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This paper presents a numerical solution and optimization for a functionally graded 

material cylinder with an elliptic hole subjected to mechanical pressure. To obtain the 

governing equations, an elliptic cylindrical coordinate was used. The material properties 

were considered in a way in order to vary with power-law function along the elliptic 

cylindrical direction. The differential quadrature method was used for solving the 

equations. In addition, by using von-Mises stress along with the thickness, the optimal 

values for various material inhomogeneity and the geometry of the cylinder 

investigated. The results showed that the inconsistency in shape of the hole in the 

cylindrical vessel can affect the expected results and the stresses in thickness of 

cylinder were changed. Furthermore, it was shown that with low values of the 

functionally graded material index, the geometry of the cylinder had a more significant 

effect on von Misses stress. Additionally, with high values for the material index, the 

values for von Misses stress converged together and the material inhomogeneity had a 

less noticeable effect on stress. The results also showed that for various geometries of 

the cylinder and holes, the best value for material homogeneity to reach the optimum 

value for von Misses stress was changed. The presented results were consistent with 

those reported in previous publications. 

1. Introduction

Solving functionally graded material (FGM) 
problems mathematically is broadly utilized in 
numerous fields. FGM is in general a two-material 
composition in which the material properties 
vary continuously along certain directions and 
this variation presumes to be in exponential, 
power law or other functions along that desired 
direction. In addition, the Differential quadrature 
method (DQM) is an alternative to the 
conventional numerical methods for the solution 
of boundary and initial value problems. DQM 
offers more computational efficiency and 
numerical accuracy over its traditional 
competitors. For example, Ersoy et al. [1] studied 
about the frequencies of functionally graded 
annular plates and shells by DQM. They 
investigated the effects of different types of the 
grid distribution and grid number of shell and 
annular plates. In addition, Duc et al. [2] studied 
the vibration and nonlinear dynamic response of 

eccentrically stiffened the imperfect FGM 
elliptical cylinder subjected to the thermal field. 
Furthermore, by using complex Fourier series 
Fesharaki et al., obtained the exact solution for 
the electromechanical behavior of hollow 
cylinder made of functionally graded 
piezoelectric material [3, 4]. Bouhadra et al. [5] 
used higher order shear deformation theory for 
analysis of the composite plates. Alibeigloo [6] 
investigated the semi-analytical thermo-
elasticity solution for a circular sandwich plate 
with FGM core. In another study, using the 
variational differential quadrature method, 
Ansari et al. [7] presented vibration analysis of 
spherical shells made of FGM carbon nanotube-
reinforced composite resting on an elastic 
foundation. Also, using a double directors finite 
shell element, Frikha et al. [8] presented dynamic 
analysis of functionally graded CN-reinforced 
shell and plateuctures. The, theory of elasticity 
and DQM were used to analyze the free and the 
static vibration of cylindrical sandwich shells 
with FGM core layers by Alibeigloo and Noee [9]. 
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Younsi et al. [10] presented a novel quasi 3-
dimensional (3D) and 2-dimensional (2D) shear 
order deformation theory for analysis of bending 
and vibration of functionally graded material 
plates. Additionally, Nejati et al. [11] used the 
Von-Karman type strain-displacement and 3D 
elasticity theories to investigate the free 
vibration of rectangular plates with functionally 
graded fiber orientation under the effect of 
temperature. Fesharaki et al. [12, 13] studied the 
effect of stiffness ratio of patches and plates in to 
reduce the stress in a plate with a central hole. 
Furthermore, Fourn et al. [14] presented a novel 
refined plate theory for wave propagation in 
functionally graded material plates. Frikha et al. 
[15] also worked on analysis of functionally 
graded CN-reinforced composite shells with 
finite rotation with three and four node shell 
elements. Shojaee et al. [16] analyzed the 
behavior of functionally graded carbon 
nanotube-reinforced composite cylinders 
subjected to free vibration. They utilized 
Hamilton’s principle to determine the governing 
differential equations and boundary conditions, 
and the first-order shear deformation shell 
theory was applied to model the deformation 
kinematics. Menasria et al. [17] presented a new 
higher order shear deformation theory for 
thermal stability analysis of functionally graded 
sandwich plates. Alibeigloo [18] obtained the 
thermo-elasticity solution of FGM solid annular 
and circular plates integrated with layers of 
piezoelectric material by using DQM. He 
investigated the effects of thickness to radius 
ratio, edge boundary conditions and the gradient 
index on the thermo-elastic behavior of 
functionally graded solid annular and circular 
plates. Zghal et al. [19] studied the static analysis 
of FG carbon nanotube-reinforced shell and plate 
structures. In another study, Atrianet al. [20] 
obtained an exact solution for thermo-
electromechanical behavior of hollow cylinders 
made of functionally graded piezoelectric 
material under non-axisymmetric loads. 
Rashidifar et al. [21] worked on analysis of 
cylinders made of functionally graded 
piezoelectric material under thermal electro -
mechanical loads. In further research by 
Hoshyarmanesh et al. [22] they investigated the 
composite piezo sensors used in aerospace 
structural health monitoring applications. 
Tornabene et al. [23] performed a numerical 
investigation by the local generalized differential 
quadrature method on the natural frequencies of 
functionally graded sandwich shells with variable 
thickness. Furthermore, Laplace transformation 
of time domain, state space technique along the 
radial direction and Fourier series expansions for 
displacements and stresses along the axial 
direction were used to work on a 3D transient 

