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K E Y W O R D S A B S T R A C T  
Graphene 
Polymer 
Nano-composites  

These days, different types of carbon nano-fillers are used widely as a reinforcement agent in 
polymer composites like fullerenes, carbon nanotubes, graphene nano-platelets, and graphite 
platelets. Moreover, graphene-based materials and their composites have shown promising 
characteristics for a wide variety of applications in nano-science and nano technology.  Add-
ing graphene as a reinforcing agent in a polymer matrix has improved the overall perfor-
mance and properties of these substances. In this review, the general properties of the nano-
particle in polymers have been studied. Also, the effect of these nano particles on the mechan-
ical, thermal, and electrical properties of polymer composites has been investigated. It was 
demonstrated that filling graphene platelets in polymer materials improves their mechanical, 
thermal, and electrical properties.  
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1. Introduction

Recent researches in the field of polymer nano-
composites (PNCs) have focused on the modifica-
tion of  nano-structured materials to improve their 
characteristics  such as electrical, electrochemical, 
thermal, and mechanical properties [1-5] The dis-
covery of graphene by the exfoliation of graphite 
has drawn enormous attention due to its unique 
properties [6-8]. Graphene is a 2D structure of car-
bon atoms with a hexagonal crystalline structure 
with sp2 bonds. It has a high surface area (highest, 
adsorption and surface reactions), electron mobil-
ity, thermal conductivity and mechanical strength. 
With the highest surface area compared to any 
other material of this kind, it enhances the interac-
tion between the sheets and polymer material 
[2018]. The superior properties of graphene com-
pared to polymers are also reflected in 

polymer/graphene nano-composites. Poly-
mer/graphene nano-composites show superior 
mechanical, thermal, gas barrier, electrical, and 
flame retardant properties [12-14].  

This article ectensively reviews the various in-
vestigations about the synthesis of graphene nano-
platelets and the effect of these nano-particles on 
mechanical, thermal, and electrical properties of 
polymers. 

2. General Properties of Graphene
Nano-plateletes

Graphene is the thinnest two-dimensional 
atomic substance. It is a fundamental building 
block for 0D fullerenes [15-17], 1D carbon nano-
tubes [18-21], and 3D graphites [22-24]. This ex-
taordinary compound is known as the thinnest and 
strongest ever measured material in the universe. 
It is a 2D structure of carbon atoms with a hexago-
nal crystalline structure with sp2 bonds, that holds 
unusual properties such as remarkable mechanical 
[25-29], thermal [30, 31], structural [32-34], and 
electrical [35-39] properties and also strong nano-
filler-matrix adhesions [40, 41] that lead to strong 
mechanical strength [42-44]. These distinguished 
properties of graphene make it an ideal candidate 
to be used in the formation of polymer/graphene 
nano-composites (see Fig. 1). 

 Since its discovery in 2004 by Geim as a new al-
lotrope of carbon, graphene has drawn a lot of at-
tention from both theoretical and experimental sci-
entists [11] because of its exceptional properties, 
such as high porosity [46], excellent electron 
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mobility [47,48], heat resistance [49] and high 
thermal conductivity of∼5000 W m−1K−1 [50,51], 
that is comparable to current carbon nanotubes 
[52-55] and high optical transparency (97% Opti-
cal transmission) [56-60].  

Moreover, monolayer graphene has a strength of 
about 200 times greater than steel which makes it 
the most durable material ever tested [61] and also 
has Young's modulus of about 1.0 TPa [62-65], and 
strength of 130 GPa [65] making it a promising re-
inforcing phase for ultra-strong structural compo-
site materials [67]. Thus, the tensile strength of 
graphene is similar or slightly higher than CNT, but 
much higher than steel, kevlar, and natural rubber 
[68-70]. 

 The theoretical surface area of graphene with-
out overlap of sheets attains about 2630 m2/g with 
a layer thickness range of 0.35 to 1nm [71]. Alt-
hough, in real and experimental systems, the ob-
served layer surface is smaller due to the occur-
rence of overlap of the exfoliated sheets. In addi-
tion, graphene has a relatively high thermal con-
ductivity in comparison with other materials. At 
the same time, the electrical conductivity of gra-
phene is higher than most engineering materials 
except for steel [72, 73]. The considerable surface 
area of the graphene sheet provides a significant 
advantage in improving the mechanical, thermal, 
and electrical properties of the resultant composite 
[74, 75]. Due to all these reasons, graphene pro-
jects are rapidly rising on the horizon of materials 
science and condensed matter physics [76, 77]. 

