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Generally, in-served cylindrical shells buckling usually takes place not merely under one 

of the basic loads, i.e., axial compression, lateral pressure, and torsion, but under a 

combination of them. The buckling behavior of fiber-metal laminate (FML) cylindrical 

shells under combined axial and torsional loading is studied in this paper. The Kirchhoff 

Love-type assumption is employed to study the axial buckling load. Then, an extended 

finite element (FE) model is presented and results are compared. A number of 

consequential parameters such as lay-up arrangement, metal type and metal volume 

fraction are employed and enhancement of buckling behavior of the shell is also studied. 

Finally, the interaction of axial /torsional loading is analyzed and discussed. The results 

show that as the metal volume fraction rises to 15%, the endurable buckling load increases 

almost 43% more than the state in which there is no metal layer. The numerical results 

show that increasing the metal volume percentage leads to a decrease in buckling 

performance of the structure under axial loading. 
 

1. Introduction 

Due to the growth of application of shell type 
structures such as buildings, space vehicles, 
submarines and storage tanks, interest in the 
stability of shells has similarly increased by 
researchers and engineers. [1–4]. The 
paradoxical behavior of buckling load of 
cylindrical shells under axial compression is a 
long-standing problem in structural mechanics. 
[5-8]. A lot of investigation has already been 
carried out on this phenomenon. For example, 
Geier et al. [9] studied the influence of laminate 
stacking on the buckling of composite cylindrical 
shells subjected to axial compression. They 
proposed analytical and semi-analytical methods 
to predict the buckling loads and compared them 
with experimental results. It was shown that the 
buckling loads of laminated cylinders strongly 
depended on the position of the differently 
oriented layers within the shell. Tafreshi and 
Bailey. [10] investigated the instability of 
imperfect composite cylindrical shells under 
combined loading. They proved that the effects of 
imperfections were more apparent when the 

composite cylindrical shells were subject to 
combined loadings. The results showed that the 
buckling and non-linear response of 
geometrically imperfect shell structures 
subjected to complex loading conditions may not 
be characterized correctly by an elastic linear 
bifurcation buckling analysis. In other research 
by Taheri et al. [11], buckling behavior of 
composite cylinders with cutout was analyzed 
numerically and experimentally. Numerical 
analyses were performed for three different 
groups of the perforated cylinders to evaluate the 
effect of the growing cutout size on the buckling 
behavior. The results confirmed that cutout effect 
was dominant, for the cylinder under 
consideration, so considering initial geometric 
imperfection had a negligible effect on the 
predicted buckling load. In a recent study, Shen 
and Xiang [12] also presented a comprehensive 
study on the post buckling of functionally graded 
graphene-reinforced composite laminated 
cylindrical shells subjected to external pressure 
in thermal environments. 
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Application of novel materials can be seen as 
an effective way to control different mechanical 
behaviors such as buckling or stress of the 
structures [13–21]. One of the most remarkable 
materials is fiber metal laminates (FMLs) which 
has been widely used in engineering structures, 
recently. FMLs [22, 23] are hybrid materials 
which are composed of several thin metal layers 
and fiber reinforced epoxy composite layers. 
These laminates integrate the significant 
properties of metals such as high damage 
tolerance and ductility with great features of 
composite materials such as high fatigue 
resistance, weight-savings and specialized 
strength properties. For instance, Glare-FML has 
been widely employed in the aerospace industry 
in order to reduce the weight of aircraft. 
Moreover, FMLs possess more superior impact 
resistance than the conventional fiber-reinforced 
composite laminates (FRPs). Also, impact 
damage on FMLs would be easily visible to the 
naked eye, because of the visible deformation 
that remains on the impacted layer, where as it 
would be difficult to detect most impact induced 
damage in FRPs [24–26]. Banat et al. [27] 
discussed the buckling and post buckling 
behavior of thin walled FML profiles subjected to 
axial loading. The results of substantial 
experimental investigations were compared with 
FML panel/columns modelling in finite element 
analysis and with an analytical method based on 
Koiter's asymptotic theory. Detailed analysis was 
also performed to assess the influence of the 
various fiber alignments on the specimen’s 
buckling and post buckling response. Asaee et al. 
[28] investigated the delamination buckling 
behavior of graphene Nano platelets (GNP) 
reinforced by 3D fiber-metal laminates 
(3DFMLs). In other research [29], they predicted 
the low-velocity impact response of 3D-fiber 
metal laminates using a practical analytical 
model. Many other researches have been 
performed about buckling behavior of various 
structures [30–32]. The objective of the present 
study is investigation of the buckling behavior of 
FML cylindrical shells under torsional and axial 
loading. All investigations are presented for two 
substances: FMLs and polymer matrix 
composites (PMCs). The analytical formulations 
are presented based on the Kirchhoff Love-type 
assumption to calculate the axial buckling load of 
cylinders. Subsequently, various stacking 
sequences are considered and the most desirable 
probable lay-up is chosen. The results are 
compared with the finite element method (FEM) 
analysis. Also, some noticeable parameters such 
as different metal types, various metal volume 
fractions and the mass of composite structures 
are considered and their influence is investigated. 