analysis of functionally graded cylindrical shells 
subjected to mechanical and thermal loading by 
Ayoubi and Alibeigloo [24]. In addition, using the 
first order shear deformation theory, Trabelsi et 
al. [25, 26] studied the thermal post buckling 
analysis of functionally graded plates and 
cylindrical shells. Lei et al. [27] investigated 
vibration and thermal buckling of FGM sinusoidal 
microbeams using the differential quadrature 
method under nonlinear temperature 
distribution. Also, the Shooting method was used 
by Sun et al., to study the thermal post-buckling 
and buckling of functionally graded Timoshenko 
beams on a nonlinear elastic foundation [28]. 
Bakhadda et al. [29], worked on bending and 
dynamic analysis of carbon nanotube- reinforced 
composite plates with an elastic foundation. 
Fesharaki et al. [30] investigated the location of 
patches on plates to obtain maximum buckling 
load for a plate. Using finite e shell element, Zghal 
et al. [31-33] studied the free vibration and 
buckling analysis of functionally graded carbon 
nanotubes reinforced composite plates, shells 
and curved panels. Tornabene et al. [34] 
developed the boundary conditions in two and 
three-dimensional numerical models for 
analyzing cylindrical bending of FGM structures. 
They used the finite element and generalized 
differential quadrature methods and 
subsequently compared them with an exact 3D 
shell solution of free vibrations of FGM shells and 
plates. Using the von Karman nonlinear plate 
theory and the classical plate theory Kermani et 
al. performed a nonlinear stability analysis of 
transversal vibrations and rotational dynamics of 
FGM annular circular thin plates [35]. Abdelaziz 
et al. [36] investigated an efficient shear 
deformation theory for buckling, bending and 
free vibration of functionally graded material 
plates. Liew et al. [37] studied the nonlinear and 
linear vibration of a coating-FGM-substrate 
cylindrical panel under a temperature gradient. 
They showed that vibration amplitude had a 
significant influence on the nonlinear and linear 
vibration frequencies. Pradhan and Murmu [38] 
used the differential quadrature method to 
analyze the thermo-mechanical vibration of 
functionally graded sandwich beams resting on 
different elastic foundations. Based on the 2D 
theory of elasticity Chao-Feng and Chen 
presented the free vibration analysis of 
orthotropic FGM beams with different end 
conditions [39]. Vahdati et al. [40] worked on 
fracture analysis of piezo-electro-magnetic 
medium with axisymmetric cracks. Bellifa et al. 
[41] worked on buckling analysis of functionally 
graded plates using various refined plate 
theories. Yang et al. [42] investigated the thermo-
mechanical post-buckling of functionally graded 
cylindrical panels considering temperature-
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dependent properties. Also, using the differential 
quadrature method, Yas and Aragh [43] carried 
out the elasticity solution for analysis of free 
vibration of cylindrical panels with functionally 
graded fiber orientation. 

The previous studies by Alle, focused on ideal 
cylinders but considering the fact that in many 
practical vessels, the inner radius of the cylinder 
is not exactly circular but almost non-circular 
shape, this inconsistency in the shape of a vessel 
can affect the values of the expected results. This 
behavior is very important, for example in sensor 
instruments. The novelty of this paper is that a 
cylinder with non-circular hole is investigated. 
For this purpose, a hollow cylinder with an 
elliptical hole, made of functionally graded 
material subjected to internal pressure was 
investigated. All governing equations extracted in 
the elliptic cylindrical were coordinated. The 
material properties were considered in order to 
vary along the elliptic cylindrical direction by a 
power function in ξ. To solve the problem, the 
differential quadrature method was used. The 
results for various values for the material 
gradient along the were cylinder presented. Then 
by considering von Misses stress, the optimum 
values of material inhomogeneity index and 
various geometries were investigated. Finally, 
results were compared with those reported in 
previous publications. 

2. Problem definition 

Consider a thick hollow cylinder made of 
functionally graded material with an elliptical 
hole. To solve the problem an elliptic cylindrical 
coordinate is considered. The considering 
problem and coordinate are shown in Fig. 1. For 
simplicity, the value a=1 is considered for elliptic 
cylinder located at the center of the cylinder.  

According to non-uniform geometry (ellipse 
shape of the hole), the problem formulates in two 
directions. considering, “u” and “v” to be the 
displacements along the elliptic and hyperbolic 
cylindrical direction along "𝜉" and "𝜂" direction 
respectively. Thus, in the elliptic cylindrical 
coordinate system the relation between strains 
and displacements along the elliptic and 
hyperbolic cylindrical directions are (From 
appendix A1): 

𝜀𝜉𝜉 =
1

𝐴

𝜕𝑢

𝜕𝜉
+
𝑠𝑖𝑛 𝜂 . 𝑐𝑜𝑠 𝜂

𝐴3
𝑣      

𝜀𝜂𝜂 =
1

𝐴

𝜕𝑣

𝜕𝜂
+
𝑠𝑖𝑛ℎ 𝜂.𝑐𝑜𝑠ℎ 𝜂

𝐴3
𝑢                                   

𝜀𝜉𝜂 =
1

2
(
1

𝐴

𝜕𝑢

𝜕𝜂
+
1

𝐴

𝜕𝑣

𝜕𝜉
−
𝑠𝑖𝑛ℎ 𝜉 . 𝑐𝑜𝑠ℎ 𝜉

𝐴3
𝑣

−
𝑠𝑖𝑛 𝜂 . 𝑐𝑜𝑠 𝜂

𝐴3
𝑢) 

(1) 

The relation between stress and strain in 
considering geometry can be presented as: 

𝑇𝜉𝜉 = 𝑁11
𝐹 . 𝜀𝜉𝜉 +𝑁12

𝐹 . 𝜀𝜂𝜂 (2) 

𝑇𝜂𝜂 = 𝑁12
𝐹 . 𝜀𝜉𝜉 + 𝑁22

𝐹 . 𝜀𝜂𝜂    

𝑇𝜉𝜂 = 2𝑁13
𝐹 . 𝜀𝜉𝜂  

where 𝑇𝑖𝑗  (𝑖. 𝑗 = 𝜉. 𝜂) and 𝑁𝑖𝑗
𝐹  (𝑖. 𝑗 = 1. 2. 3) 

are the stress tensor component and elastic 
coefficient respectively. The superscript “F” is 
used to show that the material properties are 
specified for functionally graded material. For 
calculating the functionally graded properties of 
material, suppose that all material coefficients 
are graded through the elliptic cylindrical 
direction "𝜉", thus the material properties are 
functions of "𝜉" as: 

𝑁𝑖𝑗
𝐹 = 𝑁𝑖𝑗𝜉

𝑝      (𝑖. 𝑗 = 1. 2. 3) (3) 

Where the corresponding values of the outer 
surface of the cylinder show with 𝑁𝑖𝑗  and "𝑝" is 

the power-law index of the functionally graded 
material properties. 

The equilibrium equations for a functionally 
graded hollow cylinder in elliptical cylinder 
coordinate irrespective of inertia and body force 
along the hyperbolic and elliptic cylindrical 
directions respectively are expressed as (From 
appendix B).  