Furthermore, graphene can be produced by ex-
foliation of graphite or its derivatives, such as gra-
phen oxide (GO) [78]. The advantage of this ap-
proach is that it enables high yield production, and 
hence, it is a cost-effective and scalable process 
[72]. Therefore, this material is suitable for the pro-
duction of polymer/graphene nano-composites. 
Graphene sheets are starting to play the role of an 
alternative to CNTs for preparing multifunctional 
polymer nano-composites, due to their high spe-
cific surface area, high aspect ratio, and layered 
structure [79]. 

Nowadays, the interest in nanoparticles such as 
graphene is being broadened considerably, regard-
ing its’ other interesting physical properties such 
as high levels of thermal conductivity [80], stiff-
ness, and strength [81], and being coupled result-
ing in impermeability to gases [82]. It is proved 
that graphene and graphene-derived layered mate-
rials are also potential candidates for gas barrier 
membranes [83]. Also, according to recent studies, 
the production costs of graphene in large quanti-
ties are much lower than carbon nanotubes [84, 
85]. The price of natural crystalline graphite is 
quite low, around 1.5$/lb, and the cost of exfoliated 
graphite nano-platelets is about 5$/lb or less [86]. 
These prices are significantly less than CNTs 
(100$/g) [87]. 

Fig. 1. Schematic representation of graphene, as the 
fundamental starting material for a variety of fullerene 

materials such as buck balls, carbon nanotubes, and 
graphite [45]. 

Thus far, graphene based nano-composites have 
been explored in a myriad of fields, including nano-
electronics [79, 88, 89], intercalation materials, 
drug delivery systems [90] and catalysis. It has also 
shown potential applications in many technologi-
cal fields, such as, single molecule sensors [91-94], 
biosensors [95,96], electrochemical sensors [97], 
molecular sensors [98,99], batteries [100-104], liq-
uids crystal displays [105], light emitting devices 
[106], nano-composites [107-109], high frequency 
analog electronics [110], supercapacitors [63,111], 
optoelectronic devices [112], solar cells, transpar-
ent and flexible electrodes for displays 
[95,113,114] hydrogen [115] and energy storage 
devices [116]. Additionally, incorporating gra-
phene sheets in a composite material is one of the 
practical methods to exploit their enhanced prop-
erties for real-world applications [77]. Substantial 
property enhancements of Polymer nano-compo-
sites in comparison with polymer composites with 
conventional micron-scale fillers (such as glass or 
carbon fibers) have been observed and have led to 
higher loading tolerating capacities, which ulti-
mately result in a lower component weight [117]. 

Also, graphene can be used as an additive to de-
lay the flammability of polymers due to its unique 
two-dimensional atomic carbon sheet structure 
[118-120]. The nano-filler network structure of 
graphene increases the heat transfer to the sur-
rounding environment and thus retards the flame 
[121,122]. 

3. Synthesis of Graphene 

Four different methods have been used to syn-
thesis graphen [123]. The first method (which can 
be used for the preparation of graphene nano-
platelet) is micromechanical exfoliation of graph-
ite, which is also known as the ‘scotch tape’ or ‘peel-
off’ method  [124,125]; the second method is chem-
ical vapor deposition (CVD) or thermal, chemical 
decomposition of graphitic materials [126,127]. 
Epitaxial growth on electrically insulating surfaces 
or electrostatic deposition of graphene [128] is 
known as the third method. And finally, the fourth 
method is the solution-based reduction of gra-
phene oxide or chemical exfoliation [129-131].  
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The chemical exfoliation of graphite is the typical 
process for the bulk synthesis of graphene, in 
which graphite is oxidized to graphite oxide by ox-
idation with K2Cr2O7 [132], KMnO4 [132], and 
KClO3 [134]. Furthermore, interest in the chemical 
synthesis of graphene nano-sheets is increasing 
due to the mass production of graphene nano-
sheets and facile functionalization through oxygen 
(containing functional groups) [135,136]. The syn-
thesis of graphene nano-sheets makes the gra-
phene nano-sheets capable of being used in the ar-
eas of hybrid nano-composites, which shows prom-
ising applications in high capacity storage materi-
als, and especially electronic devices such as bat-
teries [137,138]. This method, which was initially 
developed by Stankovich [139], has been used to 
fabricate solution-processable functionalized gra-
phene in two stages: 
1- Water-soluble graphite oxide (GO) was prepared 
from graphite using the Hummers method [60] and 
dispersed in water with appropriate sonication to 
yield a dispersion containing mainly individual 
graphene sheets. 
2- The exfoliated GO was reacted with an alkyl-
amine to obtain a solution-processable functional-
ized graphene. 

