 +

𝑘2 𝑐𝑜𝑠(𝛺𝜏) + 𝑘3 𝑐𝑜𝑠(𝛺𝜏)𝑌1 − 𝑘4𝑌1
3 −

(50) 
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𝑘5𝐷0
1𝑌1  

The solution of equation (49) can be 
considered as follows: 

𝑌1 = 𝐴(𝑇1) 𝑒𝑥𝑝(𝑖𝑝𝑇0) + 𝑐𝑐 (51) 

The value of 𝐴(𝑇1)𝑖𝑠 in (51) as follows: 

𝐴(𝑇1) =
1

2
𝑎 𝑒𝑥𝑝(𝑖𝛽) (52) 

A is a function of  𝑇1 and cc represents 
conjugate terms in (51), and 𝐴(𝑇1) is a complex 
function. Note that 𝑝2=𝑘1 and substituting (52) in 
(50): 
𝐷_0^2 𝑌_2 + 𝑝^2 𝑌_2 =
−2𝑖𝑝𝐷_1^1 𝐴(𝑇_1 )  𝑒𝑥𝑝 (𝑖𝑝𝑇_0 ) +
1/2 𝑘_2  𝑐𝑜𝑠 (𝛺𝜏) +
𝑘_3 𝐴(𝑇_1 )  exp (𝑖𝑝𝑇_0 )  𝑐𝑜𝑠 (𝛺𝜏) −
𝑘_4 [𝐴^3 (𝑇_1 )   𝑒𝑥𝑝 〖(3𝑖𝑝𝑇_0 ) +
3𝐴^2 (𝑇_1 ) 𝐴 ̅(𝑇_1 )  𝑒𝑥𝑝 (𝑖𝑝𝑇_0 )〗 ] −
𝑘_5 𝑖𝑝𝐴(𝑇_1 )  𝑒𝑥𝑝 (𝑖𝑝𝑇_0 ) + 𝑐𝑐  

(53) 

In which cc represents the conjugate in (53). 

Primary resonance 𝛀 ≈ 𝒑 

We introduce the frequency parameter σ for 
describing the closeness of Ω top: 

𝛺 = 𝑝 + 𝜀𝜎 , 𝜎 = 𝑜(1) (54) 

Substituting (54) in (53) and removing secular 
terms: 

−2𝑖𝑝𝐷_1^1 𝐴(𝑇_1 ) + 1/2 𝑘_2  exp 〖
[𝑖(┤〗𝜀𝜎)𝜏] −  3〖𝑘_4 𝐴〗
^2 (𝑇_1 ) 𝐴 ̅(𝑇_1 ) − 𝑖𝑘_5 𝑝𝐴(𝑇_1 ) = 0  

(55) 

We rewrite the function 𝐴(𝑇1) in the polar form as 
follows: 

𝐴(𝑇1) =
1

2
𝑎(𝑇1) 𝑒𝑥𝑝[𝑖𝛽(𝑇1)] (56) 

In which 𝑎(𝑇1)ampluide and β(𝑇1) are the 
phases of functions with real values. Now, by 
separating the real and conceptual parts in (56), 
the homogeneous section of the equation of the 
hasan unequivocal solution in Eq. (56) is solved 
when the solvability conditions are satisfied, and 
where the solvability condition is satisfied with 
the zero secular terms in the equation   . The 
steady-state motion equation can be achieved by 
𝐷1

1θ(𝑇1) = 0and𝐷1
1𝑎(𝑇1) = 0, and the frequency 

response equation can be written as: 

𝑎2 [𝑘5
2 + (2𝜎 −

3𝑘4𝑎2

4𝑝
)

2

] =
𝑘2

2

𝑝2
 (57) 

In (57), it is clear that a is the domain and σ is 
the frequency parameter, 𝑘4 is the nonlinear 
coefficient, 𝑘5 is the damping factor and 𝑘2 is the 
amplitude of the actuated. 

Super harmonic resonance 𝛀 ≈
𝟏

𝟑
𝒑 

When Ω is away from p, the stimulation effect 
will be small. Afterwards, in comparison to the 
nonlinear force and the force absorbing pressure, 
we regarded the stimulation effect as 

insignificant. 