𝜕𝑇𝜉𝜉

𝜕𝜉
+
𝜕𝑇𝜉𝜂

𝜕𝜂
+
2 𝑠𝑖𝑛 𝜂 𝑐𝑜𝑠 𝜂

𝐴2
𝑇𝜉𝜂

+
𝑠𝑖𝑛ℎ 𝜉 𝑐𝑜𝑠ℎ 𝜉

𝐴2
(𝑇𝜉𝜉 − 𝑇𝜂𝜂)

= 0 

(4) 

𝜕𝑇𝜂𝜂

𝜕𝜂
+
𝜕𝑇𝜉𝜂

𝜕𝜉
+
2 𝑠𝑖𝑛ℎ 𝜉 𝑐𝑜𝑠ℎ 𝜉

𝐴2
𝑇𝜉𝜂

+
𝑠𝑖𝑛 𝜂 𝑐𝑜𝑠 𝜂

𝐴2
(𝑇𝜂𝜂 − 𝑇𝜉𝜉)

= 0 

(5) 

Using equations (1) -(3) and substituting 
them into equations (4) and (5), the two coupled 
governing differential equations based on 
displacement components yields as: 

 
Fig. 1. (a) geometry model for considering the problem (b) 

considering coordinate (elliptic cylindrical) 
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𝜕2𝑢

𝜕𝜉2
+ 𝑐1

𝜕2𝑢

𝜕𝜂2
+
𝑝

𝜉

𝜕𝑢

𝜕𝜉
+ 𝑐2

𝑠𝑖𝑛 𝜂 𝑐𝑜𝑠 𝜂

𝐴2
𝜕𝑢

𝜕𝜂

+ 𝑐3
𝑝

𝜉

𝑠𝑖𝑛ℎ 𝜉 𝑐𝑜𝑠ℎ 𝜉

𝐴2
𝑢 + 𝑐4

𝑠𝑖𝑛ℎ2𝜉 𝑐𝑜𝑠ℎ2𝜉

𝐴4
𝑢

+ 𝑐3
𝑠𝑖𝑛ℎ2𝜉

𝐴2
𝑢 + 𝑐3

𝑐𝑜𝑠ℎ2𝜉

𝐴2
𝑢 + 𝑐8

𝑠𝑖𝑛2𝜂 𝑐𝑜𝑠2𝜂

𝐴4
𝑢

+ 𝑐9
𝜕2𝑣

𝜕𝜉𝜕𝜂
+ 𝑐5

𝑠𝑖𝑛 𝜂 𝑐𝑜𝑠 𝜂

𝐴2
𝜕𝑣

𝜕𝜉

+ 𝑐6
𝑠𝑖𝑛ℎ 𝜉 𝑐𝑜𝑠ℎ 𝜉

𝐴2
𝜕𝑣

𝜕𝜂
+ 𝑐3

𝑝

𝜉

𝜕𝑣

𝜕𝜂

+
𝑝

𝜉

𝑠𝑖𝑛 𝜂 𝑐𝑜𝑠 𝜂

𝐴2
𝑣 + 𝑐7

𝑠𝑖𝑛 𝜂 𝑐𝑜𝑠 𝜂 𝑠𝑖𝑛ℎ 𝜉 𝑐𝑜𝑠ℎ 𝜉

𝐴4
𝑣

= 0 

(6) 

𝜕2𝑣

𝜕𝜂2
+ 𝑐10

𝜕2𝑣

𝜕𝜉2
+ 𝑐11

𝑠𝑖𝑛 𝜂 𝑐𝑜𝑠 𝜂

𝐴2
𝜕𝑣

𝜕𝜉
+ 𝑐10

𝑝

𝜉

𝜕𝑣

𝜕𝜉

+ 𝑐12
𝑠𝑖𝑛ℎ 𝜉 𝑐𝑜𝑠ℎ 𝜉

𝐴2
𝜕𝑣

𝜕𝜉
+ 𝑐13

𝑐𝑜𝑠2 𝜂

𝐴2
𝑣 + 𝑐14

𝑣

𝐴2

+ 𝑐15
𝑠𝑖𝑛2𝜂 𝑐𝑜𝑠2𝜂

𝐴4
𝑣 + 𝑐12

𝑐𝑜𝑠ℎ2𝜉

𝐴2
𝑣

+ 𝑐16
𝑝

𝜉

𝑠𝑖𝑛ℎ 𝜂 𝑐𝑜𝑠ℎ 𝜂

𝐴2
𝑣 + 𝑐17

𝑠𝑖𝑛ℎ2𝜉 𝑐𝑜𝑠ℎ2𝜉

𝐴4
𝑣

+ 𝑐18
𝜕2𝑢

𝜕𝜉𝜕𝜂
+ 𝑐19

𝑠𝑖𝑛 𝜂 𝑐𝑜𝑠 𝜂

𝐴2
𝜕𝑢

𝜕𝜉
+ 𝑐10

𝑝

𝜉

𝜕𝑢

𝜕𝜉

+ 𝑐20
𝑠𝑖𝑛ℎ 𝜉 𝑐𝑜𝑠ℎ 𝜉

𝐴2
𝜕𝑢

𝜕𝜂

+ 𝑐21
𝑠𝑖𝑛 𝜂 𝑐𝑜𝑠 𝜂 𝑠𝑖𝑛ℎ 𝜉 𝑐𝑜𝑠ℎ 𝜉

𝐴4
𝑢

+ 𝑐10
𝑝

𝜉

𝑠𝑖𝑛 𝜂 𝑐𝑜𝑠 𝜂

𝐴2
𝑢 = 0 

(7) 

Where the constant 𝑐1 to 𝑐19 are presented in 
Appendix C. These two couple equations should 
be solved simultaneously to specify the 
displacements along two directions. Solving the 
governing differential equations (6) and (7), need 
boundary conditions from all possible boundary 
conditions that presented:  

𝑢(𝜉. 𝜂) = 𝑢0.          𝑣(𝜉. 𝜂) = 𝑣0.      

𝑇𝜉𝜉(𝜉. 𝜂) = 𝑇𝜉𝜉
0 .     𝑇𝜂𝜂(𝜉. 𝜂) = 𝑇𝜂𝜂

0 .     

𝑇𝜉𝜂(𝜉. 𝜂) = 𝑇𝜉𝜂
0 . 

(8) 

Where, by substituting equation (1) into (2), 
the stress values in terms of displacements yield 
to: 

𝑇𝜉𝜉 =
𝑁11
𝐴
𝜉𝑝
𝜕𝑢

𝜕𝜉
+
𝑁11
𝐴3

𝜉𝑝 𝑠𝑖𝑛 𝜂 𝑐𝑜𝑠 𝜂 𝑣

+
𝑁12
𝐴
𝜉𝑝
𝜕𝑣

𝜕𝜂

+
𝑁12
𝐴3

𝜉𝑝 𝑠𝑖𝑛ℎ 𝜉 𝑐𝑜𝑠ℎ 𝜉 𝑢 

(9) 

𝑇𝜂𝜂 =
𝑁12
𝐴
𝜉𝑝
𝜕𝑢

𝜕𝜉
+
𝑁12
𝐴3

𝜉𝑝 𝑠𝑖𝑛 𝜂 𝑐𝑜𝑠 𝜂 𝑣

+
𝑁22
𝐴
𝜉𝑝
𝜕𝑣

𝜕𝜂

+
𝑁22
𝐴3

𝜉𝑝 𝑠𝑖𝑛ℎ 𝜉 𝑐𝑜𝑠ℎ 𝜉 𝑢 

(10) 

𝑇𝜉𝜂 =
𝑁13
𝐴

𝜕𝑢

𝜕𝜂
+
𝑁13
𝐴

𝜕𝑣

𝜕𝜉
− 𝑁13

𝑠𝑖𝑛ℎ 𝜉 . 𝑐𝑜𝑠ℎ 𝜉

𝐴3
𝑣

− 𝑁13
𝑠𝑖𝑛 𝜂 . 𝑐𝑜𝑠 𝜂

𝐴3
𝑢 

(11) 

Furthermore, presenting analytical solutions 
for coupled differential equations (6) and (7) is 
very difficult and so a powerful numerical 
method (differential quadrature method-DQM) 
was used to solve the equations.  