Lastly, the interaction state of axial and torsional 
loadings is studied and results are presented. 

2. Analytical formulation 

2.1. Problem description  

A schematic of FML cylinder is shown in Fig. 1. 
As shown in this figure, the present structure 
consists of two metal layers at the inner and outer 
sides of the glass fiber reinforced polymer (GFRP) 
laminates.  

Also, some necessary geometrical features are 
presented in Fig.1 in which L is length of the 
cylinder, t denoted the thickness and R is middle 
surface radius of the cylinder. 

The analytical formulations are presented for 
pure axial compression. Then the FEM buckling 
behavior modeling is proposed for both axial and 
torsional loadings and the effects of interaction 
are numerically analyzed. 

2.2. Kinematic relations 

Based on shallow shell theory, the Kirchhoff 
Love-type assumption represents the 
distribution of strain over the thickness as [9]:  

𝜀(𝑥, 𝑦, 𝑧) = 𝜀(𝑥, 𝑦) − 𝑧 𝜅                                         (1) 

where 𝜅is curvature and 𝜀(𝑥, 𝑦)is two-
dimensional strain distribution in the reference 
surface. According to the above displacement 
field, the strain components for a cylindrical shell 
are expressed as [9]: 

𝜀 = {

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

} =

{
 
 

 
 
∂𝑢

∂𝑥
∂𝑣

∂𝑦
−

𝑤

𝑅

∂𝑢

∂𝑦
+

∂𝑣

∂𝑥}
 
 

 
 

                                            (2) 

𝜅 =

{
 
 

 
 
∂2𝑤

∂𝑥2

∂2𝑤

∂𝑦2

2∂2𝑤

∂𝑥 ∂𝑦}
 
 

 
 

                                                    (3) 

 

 
Fig. 1 Schematic of FML cylinder 
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where 𝑢, 𝑣and 𝑤are displacements in 𝑥, 𝑦and 
𝑧directions, respectively. 

The compatibility condition between the 
strain components could be written as [9]: 
∂2𝜀𝑥

∂𝑦2
+

∂2𝜀𝑦

∂𝑥2
−

∂2𝛾𝑥𝑦

∂𝑥 ∂𝑦
= −

1

𝑅

∂2𝑤

∂𝑥2
                                    (4) 

2.3. Governing equations 

Axial forces and bending moments per unit 
length are: 

𝑁 = {

𝑛𝑥
𝑛𝑦
𝑛𝑥𝑦

}                                                           

                                                                                  (5) 

𝑀 = {

𝑚𝑥

𝑚𝑦

𝑚𝑥𝑦

} 

In order to achieve the equilibrium condition, 
the following three partial differential equations 
must be satisfied [9]: 
∂𝑛𝑥

∂𝑥
+

∂𝑛𝑥𝑦

∂𝑦
= 0                                                           (6a) 