On the other hand, exfoliation of graphite or its 
derivatives, such as GO is an alternative method for 
producing graphene that is used nowadays [78]. 
Generally, these methods are suitable for large-
scale production for polymer composite applica-
tions. Usually, the Staudenmaier [111,140] or 
Hummers [141] methods use different variations 
for production of GO where graphite is oxidized us-
ing strong oxidants such as KMnO4, KClO3, and 
NaNO2 in the presence of nitric acid or its mixture 
with sulfuric acid. 

Also, graphene sheets can be attained by graph-
ite exfoliation, including mechanical cleavage of 
graphite [142-145], chemical exfoliation of graph-
ite [104,146], thermal-induced exfoliation [147], 
and direct synthesis, such as epitaxial growth and 
bottom-up organic synthesis (see Fig. 2) [148]. In 
terms of the yield and production cost of graphene, 
the solution phase preparation technique has 
gained the most attention in recent years [149]. 

3.1. Characterization of graphene nano-platelets  

One of the main problems in graphene related 
research is the difficulty of accurate counting of the 
atomic layers in samples obtained by either me-
chanical exfoliation from bulk graphite or grown by 
other means [112]. Atomic force microscopy 
(AFM) may not identify the number of graphene 
layers individually, where there are other alterna-
tives, including transmission electron microscopy 
(TEM). A significant disadvantage of these tests is 
the lengthy   preparation process of the involved 
experimental samples. The X-ray diffraction (XRD) 
test method has also been used for the 

characterization of the structure of nano-compo-
sites [150]. Recently micro-Raman spectroscopy 
has become a conventional technique for the iden-
tification and characterization of graphene layers 
[151-153]. Since, the Raman spectrum of graphene 
is very sensitive to the number of atomic layers and 
the existence of disorders or defects, which allows 
for better graphene characterization. 

4. Intercalation and exfoliation of gra-
phene in polymers  

The intercalation of graphite increases its inter-
layer spacing, weakening the interlayer interac-
tions, and facilitating the exfoliation of the graphite 
intercalation compounds by mechanical or thermal 
methods [104]. Dispersion of graphene nano-
sheets in to the polymer hosts is a challenge in the 
development of high-performance graphene-based 
nano-composites due to the strong interlayer cohe-
sive energy and surface inertia [154,155]. Also, gra-
phene nano-particles are highly hydrophobic, and 
thus, it is challenging to disperse them in solvents 
[156,157]. These subjects limit the application of 
pure graphene sheets in nano-composites. To im-
prove the dispersibility of graphene in the matrix, 
both the surface modification and in situ polymeri-
zation approach have been tried [158,159] (see Fig. 
3). Furthermore, expanding the application of gra-
phene between graphene sheets and aromatic or-
ganic molecules has been carried out based on π-
stacking [130, 97], which could improve its solubil-
ity [160]. Recently, it has been found that the func-
tionalization of graphene with a polymer is an effi-
cient method to enhance its dispersibility and sol-
ubility in the aqueous solvent [161]. Furthermore, 
the insolubility and re-aggregation tendency limit-
ing the manipulation and processing of graphene 
results in the non-uniform dispersion of graphene 
in the polymer matrix. Much effort has been dedi-
cated to the chemical functionalization of graphene 
to improve the solubility and compatibility with 
polymers by changing its surface properties 
[162,163]. Graphene platelets, in their intact form, 
are characterized by low surface energy, and there-
fore, poorly wetted by most polymer matrices. Con-
sequently, the dispersion is often poor and leads to 
reduced mechanical properties of the composite 
[151]. In most cases, conventional organic modifi-
cation of graphene sheets improves their disper-
sion in the polymer matrix [164, 165]. The melt 
rheological property also provides a convenient 
way to evaluate the dispersion state of the nano-
fillers in the polymer matrix [14]. 

Additionally, the final properties of the gra-
phene reinforced polymer nanocomposites are dic-
tated by interfacial bonding between graphene and 
the host polymer [166]. 
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Fig. 2. Schematic picture of graphite expansion and functionali-

zation process [148]. 
 