3. Solution by DQM 

In order to find out the numerical results for 
solving equations (6) and (7), the differential 
quadrature (DQM) method is used. DQM is an 
efficient and simple technique to find the solution 
of nonlinear PDEs of boundary and initial 
problems. The basis of this method relies on 
approximating the derivatives of a function at any 
discrete point in a coordinate direction as the 
weighted summation of the function values in all 
the points in that direction. Thus, the DQM rule 
for nth order derivatives of a function, U(x), may 
be rewritten as: 

𝜕𝑛𝑈

𝜕𝑥𝑛
|
𝑥=𝑥𝑖

=∑𝐴𝑖𝑗
(𝑛)
𝑈(𝑥𝑗)     𝑖 = 1. 2. … . 𝑁

𝑁

𝑗=1

 (12) 

Where N is the number of sample points in the 

x-direction and 𝐴𝑖𝑗
(𝑛)

 are the weighting 

coefficients of the 𝑛𝑡ℎ order derivative in the x-
direction at the nth sample point. 

The two most important steps in this method 
are: first determining the sufficient amount of 
sample points and their locations and second, 
calculating the weighting coefficients at each of 
these points. Previous research has shown that 
unequally spaced sampling points will cause 
results that were more accurate. For locating the 
sampling points in the hyperbolic cylindrical 
direction, we can use the Chebyshev-Gauss-
Lobatto method, which gives the sampling points 
an unequal distance: 

𝐷𝑖 =
𝐿

2
(1 − 𝑐𝑜𝑠

(𝑖 − 1)𝜋

𝑁 − 1
)  ;    𝑖 = 1. 2. … .𝑁 (13) 

And for the elliptic cylindrical direction, 
equally spaced sampling points are used. 
Weighting coefficient values depend on the 
choice of the test function. In this problem, 
polynomial test functions are implemented for 
the elliptic cylindrical direction as: 

𝑈(𝜉) = 1. 𝜉. 𝜉2. … . 𝜉𝑁−1 (14) 

and to satisfy continuity in the elliptic 
cylindrical direction the harmonic trial functions 
[44] are taken as: 

{
 
 
 

 
 
 
𝑈(𝜂) = 𝑐𝑜𝑠[2(𝑘 − 1)𝜋𝜂];                  

𝑘 = 1,2,… ,
𝑁

2
+ 1

𝑈(𝜂) = 𝑠𝑖𝑛 [2 (𝑘 −
𝑁

2
− 1)𝜋𝜂] ;

𝑘 =
𝑁

2
+ 2,

𝑁

2
+ 3,…

         

 (15) 
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Substituting the test functions, equations (14) 
and (15) into equation (12) results in a system of 
equations, which by solving them may yield the 
weighting coefficients: 

∑(𝑈𝑗)𝐴𝑖𝑗
(𝑛)

𝑁

𝑗=1

=
𝜕𝑛

𝜕𝑥𝑛
𝑈𝑗|

𝑥=𝑥𝑖

    ;   𝑖. 𝑘 = 1.2. … . 𝑁 (16) 

After finding the first order weight 
coefficients (𝐴𝑖.𝑗), the second order weight 

coefficients (𝐵𝑖.𝑗) may easily be obtained as: 

𝐵𝑖,𝑗 = ∑𝐴𝑖𝑘𝐴𝑘𝑗     ;    (𝑖. 𝑗 = 1.2.… . 𝑁)

𝑁

𝑘=1

 (17) 

Using equations (12) to (17), the differential 
quadrature analog domain and boundary 
equations obtained are: 

∑𝐵𝑖𝑗
𝜉
𝑈𝑖

𝑁

𝑗=1

+ 𝑐1∑𝐵𝑖𝑗
𝜂
𝑈𝑖

𝑁

𝑗=1

+
𝑝

𝜉
∑𝐴𝑖𝑗

𝜉
𝑈𝑖

𝑁

𝑗=1

+ 𝑐2
𝑠𝑖𝑛 𝜂 𝑐𝑜𝑠 𝜂

𝐴2
𝜕𝑢

𝜕𝜂
+ 𝑐3

𝑝

𝜉

𝑠𝑖𝑛ℎ 𝜉 𝑐𝑜𝑠ℎ 𝜉

𝐴2
𝑢

+ 𝑐4
𝑠𝑖𝑛ℎ2𝜉 𝑐𝑜𝑠ℎ2𝜉

𝐴4
𝑢 + 𝑐3

𝑠𝑖𝑛ℎ2𝜉

𝐴2
𝑢

+ 𝑐3
𝑐𝑜𝑠ℎ2𝜉

𝐴2
𝑢 + 𝑐8

𝑠𝑖𝑛2𝜂 𝑐𝑜𝑠2𝜂

𝐴4
𝑢

+ 𝑐9∑∑𝐴𝑖𝑗
𝜂
𝐴𝑗𝑘
𝜉
𝑉𝑖

𝑁

𝑗=1

𝑁

𝑘=1

+ 𝑐5
𝑠𝑖𝑛 𝜂 𝑐𝑜𝑠 𝜂

𝐴2
∑𝐴𝑖𝑗

𝜉
𝑉𝑖

𝑁

𝑗=1

+ 𝑐6
𝑠𝑖𝑛ℎ 𝜉 𝑐𝑜𝑠ℎ 𝜉

𝐴2
∑𝐴𝑖𝑗

𝜂
𝑉𝑖

𝑁

𝑗=1

+ 𝑐3
𝑝

𝜉
∑𝐴𝑖𝑗

𝜂
𝑉𝑖

𝑁

𝑗=1

+
𝑝

𝜉

𝑠𝑖𝑛 𝜂 𝑐𝑜𝑠 𝜂

𝐴2
𝑣 + 𝑐7

𝑠𝑖𝑛 𝜂 𝑐𝑜𝑠 𝜂 𝑠𝑖𝑛ℎ 𝜉 𝑐𝑜𝑠ℎ 𝜉

𝐴4
𝑣

= 0 

(18) 

