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In this study, the effect of finite strain on bending of the geometrically nonlinear of micro lami-

nated composite Euler-Bernoulli beam based on Modified Couple Stress Theory (MCST) is studied 

in thermal environment. The Green-Lagrange strain tensor according to finite strain assumption 

and the principle of minimum potential energy is applied to obtain governing equation of motion 

and boundary conditions. The equation of motion with boundary conditions is solved using a 

generalized differential quadrature method and then, the deflection of the beam in classical elas-

ticity and MCST states is drawn and compared with each other. Considering the bending of the 

beam, which has been made of carbon/epoxy and glass/epoxy materials specified, it can be seen 

there is a significant difference between the finite strain and von-Karman assumptions particular-

ly for       . Also, the results show that the thermal loadings have a remarkable effect on the 

glass/epoxy beam based on the finite strain particularly for simply supported boundary condi-

tion.  
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1. Introduction   

Using composite materials in the most advanced 
engineering fields such as aerospace, mechanical 
and civil has increased in the past decades. The rea-
son of this increase is the outstanding engineering 
properties of composite materials, such as high val-
ue of strength-to-weight and stiffness-to-weight 
ratios. One of the most important subjects for the 
composite structures is the bending analysis of 
composite beams. Many researchers have investi-
gated the bending of composite beams using differ-
ent theories such as Euler-Bernoulli, Reddy and Ti-
moshenko [1-6]. 

One of the most important subjects in industrial 
sections is the bending of various structures and it is 
completely obvious that the bending of nonlinear 
structures is more accurate and capable than the 
linear one. The nonlinear structures are divided into 
two main groups: (1) structures with large defor-
mation and small strains, and (2) structures which 

are affected by finite strain [7-10]. In theories with 
finite strain assumption, not only deformations are 
large, but also the strains are not limited to infinites-
imal strain. The finite strain assumption is the most 
accurate state to study the bending of nonlinear sys-
tems. 

It is necessary to say that with decreasing the 
size scale, the stiffness and strength of materials can 
increase, which is called size effects. The classical 
continuum mechanics theory is not capable of ac-
counting the size effects in micro and nano scale 
structures. So, in order to overcome this problem, 
some higher order continuum theories that contain 
additional material constants have been presented 
to determine the size effect. . Some of the theories 
are micropolar theory [11], nonlocal elasticity theo-
ry [12], surface elasticity theory [13], strain gradient 
theory [14], couple stress theory [15] and Modified 
Couple Stress Theory (MCST) [16]. The couple 
stress and strain gradient theories are applied for 
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the micro-scale structures [17- 23]. There is a dif-
ference between these two theories that rotation 
and strain are applied as a variable to describe cur-
vature in the couple stress and strain gradient theo-
ries, respectively. Therefore, it is known that the 
couple stress theory is a special format of the strain 
gradient theory.  

The static bending and free vibration of a Timo-
shenko micro beam subjected to simply supported 
condition based on the MCST were observed by Ma 
et al. [24]. In 2010, Asghari et al. [25] investigated 
the static bending and free vibration of a nonlinear 
Timoshenko micro beam model subjected to simply 
supported condition on the basis of MCST. To solve 
the static bending and free vibration equations of 
the beam the numerical and analytical methods 
were used, respectively. In 2011, Chen et al. [26] 
reported a new model for the cross-ply laminated 
composite beam with first-order shear deformation 
based on the MCST. In 2013, Roque et al. [27] used 
the MCST and meshless method to study the bend-
ing of laminated composite Timoshenko micro 
beam. They demonstrate that the obtained numeri-
cal results have a good agreement with the analyti-
cal ones. In 2013, Simsek and Reddy [28] proposed 
a new higher order theory for the static bending and 
free vibration of Functionally Graded (FG) micro 
beam on the basis of the MCST. Moreover, they indi-
cate the Poisson effect decreases and increases the 
static deflection and vibration frequencies, respec-
tively.  
In this research, the effect of the finite strain on the 
bending of the micro laminated composite Euler-
Bernoulli beam is investigated under thermal load-
ing. The small scale structures such as micro struc-
tures, need a high accuracy. So, in this study, the 
finite strain assumption is employed in order to 
study micro structures with the highest degree of 
accuracy. The equation of motion is derived using 
the principle of minimum potential energy and the 
Generalized Differential Quadrature Method 
(GDQM) is used to solve the governing equation of 
motion with boundary conditions. The results indi-
cate that there is a difference between the finite 
strain and von-Karman assumptions so that the 
slope of the deflection curves based on the finite 
strain is less than the von-Karman hypothesis. Also, 
the results demonstrate that material properties 
have a remarkable effect on the behavior of the fi-
nite strain micro beam.  
 