 

 
Fig. 3. Schematic figure of three morphological states (origi-

nally suggested for layered silicate fillers) (a) phase separated, 
(b) intercalated, (c) exfoliated [158]. 

Pristine graphene is not compatible with or-
ganic polymers and does not form homogeneous 
composites. Hence, it is difficult to obtain an accep-
tible dispersion of graphene in polymer matrices. 
Instead of using pure graphene, the functionaliza-
tion of graphene (FG) is one of the most common 
methods to solve the problem [167]. The function-
alized groups enable graphene to disperse uni-
formly and interact with polymer chains producing 
strong interfacial adhesion [168]. Oxidization is a 
typical way to functionalize graphene, which is de-
noted as GO. GO consists of graphene lattices that 
are chemically functionalized with hydroxyl, car-
bonyl, and epoxide groups [169]. This additional 
carbonyl and carboxyl groups take place at the 
edge of the sheets and make graphene oxide sheets, 
strongly hydrophilic, allowing them to swell and 
disperse in water [170]. 

5. Effect of graphene on thermal proper-
ties of polymer nano-composite  

As electronic products continue to move to-
ward miniaturization and high-performance, one 
of the critical challenges is dramatically increasing 
energy dissipation [115] (see Fig. 4). If this 
problemis not solved, the energy dissipated in the 
form of heat will significantly reduce the speed of 
development of new technologies. Recently, for 
this purpose, thermal interface materials have 
been used. These materials have been applied to 
connect different thermal elements to ensure effi-
cient transfer of heat. They can be inserted be-
tween a chip and a heat sink or between a heat sink 
and a heat spreader in the electronic device [171]. 
Graphene-filled polymers are considered to be up-
and-coming candidates for high performance ther-
mal interface materials and expected to solve the 
challenge of increasing heat dissipation from elec-
tronic devices (see Table. 1 for some instances). 
The glass transition temperature (Tg) of nano-

composites has been found to increase by filling 
graphene nano-platelets [182]. In addition, in-
creasing the number of filled graphene, results in 
the decrease of Tg due to the agglomeration of gra-
phene nano-particles. The introduction of filler 
components into organic polymers can improve 
their thermal degradation stability; in other words, 
graphene adds thermal stability [170,183] to nano-
composites because of the thermal isolation effect 
of the graphene sheets and the mass transport bar-
rier that they provide to the volatile products 
which are generated during thermal decomposi-
tion [184]. The test results indicated that the inclu-
sion of graphene into composites resulted in low 
coefficients of thermal expansion (CTEs) [182], and 
increasing graphene fraction reduced CTEs signifi-
cantly [112,185]. Some computational results sug-
gested that in-plane expansion, bond stretching, 
and bond bending effects in the graphene sheets 
counteract each other out, leading to a negative 
thermal expansion coefficient in the plane gra-
phene sheets below the temperature of 470 K 
[166,186]. Due to its planar structure, thermal con-
traction in graphene sheets was more evident than 
other carbon structures, such as graphite, carbon 
nanotubes and, diamond [150,166]. 

The preliminary measurement of thermal con-
ductivity also indicated that graphene composites 
significantly improved the thermal conductivity of 
the polymer matrix [77]. 

Moreover, since the shrinkage of resin below 
the glass transition temperature (Tg) increases lin-
early with reduction of temperature; thus, the dif-
ference between the operating temperature and Tg 
is significant. The magnitude of the resulting inter-
nal residual stresses depends on Tg, CTE, and the 
elastic modulus of the resin, as well as the curing 
conditions and the degree of dimensional con-
straint in the forming process [150]. 

6. Effect of graphene on mechanical 
properties of polymer nano-compo-
sites  

To enhance the mechanical properties of poly-
meric nano-composites, substances such as carbon 
nano-tubes, intercalated clay, graphene, and gra-
phene oxide are added as high-performance rein-
forcing nano-fillers [65]. The mechanical proper-
ties of composites depend not only on the disper-
sion and mechanical properties of the nano-filler in 
the polymer but also on the features of the poly-
mer–particle interface [187]. On the other hand, it 
has been demonstrated that the enhanced mechan-
ical performance of the polymer nano-composites 
depends on the inherent properties of the nano-
filler and also, more importantly, depends on the 
nature of the bonding at the interface and the me-
chanical load transfer capability from the matrix to 
the nano-fiber [40].
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Fig. 4. Schematic representation of thermal exfoliation of graphene [165]. 