∑𝐵𝑖𝑗
𝜂
𝑉𝑖

𝑁

𝑗=1

+ 𝑐10∑𝐵𝑖𝑗
𝜉
𝑉𝑖

𝑁

𝑗=1

+ 𝑐11
𝑠𝑖𝑛 𝜂 𝑐𝑜𝑠 𝜂

𝐴2
∑𝐴𝑖𝑗

𝜉
𝑉𝑖

𝑁

𝑗=1

+ 𝑐10
𝑝

𝜉
∑𝐴𝑖𝑗

𝜉
𝑉𝑖

𝑁

𝑗=1

+ 𝑐12
𝑠𝑖𝑛ℎ 𝜉 𝑐𝑜𝑠ℎ 𝜉

𝐴2
∑𝐴𝑖𝑗

𝜉
𝑉𝑖

𝑁

𝑗=1

+ 𝑐13
𝑐𝑜𝑠2 𝜂

𝐴2
𝑣

+ 𝑐14
𝑣

𝐴2
+ 𝑐15

𝑠𝑖𝑛2𝜂 𝑐𝑜𝑠2𝜂

𝐴4
𝑣 + 𝑐12

𝑐𝑜𝑠ℎ2𝜉

𝐴2
𝑣

+ 𝑐16
𝑝

𝜉

𝑠𝑖𝑛ℎ 𝜂 𝑐𝑜𝑠ℎ 𝜂

𝐴2
𝑣 + 𝑐17

𝑠𝑖𝑛ℎ2𝜉 𝑐𝑜𝑠ℎ2𝜉

𝐴4
𝑣

+ 𝑐18∑∑𝐴𝑖𝑗
𝜂
𝐴𝑗𝑘
𝜉
𝑈𝑖

𝑁

𝑗=1

𝑁

𝑘=1

+ 𝑐19
𝑠𝑖𝑛 𝜂 𝑐𝑜𝑠 𝜂

𝐴2
∑𝐴𝑖𝑗

𝜉
𝑈𝑖

𝑁

𝑗=1

+ 𝑐10
𝑝

𝜉
∑𝐴𝑖𝑗

𝜉
𝑈𝑖

𝑁

𝑗=1

+ 𝑐20
𝑠𝑖𝑛ℎ 𝜉 𝑐𝑜𝑠ℎ 𝜉

𝐴2
∑𝐴𝑖𝑗

𝜂
𝑈𝑖

𝑁

𝑗=1

+ 𝑐21
𝑠𝑖𝑛 𝜂 𝑐𝑜𝑠 𝜂 𝑠𝑖𝑛ℎ 𝜉 𝑐𝑜𝑠ℎ 𝜉

𝐴4
𝑢

+ 𝑐10
𝑝

𝜉

𝑠𝑖𝑛 𝜂 𝑐𝑜𝑠 𝜂

𝐴2
𝑢 = 0 

(19) 

𝑇𝜉𝜉 =
𝑁11
𝐴
𝜉𝑝∑𝐴𝑖𝑗

𝜉
𝑈𝑖

𝑁

𝑗=1

+
𝑁11
𝐴3

𝜉𝑝 𝑠𝑖𝑛 𝜂 𝑐𝑜𝑠 𝜂 𝑣

+
𝑁12
𝐴
𝜉𝑝∑𝐴𝑖𝑗

𝜂
𝑉𝑖

𝑁

𝑗=1

+
𝑁12
𝐴3

𝜉𝑝 𝑠𝑖𝑛ℎ 𝜉 𝑐𝑜𝑠ℎ 𝜉 𝑢 

(20) 

𝑇𝜂𝜂 =
𝑁12
𝐴
𝜉𝑝∑𝐴𝑖𝑗

𝜉
𝑈𝑖

𝑁

𝑗=1

+
𝑁12
𝐴3

𝜉𝑝 𝑠𝑖𝑛 𝜂 𝑐𝑜𝑠 𝜂 𝑣

+
𝑁22
𝐴
𝜉𝑝∑𝐴𝑖𝑗

𝜂
𝑉𝑖

𝑁

𝑗=1

+
𝑁22
𝐴3

𝜉𝑝 𝑠𝑖𝑛ℎ 𝜉 𝑐𝑜𝑠ℎ 𝜉 𝑢 

(21) 

𝑇𝜉𝜂 =
𝑁13
𝐴
∑𝐴𝑖𝑗

𝜂
𝑈𝑖

𝑁

𝑗=1

+
𝑁13
𝐴
∑𝐴𝑖𝑗

𝜉
𝑉𝑖

𝑁

𝑗=1

− 𝑁13
𝑠𝑖𝑛ℎ 𝜉 . 𝑐𝑜𝑠ℎ 𝜉

𝐴3
𝑣

− 𝑁13
𝑠𝑖𝑛 𝜂 . 𝑐𝑜𝑠 𝜂

𝐴3
𝑢 

(22) 

where 𝐴𝑖𝑗
𝜉

 and 𝐴𝑖𝑗
𝜂

 are the first order weighting 

coefficients in 𝜉 and 𝜂 direction, 𝐵𝑖𝑗
𝜉

 and 𝐵𝑖𝑗
𝜂

 are 

the second order weighting coefficients in 𝜉 and 
𝜂 direction respectively. These equations 
assemble a matrix equation of the form: 

[
[𝑆𝑏𝑏] [𝑆𝑏𝑑]

[𝑆𝑑𝑏] [𝑆𝑑𝑑]
] {
𝛥𝑏
𝛥𝑑
} = {

𝑓
0
} (23) 

where 𝛥𝑏 and 𝛥𝑑  are the vector of 
displacement components U, V, related to the 
boundary and domain grid points respectively. 
Using the static condensation method Eq. (23) 
then reduces to: 

[−𝑆𝑑𝑏𝑆𝑏𝑏
−1𝑆𝑏𝑑 + 𝑆𝑑𝑑]{𝛥𝑑} = {0} (24) 

Eq. (24) represents a standard eigenvalue 
problem and by solving it, the displacements of 
grid points are attained.  