∂𝑛𝑥𝑦

∂𝑥
+

∂𝑛𝑦

∂𝑦
= 0                                                           (6b) 

∂2𝑚𝑥

∂𝑥2
+ 2

∂2𝑚𝑥𝑦

∂𝑥 ∂𝑦
+
∂2𝑚𝑦

∂𝑦2
−
1

𝑅
𝑛𝑦 − 

𝑁̂𝑥
∂2𝑤

∂𝑥2
− 𝑁̂𝑦

∂2𝑤

∂𝑦2
= 0                                                         (6C)                                                  

in which 𝑛𝑥, 𝑛𝑦 , 𝑛𝑥𝑦 and 𝑚𝑥, 𝑚𝑦 , 𝑚𝑥𝑦 are the 

components of membrane forces and 
bending/twisting moments per unit length 
associated with buckling deflection, respectively. 
Also, 𝑁̂𝑥and 𝑁̂𝑦 are the membrane forces in 

general state and considered positive in tension. 
It should be noticed that since there is no 
buckling due to torsion, the term of shear 
membrane force 𝑁̂𝑥𝑦is considered zero in 

relations. The equations 6a and 6b are known as 
equilibriums of a plate under in-plane loads. 
Airy’s stress function 𝜙 is represented in order to 
derive the membrane forces of the equations 6 as 
[9]: 

{
𝑛𝑦 =

∂2𝜙

∂𝑥2

𝑛𝑥𝑦 = −
∂2𝜙

∂𝑦 ∂𝑥

                                                                            (7) 

In order to apply the compatibility 
equilibrium (Eq. 4), the constitutive relations are 
developed. The stress-strain relation is presented 
as [33] :  

𝜎𝑘 = 𝑄̄𝑘𝜀𝑘                                                                                      (8) 

where 𝑄̄is stiffness matrix and k represents 
number of the layer. 

Also, there are linear relations between the 
stress resultants (N and M) and the strain and 
change of curvature (𝜀 and 𝜅) as follows [34]: 

{
 

 
𝑁 = 𝐴𝜀 + 𝐵𝜅 ⇒ 𝜀 = 𝐴−1(𝑁 −𝐵 𝜅)

𝑀 = 𝐵𝑇𝜀 + 𝐷𝜅 ⇒ 𝑀 = 𝐵𝑇𝐴−1𝑁 +

(𝐷−𝐵𝑇 𝐴−1 𝐵)

                        (9) 

in which A, B and D are the in-plane stiffness 
matrix, the extension-bending coupling matrix 
and the bending stiffness matrix, respectively and 
defined as [9, 35]: 

{
 

 
𝐴 = ∑ 𝑄̄𝑘(𝑧𝑘 − 𝑧𝑘−1)

𝑁
𝑘=1

𝐵 = −
1

2
∑ 𝑄̄𝑘(𝑧

2
𝑘 − 𝑧

2
𝑘−1)

𝑁
𝑘=1

𝐶 = −
1

3
∑ 𝑄̄𝑘(𝑧

3
𝑘 − 𝑧

3
𝑘−1)

𝑁
𝑘=1

                                  (10) 

where N is the total number of layers. 
In this step, three parameters are introduced 

to rewrite equations 9 more concisely as: 

{
𝑎 = 𝐴−1

𝑒 = 𝐴−1𝐵 = 𝑎𝐵
𝐷̄ = 𝐷 − 𝐵𝑇𝐴−1𝐵

                                                                 (11) 

in which 𝑎, 𝑒 and 𝐷̄are the membrane 
compliance, eccentricity matrix and modified 
bending matrix, respectively. Therefore, 
equations 9 are expressed as: 

{
𝜀 = 𝑎𝑁 − 𝑒𝜅
𝑀 = 𝑒𝑇𝑁 + 𝐷̄𝜅

                                                                    (12) 

Substituting equations 3 and 12 into 
equations 4 and 6c results in two differential 
equations in terms of four parameters 𝑎, 𝑒, 𝑁 and 
𝐷̄as follows: 

𝑎22
∂4𝜙

∂𝑥4
+ (2𝑎12 + 𝑎33)