�̈� + 𝑘1𝑆 = 𝜀[𝑘3𝑆 𝑐𝑜𝑠(𝛺𝜏) − 𝑘4𝑆3 −

𝑘5�̇�] + 𝑘2 𝑐𝑜𝑠(𝛺𝜏)  
(58) 

Solving (57) is as follows: 

𝑆(𝜏) = 𝑌1(𝑇0, 𝑇1) + 𝜀𝑌2(𝑇0, 𝑇1)  (59) 

Where Tn = εnτ, n = 0,1. By substituting (59) 
in (58) then the general solution to the equation is 
written as follows: 

𝑌1 = 𝐴(𝑇1) 𝑒𝑥𝑝(𝑖𝑝𝑇0) +
𝛬 𝑒𝑥𝑝(𝑖𝛺𝑇0) + 𝑐𝑐  

(60) 

Where Λ =
1

2
k2(k1 − Ω2)−1 and 𝑝2=𝑘1. By 

Substituting 𝑌1 in Equation (57) we have: 

𝐷0
2𝑌2 + 𝑘1𝑌2 = −(2𝑖𝑝𝐷1

1𝐴 + 𝑘5𝑖𝑝𝐴 +
6𝑘4𝐴𝛬2 + 3𝑘4𝐴2�̅�) 𝑒𝑥𝑝(𝑖𝑝𝑇0) +
1

2
𝑘3{𝐴𝑒𝑥𝑝[𝑖(𝑝 + 𝛺)𝑇0] +

𝛬 𝑒𝑥𝑝(2𝑖𝛺𝑇0) + 𝛬 + �̅� 𝑒𝑥𝑝[𝑖(𝛺 −
𝑝)𝑇0]} − 𝑘4{𝐴3 𝑒𝑥𝑝(3𝑖𝑝𝑇0) +
𝛬3 𝑒𝑥𝑝(3𝑖𝛺𝑇0) + 3𝐴𝛬2 exp[𝑖(𝑝 +
2𝛺)𝑇0] + 3𝐴2𝛬 exp[𝑖(𝑝 + 2𝛺)𝑇0] +
3𝛬�̅�2 𝑒𝑥𝑝[𝑖(𝛺 − 2𝑝)𝑇0] +
3𝐴𝛬2 exp[𝑖(𝑝 − 2𝛺)𝑇0]} − (6𝑘4𝐴�̅�𝛬 +
𝑖𝑘5𝛺𝛬 + 3𝑘4𝛬3) 𝑒𝑥𝑝(𝑖𝛺𝑇0) + 𝑐𝑐  

(61) 

Here, we introduced the approximation of Ω to 
1

3
𝑝 with the introduction of the frequency 

parameter σ as follows: 

3𝛺 = 𝑝 + 𝜀𝜎 , 𝜎 = 𝑜(1) (62) 

In (61) the terms corresponding 
to 𝑡ℎ𝑒 exp  (±𝑖𝑝𝑇0)) 𝑖^2 = −1)and 
exp(±3𝑖Ω𝑇0)produce secular terms in 𝑌1. These 
secular classes are deleted at 𝑌1if: 

(2𝑖𝑝𝐷1
1𝐴 + 𝑖𝑘5𝑝𝐴 + 6𝑘4𝐴𝛬2 +

3𝑘4𝐴2�̅�) 𝑒𝑥𝑝(𝑖𝑝𝑇0) +
𝑘4𝛬3 𝑒𝑥𝑝(3𝑖𝛺𝑇0) = 0  

(63) 

Using [63] we have: 

𝐷1
1𝑎(𝑇1) = −

𝑘5

2
𝑎(𝑇1) −

𝑘4𝛬3

𝑝
𝑠𝑖𝑛𝜃(𝑇1)𝐷1

1𝜃(𝑇1) = 𝑎(𝑇1)𝜎 −

3𝑘4𝛬2

𝑝
𝑎(𝑇1) −

3𝑘4

8𝑝
𝑎3(𝑇1) −

𝑘4𝛬3

𝑝
𝑐𝑜𝑠𝜃  

(64) 

In which 𝜃(𝑇1) = 𝜎𝑇1 − 𝛽(𝑇1). The steady-state 

motion of the system can be obtained by 𝐷1
1𝑎(𝑇1) =

0 and 𝐷1
1𝜃(𝑇1) = 0. We can use equation (64) to 

obtain the frequency response for the super 
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harmonic resonance that can be estimated by 
using the following equation:  