4. Results and discussions 

4.1. Validation of the results 

To validate the formulation and results, 
consider the points through the thickness of the 
cylinder on “x” axis which are located on 
direction 𝜂 = 0. If assumed that 1.317 ≤ 𝜉 ≤
3.688 and using equation (A1) and considering 
the hydrostatic pressure at the inner surface of 
the cylinder, the problem is similar to a cylinder 
with a circular hole with the inner and outer 
radius equal to 2 ≤ 𝑅 ≤ 20. By considering these 
conditions, the results compared with those 
reported in reference [45], for comparison 
purposes, two FGM indices p=0 and p=0.5 are 
considered. Fig. 2 shows the differences between 
the results presented in this paper and those 
reported in Fig. 3 of reference [45] and it can be 
seen that there is good agreement between the 
presented results and those reported in previous 
work.  
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4.2. Discussion 

In order to solve the problem, consider a 
cylinder with inner radius 𝜉 = 1 and outer 
radios 𝜉 = 2. Considering the material properties 
at the inner radius according to equations (2) and 
(3) as:  

𝑁11 = 94𝑒9 𝑀𝑃𝑎,𝑁12 = 40.4𝑒9 𝑀𝑃𝑎 
𝑁13 = 53.8𝑒9 𝑀𝑃𝑎,𝑁22 = 94𝑒9 𝑀𝑃𝑎 (25) 

Because the problem is symmetric with 
respect to both the X-axis and Y-axis, for 
simplicity the elliptic cylindrical boundary is 
solved for 0 ≤ 𝜂 ≤ 𝜋/2 (one-quarter of the 
considering geometry). 

The outer boundary condition is clamped 
along 𝜉 and 𝜂 direction and there is hydrostatic 
pressure at the internal elliptic hole. The 
boundary conditions are considered as follows: 

𝑢(𝜉. 𝜂) = 𝑣(𝜉. 𝜂) = 0        𝑎𝑡 𝜉 = 2  
𝑇𝜉𝜉(𝜉. 𝜂) = 10

6 𝑃𝑎            𝑎𝑡 𝜉 = 1  
𝑇𝜂𝜂(𝜉. 𝜂) = 0.                      𝑎𝑡 𝜉 = 1 

(26) 

 
Fig. 2. Comparison of the Elliptic cylindrical stress with 

published literature for two power law index (p=0; p=0.5) 

 
Fig. 3. Elliptic cylindrical stress for the various material 

index at 𝜂 = 0 

 
Fig. 4. Elliptic cylindrical stress for the various material 

index at 𝜂 =
𝜋

4
 

Figures 3, 4 and 5 show the elliptic cylindrical 
stress for various material inhomogeneities along 
a line in a specified direction namely, 𝜂 = 0, 𝜋/4,
𝜋/2 respectively. It can be seen from Fig. 3 that 
the values for elliptic cylindrical stress initially 
decrease from inside of the vessel and then 
increase to the outside of the vessel. In addition, 
this behaviour is the same for all material 
inhomogeneity indices. But by decreasing the 
material inhomogeneity, the intensity of 
decreasing/increasing the stress will be affected. 
Also, for material inhomogeneity near p=1, the 
changes in stress values are less than other values 
for material inhomogeneity. It should be noted 
that for material inhomogeneity near p=1, the 
elliptic cylindrical stress has almost two relative 
minimum values and this is because of the shape 
of the geometry, considering that it is different 
from the real cylinder. Fig. 4 shows the elliptic 
cylindrical stress at direction 𝜂 = 𝜋/4. It can be 
seen that the values of stresses have the same 
manner for every material inhomogeneity but the 
index p=0 has a minimum value between all 
material inhomogeneities. Fig. 5 shows the 
results for elliptic cylindrical stress along 𝜂 =
 𝜋/2. The behavior is almost similar to those 
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reported in Fig. 3, along 𝜂 = 0. By comparing the 
three Figs. 3, 4 and 5 together, the behaviour of 
elliptic cylindrical stress along the hyperbolic 
cylindrical direction is declared.  

Figures 6, 7 and 8 show the hyperbolic 
cylindrical stress for various material 
inhomogeneities along a line in a specified 
direction  𝜂 = 0, 𝜋/4, 𝜋/2 respectively. It can be 
seen that in directions 𝜂 = 0, 𝜋/2  the values of 
hyperbolic cylindrical stress increases from the 
inside of the vessel to the near middle of the 
vessel and then it decreases in values for the 
outer of the vessel. 

But for direction 𝜂 = 𝜋/4 the values of stress 
have reverse behaviours. As mentioned before, 
these behaviours occur because of the 
asymmetry in the considered geometry. In 
addition, it can be seen that the material 
inhomogeneity near 𝑝 = 1 produces minimum 
values in stress along the cylinder. It should be 
mentioned that the maximum value for stress 

occurs between 0 < 𝜂 <
𝜋

2
. 

 
Fig. 5. Elliptic cylindrical stress for the various material 

index at 𝜂 =
𝜋

2
 

 
Fig. 6. Hyperbolic cylindrical stress for the various material 

index at 𝜂 = 0 

 
Fig. 7. Hyperbolic cylindrical stress for the various material 

index at 𝜂 =
𝜋

4
 

 
Fig. 8. Hyperbolic cylindrical stress for the various material 

index at 𝜂 =
𝜋

2
 

Figures 9, 10 and 11 show the shear stress 
(𝑇𝜉𝜂) for various material inhomogeneity along 

three considering direction 𝜂 = 0, 𝜋/4, 𝜋/2 
respectively. It can be seen that at 𝜂 = 0, the 
shear stress has more changes in value from 
inside to outside of the thickness of the vessel and 
these intensities decrease along the 𝜂 = 𝜋/4 and 
𝜂 = 𝜋/2. Fig. 11 shows that the shear stress at 
𝜂 = 𝜋/2 almost has no changes from inner to 
outer of the vessel and only the material 
inhomogeneity affects the value of shear stress in 
the vessel. In addition, it can be seen from Figs. 9 
to 11 that the slope of shear stress curves at the 
inner radius has higher values and near the outer 
of the vessel the shear stress has no changes. 
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Fig. 9. Shear stress for the various material index at 𝜂 = 0 

 
Fig. 10. Shear stress for the various material index at 𝜂 =

𝜋

4
 

 
Fig. 11. Shear stress for the various material index at 𝜂 =

𝜋

2
 

The 3D stresses along the thickness of the 
cylinder for FGM index p=0.5 (for example) are 
shown in Figs. 12 to 14. Fig. 12 shows the 
elliptical cylindrical stress through the one-
quarter of the cylinder for p=0.5. It can be seen 
that the considering boundary conditions in 
equation (26) are satisfied. In addition, the stress 
in the middle of the cylinder has maximum value 
and it changes along elliptical cylindrical and 
hyperbolic cylindrical direction. Figs. 13 and 15 
show the hyperbolic cylindrical and shear 
stresses respectively. It can be seen from Fig. 14 

that, because of the asymmetric geometry of the 
cylinder, the shear stress increases along the two 
considering directions for the problem. Also, it 
can be noted from Figs. 12 to 14 that, in this 
research, similar to the stress of considering the 
geometry, the shear stress will be very 
significant. 