∂4𝜙

∂𝑥2 ∂𝑦2
+ 𝑎11

∂4𝜙

∂𝑦4
− 

[𝑒21
∂4𝑤

∂𝑥4
+ (𝑒11+𝑒22−2𝑒33)

∂4𝑤

∂𝑥2 ∂𝑦2
+ 

𝑒21
∂4𝑤

∂𝑦4
−

1

𝑅

∂2𝑤

∂𝑥2
] = 0                                                     (13) 

𝐷̄11
∂4𝑤

∂𝑥4
+ 2(𝐷̄12 + 2𝐷̄33)

∂4𝑤

∂𝑥2 ∂𝑦2
+ 𝐷̄22

∂4𝑤

∂𝑦4
− 

𝑁̂𝑥
∂2𝑤

∂𝑥2
− 𝑁̂𝑦

∂2𝑤

∂𝑦2
+ 

[𝑒21
∂4𝜙

∂𝑥4
+ (𝑒11+𝑒22−2𝑒33)

∂4𝜙

∂𝑥2 ∂𝑦2
+ 

𝑒21
∂4𝜙

∂𝑦4
−

1

𝑅

∂2𝜙

∂𝑥2
] = 0                                                         (14) 

3. Solution procedure 

To satisfy the simply-supported boundary 
condition of cylindrical shell which is [9]: 

{

𝑚𝑥 = 0
𝑛𝑥 = 0
𝑤 = 0
𝜗 = 0

                                                                      (15) 

The following solution is proposed for 
buckling modes of the cylindrical shell [9]: 

𝑤 = 𝐶1 𝑠𝑖𝑛 𝛽 𝑥 𝑐𝑜𝑠 𝜂 𝑦                                   (16) 
𝜙 = 𝐶2 𝑠𝑖𝑛 𝛽 𝑥 𝑐𝑜𝑠 𝜂 𝑦                                    (17) 

in which 𝛽 and 𝜂 are introduced as: 
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{
𝛽 =

𝑚𝜋

𝐿

𝜂 =
𝑛

𝑅

                                                                       (18) 

Note that 𝑚is the number of axial half-waves 
and𝑛is the number of complete circumferential 
waves of the buckling mode. 

For pure axial compression, the buckling load 
is evaluated as [9]: 
𝑁𝑖 =

1

𝛽2
{
𝐷̄11𝛽

4 + 2(𝐷̄ 12 + 2𝐷̄ 33)𝛽
2𝜂2 + 𝐷̄22𝜂

4 +
[𝑒21𝛽

4+(𝑒11+𝑒22−2𝑒33)𝛽
2𝜂2+𝑒12𝜂

4+𝛽2/𝑅]2

𝑎22𝛽4+(2𝑎12+𝑎33)𝛽2𝜂2+𝑎11𝜂4

}      (19) 

It can be written in terms of the components 
in x and y directions as: 

{
𝑁̂𝑋 = −𝑁𝑖
𝑁̂𝑦 = 0

                                                                 (20) 

Then, the critical axial buckling load which is 
the smallest positive amount of 𝑁𝑖 , can be derived 
for any combination of axial half-waves m and 
circumferential waves n: 

𝑁̂ 𝑁𝑖)𝑥𝑐𝑟                                                                            (21) 

4. FEM buckling behavior modeling 

A numerical simulation is carried out using 
the Abaqus commercial software packages. A 
static displacement-controlled analysis is used to 
derive the critical values and load displacement 
curves for the cases under study. The mesh 
elements chosen for the finite element analysis 
are S4R shell elements. This is a 4-node linear 
element with reduced integration. Approximate 
element sizes considered in the analysis are 5mm 
in length. 

The boundary conditions are simply 
supported at both sides of the cylinder. 
Therefore, displacement vectors were set to zero 
at the edges of the cylinder. The torsion moment 
and axial loading are uniformly distributed along 
the acting edge. Fig. 2 shows the buckling mode 
shape of various stacking sequences. 