𝑎2 [
𝑘5

2

4
+ (𝜎 −

3𝑘4𝛬2

𝑝
−

3𝑘4𝑎2

8𝑝
)

2

] =
𝑘4

2𝛬6

𝑝2   (65) 

Subharmonic resonance 𝛺 = 3𝑝 

 Examining the sub-harmonic resonance, we 
introduced the parameter σ: 

𝛺 = 3𝑝 + 𝜀𝜎 , 𝜎 = 𝑜(1) (66) 

For the steady-state motions corresponding 
to 𝐷1

1𝑎(𝑇1) = 0 and 𝐷1
1θ(𝑇1) = 0,𝐷1

1𝑎(𝑇1) = 0 and 
𝐷1

1θ(𝑇1) = 0, we  obtained the frequency response 
equation as follows: 

[
9𝑘5

2

4
+ (𝜎 −

9𝑘4𝛬2

𝑝
−

9𝑘4𝑎2

8𝑝
)

2

] =
81𝑘4

2𝛬2

16𝑝2 𝑎2  (67) 

4. Numerical example 

In this section, the nonlinear forced vibration 
of a simply supported micro beam (shown in 
Fig.1) was investigated. 

4.1. Validation 

Before presenting the results and analyzing them, 
we first checked the results. Here, considering 
𝑙0 = 𝑙1 = 0 and 𝑙2 = 𝑙 , the results corresponding 
to the modified couple stress theory were 
obtained. Accordingly, the results shown on the 
basis of a double-headed microbeam based on the 
modified couple stress theory, are presented in 
Fig. 2. In Fig. 2, it can be observed that the results 
of nonlinear dynamic analysis for a microbeam 
were verified and closely matched the results of 
article [26]  

 
Fig. 2. Verification of the results obtained for dynamic 

nonlinear response 

 
Fig. 3. Hardness ratio based on thickness variation 

 
Fig. 4.Changes in excitation range by varying the applied 

voltage 

 
Fig. 5. Changes in primary resonance with change in thickness 

Dynamic nonlinear response 

Here, the length (L), width (b), height (h) of the 
microbeam and the gap (d) were fixed: Eb =
169 × 109;  Ep = 78.6 × 109;   ϑb = 0.06; ϑp = 0.3; 

ρb = 0.06ρp = 7500;   e31 = 9.31; lb =
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17.6 × 10−6; lp = 17.6 × 10−6;         hb =

2lb × 10−6; hb = 0.5lp × 10−6;ε0 = 8.854 ×

10−12. Furthermore, the assumption 𝑙0 = 𝑙1 = 𝑙2 =
𝑙 was employed in the numerical simulations for 
the strain gradient elasticity theory.  

In this paper, the dynamic response of the 
nonlinear system was also investigated. We 
analysed the effects of thickness, width and 
piezoelectric actuation on the system response. 
The main reliance on these results was made on 
approximate analytical methods. As can be seen in 
Fig. 3, linear hardness depends on the values of 
the h/l and the amplitude of V of the applied 
voltage. The hardness increased in proportion to 
h/l decreasing, which means that a reduction in 
the beam’s thickness resulted in the "hardening" 
of the system. On the contrary, linear stiffness 
lessened in proportion to increasing the applied 
voltage, which caused the "soft" behaviour of the 
system.  

Figure 4 shows the microbeam frequency 
response curve for various AC voltages, which 
increased with the rise in the response area V, and 
it also shows that the amplitude of the response 
increased with raising the amplitude of the 
actuation force. The amplitude of the oscillations 
and the corresponding frequency increased, which 
means that the increase in external actuation 
changed the nonlinear resonance to the higher 
actuation frequencies. However, it should be 
noted that changes in the external actuation did 
not change the nonlinear model. Frequency 
response curves showed that for small 
amplitudes, in the primary resonance of the 
system, the hardening behaviours were increased. 

As shown in the fig. 4, while increasing the AC 
voltage, the nonlinear amplitude of the vibration 
was increased, and the nonlinear resonance 
occurred at a higher excitation frequency. On the 
other hand, linear stiffness decreased with 
increasing the applied voltage, which resulted in a 
more "stiffness" behaviour of the system. 