Figures 15 and 16 presented the elliptic 
cylindrical and hyperbolic cylindrical 
displacements through the thickness of the 
cylinder. It can be seen that according to 
considering boundary conditions in the outer 
surface of the cylinder, the displacements lead to 
zero value. Also, on the inner surface of the 
cylinder, the elliptic cylindrical displacement has 
a variable value, but the hyperbolic cylindrical 
displacement has a constant value and the 
changes through the hyperbolic cylindrical 
direction are negligible. 

 
Fig. 12. Elliptic cylindrical stress in the FGM cylinder with an 

elliptical hole for p=0.5 

 
Fig. 13. Hyperbolic cylindrical stress in the FGM cylinder 

with an elliptical hole for p=0.5 



J. Jafari Fesharaki, M. Roghani / Mechanics of Advanced Composite Structures 7 (2020) 189 – 201 

197 

 
Fig. 14. Shear stress in the FGM cylinder with an elliptical 

hole for p=0.5 

 
Fig. 15. Elliptic cylindrical displacement in the FGM cylinder 

with an elliptical hole for p=0.5 

 
Fig. 16. Hyperbolic cylindrical displacement in the FGM 

cylinder with an elliptical hole for p=0.5 

5. Aspect ratio effect 

One of the most important issues about 
functionally graded material is that the material 
inhomogeneity index, leads to minimal stress in 
geometry. Also, the aspect ratio (𝜉𝑜/𝜉𝑖) of the 
cylinder, affects the stress in the cylinder. To 
investigate the aspect ratio of the cylinder and 
material inhomogeneity on stress in thickness of 
the cylinder, the von-Mises stress in the cylinder 
is considered. The von-Misses stress in plane 
stress condition is expressed as: 

𝑇𝑣𝑜𝑛 = (𝑇𝜉𝜉
2 + 𝑇𝜂𝜂

2 − 𝑇𝜉𝜉𝑇𝜂𝜂 + 3𝑇𝜉𝜂
2 )1/2 (27) 

By considering various material 
inhomogeneity as “P” and using the above 
method, the effects of the material index and 
𝜉𝑜/𝜉𝑖  is presented in Fig. 17. It can be seen that 
the material inhomogeneity has much effect on 
von Misses stress and for each ratio 𝜉𝑜/𝜉𝑖 , at a 
specific material inhomogeneity index, the curves 
have an absolute minimum point. But the location 
of the minimum point is changed by any ratio 
𝜉𝑜/𝜉𝑖 . For ratio 𝜉𝑜/ξ = 2, the minimum von 
Misses stress occurs near the material 
inhomogeneity index 𝑝 = 0. But by increasing the 
ratio 𝜉𝑜/𝜉𝑖 , the optimum location for “p” is 
increased. For ratio 𝜉𝑜/ξ = 5, the optimum 
location occurs at about 𝑝 = 1.9 for material 
inhomogeneity.  

Another point of view is that by increasing the 
material inhomogeneity more than 4, the values 
for von Misses stress converge together. So, it can 
be concluded that if by increasing the material 
inhomogeneity high enough, the ratio 𝜉𝑜/𝜉𝑖  has 
the same effect on von Misses stress and by 
considering low values for the material 
inhomogeneity, the ratio 𝜉𝑜/𝜉𝑖  has more 
influence on von Misses stress. 

6. Conclusions 

This paper presents a numerical solution for a 
functionally graded material cylinder with an 
elliptic hole. Because of the difficulty in solving 
the considered geometry, the elliptic cylindrical 
coordinate is used for the governing equation and 
boundary condition. The material properties are 
varied along the elliptic cylindrical direction with 
power-law function. Because of the asymmetry in 
geometry, the equilibrium equations presented 
in elliptic cylindrical and hyperbolic cylindrical 
directions, for solving two coupled governing 
equation, the differential quadrature method is 
used. The results show that the existence of an 
elliptic hole in the cylinder changes the stress in 
the thickness of cylinder, effectively. Then, by 
computing von Misses stress along the thickness, 
the optimal values for various material 
inhomogeneities and various values for 𝜉𝑜/𝜉𝑖  is 
investigated. The results show that with low 
values for the material inhomogeneity index, the 
ratio 𝜉𝑜/𝜉𝑖  has more effect on von Misses stress. 
Also, with high values of the material index, the 
values for von Misses stress converge together 
and the material inhomogeneity has less effect on 
von Misses stress. Also, the results show that by 
increasing the ratio 𝜉𝑜/𝜉𝑖 , the optimum value of 
von Misses stress occurs at high-value material 
inhomogeneity index. The results presented in 
this paper are compared with those reported in 
previous work. 
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Fig. 17. effect of material inhomogeneity and 𝜉𝑜/𝜉𝑖 on von-

Misses stress 

Appendix A 

The relations between Cartesian and Elliptic 
cylindrical coordinate are presented as [46]: 

𝑥 = 𝑐𝑜𝑠ℎ 𝜉 𝑐𝑜𝑠 𝜂       𝜉 ≥ 0.  

                                ℎ1 = √𝑠𝑖𝑛ℎ
2𝜉 + 𝑠𝑖𝑛2𝜂 

𝑦 = 𝑠𝑖𝑛ℎ 𝜉 𝑠𝑖𝑛 𝜂 . 0 ≤ 𝜂 ≤ 2𝜋.  

                                ℎ2 = √𝑠𝑖𝑛ℎ
2𝜉 + 𝑠𝑖𝑛2𝜂 

𝑧 = 𝑧.       ∞ < 𝑧 < ∞            ℎ3 = 1 

(A1) 

And the coordinate curves formed by the 
intersection of coordinate: 

For Elliptic Cylinders: 
𝑥2

𝑐𝑜𝑠ℎ2𝜉
+

𝑦2

𝑠𝑖𝑛ℎ2𝜉
= 1 

For Hyperbolic Cylinders: 
𝑥2

𝑐𝑜𝑠2𝜂
−

𝑦2

𝑠𝑖𝑛2𝜂
= 1 

𝑧 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

(A2) 

So, the position vector for each point is: 

𝑟 = (𝑐𝑜𝑠ℎ 𝜉 . 𝑐𝑜𝑠 𝜂)𝑖 + (𝑠𝑖𝑛ℎ 𝜉 . 𝑠𝑖𝑛𝜂)𝑗 + 𝑧�⃗⃗� (A3) 