5. Numerical results and discussion 

The numerical results of our problem are 
presented in this section. Before presentation of  

full numerical results, some necessary 
geometrical and mechanical characteristics are 
presented in Table.1: 

5.1. Validation 

The present results are compared using 
comparison with literature results presented by 

Geier et al. [9]. They investigated the axial 
buckling load of a composite cylinder with 
stacking sequence of with no metal layers. As 
shown in Fig.3, our results approached the 
results from Geier et al. [9] as the metal volume 
fraction is equal to 0%. There is reasonable 
agreement and the error is less than 3%. 

5.2. Study of various metal types and their 
volume fractions 

Various stacking sequences are investigated 
in this section. The presented formulation in the 
previous part has been used to determine the 
critical axial buckling load of different stacking 
sequences and the results are compared to FEM 
results. Also, the error between two methods and 
buckling mode shape of each lay-up are 
presented in Table.2. It should be noticed that all 
calculations have been carried out considering 
the laminate stacking from inner to outer ply. As 
shown in Table.2, the and lay-ups can tolerate the 
most axial buckling loads. Study of mode shapes 
revealed that the cases with a twisting mode 
shape showed a higher error percentage. 

Based on the buckling load and error of 
various lay-ups presented in Table.2, the is the 
optimal lay-up. Therefore, this stacking sequence 
is employed for next sections. 

 

 
Fig. 2 The FEM results of the first axial buckling mode shape 

for various stacking sequences: 

a)[0/90]6 , b)[±45/(0/90)5] , 

 c)[(0/90)5/±45]  ,d)[(±45)2/(0/90)4],  

e) [(0/90)4/(±45)2] , f) [±45]6 

Table.1: Geometrical and mechanical characteristics 

Geometrical properties Material Mechanical properties 
R (mm) 125 Al2024 E= 73.1 GPa,  ϑ = 0.33 
L (mm) 1000 Ti6Al4V E= 110 GPa,  ϑ = 0.31 
t (mm) 3 Az91 E= 45 GPa,    ϑ = 0.35 
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Fig. 3 Comparison of present study with Geier et al. [9] 

Table.2: Axial buckling load of various stacking sequences 
calculated with two methods 

Lay-up Analytical 
solution 

FEM Error 

[0/90]6 618.5 666.1 7.1% 
[±45/(0
/90)5] 

728.6 799.7 8.9% 

[(0/90)5
/±45] 

728.5 667.0 8.11% 

[(±45)2/(0
/90)4] 

795.8 701.3 11.8% 

[(0/90)4
/(±45)2] 

779.4 672.7 13.6% 

[±45]6 601.5 614.2 2.1% 

5.3. Study of various metal types and their 
volume fractions 

The effects of addition of metal layers are 
studied in this section. Three metals including 
Ti6Al4V, Az91 and Al2024 are considered to be 
investigated in this study. These particular 
metals have been chosen due to their wide 
application in the aviation industry and also their 
appropriate qualities. Furthermore, availability 
and cost are two other parameters which 
approved the selection of these three metal types 
[36–38]. Figures 4 and 5 show the axial and 
torsional buckling load of various metals, 
respectively. As presented by these figures, 
Ti6Al4v outperforms the other metals in both 
axial and torsional loadings. The results of 
Al2024 is close to Ti6Al4v. It is observed that 
PMCs endure noticeably less buckling load than 
FMLs. 

Table 3 shows the mass and the critical load to 

mass ratio (
𝑁𝑐

𝑚
and 

𝑇𝑐

𝑚
)  of various metals. The 

presented calculations show that Ti6Al4V has the 
highest critical load to mass ratio. It can also be 
concluded that addition of Az91 increases the 
critical load to mass ratio without increasing the 
mass. Furthermore, the critical load to mass ratio 
of the Al2024 is close to Ti6Al4V while being 
more available and economical. 

According to the presented information about 
availability and sustainable buckling loads, one 
might conclude overall, that the Al2024 is the 
best choice among the mentioned materials. 