Furthermore, for different thicknesses, the 
amplitude of the beam showed the decrease of 
microbeam frequencies for the primary 
resonance. It is obvious that the oscillation 
amplitude increased with increasing the scale of 
h/l, while the frequency response curves were 
reduced by decreasing h/l. These results showed 
that the reduction in the thickness of the 
microbeams increased the stiffness of the 
microbeam and also the nonlinearity of the 
microbeam. Increasing the value of h/l caused the 
system to soften. Also, as shown in the fig. 5, the 
amplitude of a nonlinear vibration increased with 
increasing h/l. With increasing h/l, the static 
deviation of the microbeam was increased. This is 
only due to the stiffening and hardening 
behaviours. We found that the system response 

and nonlinearity of the system increased when h/l 
was small.  

To improve the efficiency of the system, we 
examined the effect of the non-uniform beam 
model on the frequency response. We studied the 
effect of the non-uniform parameter on the 
microbeam for two resonances. In Fig. 6 as we 
observe, the frequency response increased with 
the non-uniformity of the microbeam. 

Figure 7 shows the microbeam frequency 
response for super harmonic resonance for 
various beam thicknesses. With increasing h/l, the 
increase of the amplitude of oscillation was 
obvious. 

It is obvious that the frequency response 
curves bended to the right side by decreasing the 
value of h/l, which implied that decreasing the 
thickness of the beam increased nonlinearity. 
Considering different size scale h/l, the frequency 
of the system’s response curves is plotted in Fig. 7. 
With an increase in h/l, it is clear that the 
response area widened and so the maximum 
amplitude of oscillations was increased.  

 
Fig. 6. Comparison of uniform and non-uniform modes 

 
Fig. 7.Changes in excitation range by varying the applied 

voltage 
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Fig. 8.Super harmonic resonance by changing the width of the 

beam 

Figure 8 shows the effects of the b parameter 
on frequency response curves for the super 
harmonic resonance. With increasing b, it is seen 
that the resonance range was reduced, and the 
resonance zone decreased. 

As shown in Fig. 9, the system frequency 
response curves are plotted for different sizes of 
h/l for the subharmonic resonance. With 
increasing h/l, it is clear from Fig. 9 that by 
increasing the thickness, the amplitude of 
maximum oscillations also increased. Moreover, 
we see that the frequency response curves were 
reduced by decreasing the h/l, which shows that 
the reduction of h/l nonlinear effect increased in 
the model. The effect of parameter b on the 
subharmonic resonance is shown in Fig. 10. By 
decreasing b, it is clear that the response range 
increased. 

In fig. 11 in order to improve the results of the 
modelling, we investigated the effect of the non-
uniform beam model on frequency responses for 
three resonances. As we can see, the frequency 
response increased with the non-uniform 
microbeam. 

 
Fig. 9. Sub-harmonic resonance with the change of the 

thickness 

 
Fig. 10.The effect of b parameter on the response of sub-

harmonic resonances 

 
Fig. 11.Comparison of uniform and non-uniform states for the 

super harmonic resonance 

5. Conclusions 

In this research, the microbeam dynamical 
analysis with piezoelectric actuation was 
investigated. In order to model the length scale, 
the strain gradient theory was used, and the 
equations of motion and boundary conditions 
were obtained using Hamilton's method, and they 
were reduced using Galerkin's method. Also, the 
effect of size, thickness, and length of the 
microbeam and piezoelectric were considered on 
the system response. The results demonstrated 
that along with the reducing effect of size, the 
hardness of the microbeam increased, which 
implied that if the thickness of the beam was less, 
then it resulted in the "hardening" of the system. 
On the other hand, linear stiffness decreased while 
increasing the applied voltage, caused the 
"softening" behaviour of the system. It has also 
been shown that the microbeam frequency 
response was increased with an increase in 
voltages, which increased the amplitude of the 
response by elevating the amplitude of the 
actuation force. Finally, it is concluded that when 
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the thickness ratio was increased, non-classical 
theories evaluated the same values for the 
frequency as those of the classical theory. This 
shows that the beam based on the strain gradient 
theory was stronger than the beam based on the 
model with modified couple stress and classical 
theory. The results have shown that the oscillation 
amplitude increased with an increasing size scale, 
while the frequency response curves were 
reduced by decreasing h/l. Also, the results for 
different thicknesses of superharmonic and 
subharmonic resonance are presented here. 

Appendix A 

The non-dimensional of Eq. 44 can be written 

as: 
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