And the unit vector for each direction is 
presented as: 

𝑒�̂� =
1

ℎ1
𝑒𝜉 =

𝑠𝑖𝑛ℎ 𝜉 . 𝑐𝑜𝑠 𝜂

𝐴
𝑖 +

𝑐𝑜𝑠ℎ 𝜉 . 𝑠𝑖𝑛 𝜂

𝐴
𝑗 

𝑒�̂� =
1

ℎ2
𝑒𝜂 =

−𝑐𝑜𝑠ℎ 𝜉 . 𝑠𝑖𝑛 𝜂

𝐴
𝑖 +

𝑠𝑖𝑛ℎ 𝜉 . 𝑐𝑜𝑠 𝜂

𝐴
𝑗 

𝑒�̂� =
1

ℎ3
𝑒𝑧 = �⃗⃗� 

(A4) 

Which, “A” for simplicity is defined as: 

𝐴 = √𝑠𝑖𝑛ℎ2𝜉 + 𝑠𝑖𝑛2𝜂 (A5) 

Considering the displacement vector in 
elliptic cylindrical coordinate as: 

�⃗⃗� = 𝑢𝑒�̂� + 𝑣𝑒�̂� +𝑤𝑒�̂� (A6) 

The strain tensor is presented as: 

𝜀 =
1

2
(𝛻𝑢 + 𝛻𝑢𝑇) (A7) 

Substituting equation (A6) to (A7) and using 
equations (A1) to (A5) the strains yield as: 

𝜀𝜉𝜉 =
1

𝐴

𝜕𝑢

𝜕𝜉
+
𝑠𝑖𝑛 𝜂 . 𝑐𝑜𝑠 𝜂

𝐴3
𝑣  

𝜀𝜂𝜂 =
1

𝐴

𝜕𝑣

𝜕𝜂
+
𝑠𝑖𝑛ℎ 𝜂 . 𝑐𝑜𝑠ℎ 𝜂

𝐴3
𝑢 

𝜀𝜉𝜂 =
1

2
(
1

𝐴

𝜕𝑢

𝜕𝜂
+
1

𝐴

𝜕𝑣

𝜕𝜉
−
𝑠𝑖𝑛ℎ 𝜉 . 𝑐𝑜𝑠ℎ 𝜉

𝐴3
𝑣

−
𝑠𝑖𝑛 𝜂 . 𝑐𝑜𝑠 𝜂

𝐴3
𝑢)      

(A8) 

Appendix B 

Considering the static equilibrium equation in 
a linear elastic material expressed as: 

𝑇𝑖.𝑗
𝑖 + 𝜚𝑏𝑖 = 0       𝑖. 𝑗 = 1. 2. 3 (B1) 

Where 𝑇𝑖.𝑗
𝑖  are the component of the stress 

tensor, 𝜚 is the density and 𝑏𝑖  is the external body 
forces per unit mass of the material. By Assuming 

an orthogonal coordinate system, the 𝑇𝑖.𝑗
𝑖  is 

expressed as [46]: 

𝑇𝑖.𝑗
𝑖 =

1

√𝑔

𝜕

𝜕𝑥𝑗
(√𝑔𝑇𝑖

𝑗
) − [𝑖𝑗.𝑚]𝑇𝑚𝑗  (B2) 

Where "𝑔" is the metric components of the 
orthogonal system and can be expressed as: 

𝑔𝑖𝑗 = (

ℎ1
2 0 0

0 ℎ2
2 0

0 0 ℎ3
2

) (B3) 

And in terms of physical components, the 
equilibrium equations are presented as: 

∑
1

√𝑔

𝜕

𝜕𝑥𝑗
(
√𝑔ℎ𝑖𝑇𝑖𝑗

ℎ𝑗
)

3

𝑗=1

−
1

2
∑

𝑇𝑗𝑗

ℎ𝑗
2

𝜕(ℎ𝑗
2)

𝜕𝑥𝑖

3

𝑗=1

+ ℎ𝑖𝜚𝑏𝑖

= 0 

(B4) 

Where there is no summation on "𝑖". So, the 
equilibrium equations in for two directional 
problems are expressed:  

𝜕𝑇𝜉𝜉

𝜕𝜉
+
𝜕𝑇𝜉𝜂

𝜕𝜂
+
2 𝑠𝑖𝑛 𝜂 𝑐𝑜𝑠 𝜂

𝐴2
𝑇𝜉𝜂

+
𝑠𝑖𝑛ℎ 𝜉 𝑐𝑜𝑠ℎ 𝜉

𝐴2
(𝑇𝜉𝜉 − 𝑇𝜂𝜂)

= 0 
𝜕𝑇𝜂𝜂

𝜕𝜂
+
𝜕𝑇𝜉𝜂

𝜕𝜉
+
2 𝑠𝑖𝑛ℎ 𝜉 𝑐𝑜𝑠ℎ 𝜉

𝐴2
𝑇𝜉𝜂

+
𝑠𝑖𝑛 𝜂 𝑐𝑜𝑠 𝜂

𝐴2
(𝑇𝜂𝜂 − 𝑇𝜉𝜉)

= 0 

(B5) 

Appendix C 

The constants for material properties for 
equations (6) and (7): 

𝑐1 =
𝑁13
𝑁11

.   𝑐2 =
2𝑁13
𝑁11

.   𝑐3 =
𝑁12
𝑁11

.    

𝑐4 =
−2𝑁12 − 𝑁22

𝑁11
.   𝑐5 =

𝑁13 +𝑁11
𝑁11

. 

𝑐6 =
−𝑁13 − 𝑁22

𝑁11
.   𝑐7 =

−𝑁13 − 2𝑁11 − 𝑁12
𝑁11

. 

𝑐8 =
−𝑁13
𝑁11

.   𝑐9 =
𝑁13 + 𝑁12
𝑁11

.   𝑐10 =
𝑁13
𝑁22

. 

(C1) 
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𝑐11 =
𝑁12 − 𝑁22
𝑁22

.    𝑐12 =
−2𝑁13
𝑁22

. 

𝑐13 =
2𝑁12
𝑁22

.    𝑐14 =
−𝑁12 −𝑁13

𝑁22
.  

𝑐15 =
−2𝑁12 − 𝑁11

𝑁22
.  𝑐16 =

−𝑁13
𝑁22

.  

𝑐17 =
3𝑁13
𝑁22

.     𝑐18 =
2𝑁12 +𝑁13

𝑁22
.   

𝑐19 =
𝑁13 − N11
N22

.   c20 =
N22 − N13
N22

.   

c21 =
−2N22 − 3N13 −N12

N22
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