 
Fig. 4 Comparison of axial buckling load of various metal 

types 

 
Fig. 5 Comparison of torsional buckling load of various metal 

types 

Table.3: Comparison of the mass and critical load to mass 
ratio of various metal types 

 Mass 
(gr) 

𝑁𝑐
𝑚⁄  

𝑇𝑐
𝑚⁄  

 Non-FML 4.24 188.60 3.56x106 
Al2024 4.95 379.89 7.68x106 
Ti6Al4V 6.37 386.97 8.63x106 
Az91 4.24 317.21 6.58x106 

Figures 6 and 7 demonstrate the axial and 
torsional buckling load in terms of metal volume 
fraction. Regarding previous analyses, the lay-up 
is considered. As depicted by these figures, 
addition of metal layers enhances the buckling 
behavior of composite structures greatly. 

The efficiency of addition of metal layers is 
more noticeable when the metal volume fraction 
is less than 15%. It is proved that as the metal 
volume fraction rises to 15%, the endurable 
buckling load increases almost 43% more than 
the state where there is no metal layer. Also, it is 
observed that the torsional loading has the same 
behavior as axial loading when metal layers are 
added. Therefore, the usage of appropriate 
amounts of metals may efficiently improve the 
buckling stability of composite shells. 
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Fig. 6 Axial buckling load in terms of various volume 

fractions of metal  

 
Fig. 7 Torsional buckling load in terms of various volume 

fractions of metal  

5.4. Study of the interaction of external forces 

The interaction of axial and torsional loads is 
investigated in this part. Figure 8 shows the 
interaction buckling curves of Al2024 for 
different metal volume fractions. While, Fig.9 
shows the state of interaction of various metal 
types. Interaction buckling curves relate the 
combination of axial load and torsional load prior 
to buckling. N_c and T_c represent the critical 
axial and torsional buckling load, respectively. 

It can be observed that in all cases, the curves 
vary almost linearly, therefore in most cases, the 
model shows a similar performance on the 
various loading configurations. Figure 8 suggests 
that when axial loading is more considerable, 
increasing the metal volume fractions leads to a 
decrease in buckling performance of the 
structure. Additionally, study of various metal 
types shows that Az91 and Ti6Al4V present a 
similar interaction behavior, whereas Al2024 
lacks performance in loading cases in which the 
axial load is dominant. 

6. Conclusions 

The purpose of the present paper was to 
investigate the buckling behavior of FML 
composite cylindrical shells under different 
loading conditions. The Kirchhoff Love-type 
assumption was employed to determine the 
distribution of strain over the thickness. Then, 
the analytical formulation was presented for the 
state of pure axial compression loading. 

 
Fig. 8 The state of interaction of Al2024 for various metal 

volume fractions  

 
Fig. 9 The state of interaction of various metal types under 

axial and torsional loading 

Next, various stacking sequences were 
considered and the optimal design of composite 
layers was determined using analytical solution. 
Also, a comprehensive FEM analysis was 
performed and the results were compared with 
analytical ones. It was established that the   lay-
up is the optimal layer arrangement. It was 
observed that the drawback of the Kirchhoff 
Love-type solution was the inaccurate calculation 
of the buckling load, particularly in cases that 
displayed twisting mode shapes. Another equally 
important parameter was the critical load to 
mass ratio of the cylinder. It was revealed that the 
Ti6Al4V and Al2024 had the highest load to mass 
ratio. Accordingly, it was concluded that the 
Al2024 was overall the best choice among the 
three suggested metal types. It was also clarified 
that addition of metal layers can noticeably 
enhance the buckling behavior of composite 
shells. The results also revealed that as the metal 
volume fraction raised by 15%, the endurable 
buckling load increased almost 43% compared to 
the state where there was no metal layer. The 
numerical results indicated that when the axial 
loading was more considerable, increasing the 
metal volume fractions led to a decrease in 
buckling performance of the structure. Study of 
various metal types showed that Az91 and 
Ti6Al4V presented a similar interaction behavior, 
whereas Al2024 lacked structural performance 
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in loading cases where the axial load was 
dominant. 
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