 
 

As a result, the superiority of graphene platelets 
in terms of mechanical properties enhancement 
may be related to their high specific surface area, 
enhanced nano-filler matrix adhesion/interlocking 
arising from their wrinkled (rough) surface, as well 
as the two-dimensional (planar) geometry of gra-
phene platelets [188]. furthermore, the maximum 
strength of nano-composites increases with the ad-
dition of graphene up to a critical graphene loading 
point, and then decreases above that critical con-
tent [189]. A similar trend is observed for the initial 
modulus. This phenomenon occurred mainly be-
cause of the agglomeration of graphene sheets 
above the critical graphene loading, as previously 
described. Also, the improvements in the tensile 
mechanical properties depend on the interactions 
between the polymer molecules and the layered 
graphene, as well as on the rigidity of the graphene 
sheets [190-192]. Moreover, the enhancement of 
the toughness of thermosetting materials by the in-
corporation of graphene has been studied [78]. 
Thermosetting materials are generally cured with 
high crosslink density to attain excellent mechani-
cal properties. However, it almost always achieves 
weak fracture resistance [193]. The conclusion 
may review the main points of the author’s work. 
Also, it could include the application of the pro-
posed method and suggestion for future research. 
The percentage of improvements in tensile 
strength and tensile modulus are shown in Fig. 5. 
The maximum improvement in tensile strength is 
as high as 108% [194] and in the tensile modulus 
up to 103% [195]. 

7. Effect of graphene on electrical prop-
erties of polymer nano-composites 

Recently, graphene nano-sheets, as a new kind 
of carbon material, have captured much attention 
due to their excellent electronic conductivity [108, 
206, 207], and their very high electron mobility 
[208,209]. Because of this high conductivity and 
electro-catalytic activity, graphene is an ideal ma-
terial for the preparation of electrochemical sen-
sors and biosensors [210-213]. Furthermore, these 
sheets have attracted enormous attention due to 
their potential application in liquid crystal and 
nano-electronic devices, as well as in super-capac-
itors and field emitters [214]. This nano-particle is 
superior to other conventional carbon materials 
due to the ease of synthesis, cost-effectiveness, re-
markable mechanical stiffness and, large surface 
area [215]. This nano-particle and its derivative, 
graphene oxide (GO), have been substantively used 
as the main framework for dispersing or building 
nano-architectures because of their desireable 
properties in electronics and catalysis [132]. It is 
extremely promising for graphene to become the 
nano-scale building block of new nano-composites 
because of its unusual nano-structure and extraor-
dinary electronic properties [216,217]. Also, a 
nano-composite of graphene/MnO2 nano-platelets 
has been prepared as high lithium capacity electri-
cal batteries. The superior lithium storage capabil-
ity can be attributed to the open structure: the 
large effective surface area and short diffusion 
paths [218]. 
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Fig. 5. The % increase in tensile properties of epoxy/gra-

phene nanocomposites [194–205]. 

8. Conclusions 

 In recent years, graphene materials have been of 
great attention due to their desireable mechanical, 
electrical and thermal properties. Besides, their 
large surface area as compared with other nano-
structural materials, have made it an ideal sub-
stance used as nano reinforcement for many poly-
mer-based composites. As a result, general proper-
ties and synthesizing of graphene nano plateletes 
were studied in the first section of the presented 
research. It was concluded that two-dimensionality 
and nanoscale thickness of the graphene platelet 
causes a high aspect ratio of this nano particle due 
to significant mechanical, thermal, and electrical 
properties. The effect of the addition of these 

nanoparticles on mechanical, thermal, and electri-
cal properties of polymer composites was investi-
gated in other sections of this research. The results 
of the investigations show that the mechanical 
properties of polymer composites highly improve 
by dispersion of these nano particles because of the 
superior mechanical properties of these nano par-
ticles. On the other hand, outstanding thermal 
properties of graphene platelets cause the en-
hancement of thermal properties of polymer com-
posites such as increasing the thermal conductivity 
and decreasing of CTE of polymer-based compo-
sites. Furthermore, the high electron mobility of 
these nano particles causes elevated electrical con-
ductivity of nano-polymer composites in which it 
was dispersed.  Finally, to determine the number of 
atomic layers and assess the quality of the gra-
phene materials, sufficient information was given 
by Raman spectral features. 
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