 
 
 
 
 
 

2. Preliminaries 

According to the MCST, the strain energy can be 
expressed as what follows [29,30]: 
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In which     and     are components of the sym-

metric stress and strain tensors, respectively. Also, 
    and     are components of the deviatoric part of 

the symmetric couple stress tensor and symmetric 
curvature tensor, respectively. In addition,   and   
denote the two Lame constants,   is the material 
length scale parameter and     is the Kronecker del-

ta. Moreover, components of the displacement and 
rotation vectors are represented by   and  , respec-
tively, which the rotation vector is related to the 
displacement vector as follows [31, 32]: 

ii ucurl ))((
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Using the Cartesian coordinat system (x, y, z) as 
shown in Fig. 1, where the x-axix is coincident with 
the centroidal axis of the undeformed beam,  ,   and 
  are length, width and thickness of the beam, re-
spectively.  

The axial and transverse displacement fields in 
an Euler-Bernoulli beam can be described by the 
following equations [33-35]:  
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Where  (     ),  (     )  and  (     ) are the 
displacements of a point (      ) along the  ,   and 
  coordinates, respectively.  
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(a) 

 
(b) 

 
(c) 

 
Figure 1. The schematic of (a) the simply supported beam, (b) 

the clamped beam and (c) the cross section of the beam 

 
 

3. Governing Equation  

The nonlinear structures are modeled by either 
von-Karman assumption or finite strain hypothesis. 
Although the von-Karman assumption is applied for 
the structures with large deformation and small 
strains, it is not used for large strains. So, if high ac-
curacy is needed, the von-Karman assumption can-
not present such accurate responses. To reach the 
most accurate responses, the bending of nonlinear 
structures is studied by the finite strain assumption. 
In theories with finite strain assumption, not only 
the deformations are large, but also the strains are 
not limited to infinitesimal strain. Therefore, based 
on the finite strain assumption, none of the trans-
formation terms are eliminated in the Green-
Lagrange strain tensor. Therefore, by substituting 
Eq. (7) into the Eq. (3), the nonlinear strain-

displacement relations of the beam can be written 
as the following equations for the axial strain: 
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The components of rotation vector can be ob-
tained from Eqs. (6) and (7) as follow: 
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Substituting Eq. (9) into Eq. (5) gives: 
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Also, using Eq. (10) in Eq. (4) gives: 
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The equation of motion with boundary condi-
tions can be derived using the principle of minimum 
potential energy which can be considered as the 
following equation [36, 37]: 

0)(  WU  (12) 

Where   is the total potential energy, and   
and   are the strain energy and virtual work done 
by external loads, respectively. 

According to Eq. (1), the variation form of the 
strain energy can be written as what follows: 
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The constitutive relations for the orthotropic 
composite beam under thermal loading are as what 
follows [35]: 
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Where     denotes the stress-reduced stiffness 

of the orthotropic beam. Also,    and    are the co-
efficients of thermal expansion and temperature 
changes, respectively. 

The couple moment     and the stress result-

ants including in-plane force    , bending moment 
    and high order resultant of normal stress     
are expressed as follows [38, 39]:  
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The stiffness components including    ,     and 

   , which are extensional stiffness, bending stiffness 

and additional stiffness coefficient matrices, respec-
tively, can be represented by the following equation 
[40]: 
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Substituting Eq. (8) into Eq. (14) and using 
Eqs.(15) and (16) leads to the  following equations:  
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Where  





2

2

2

11111111 ),,1(),,(

h

h

dzzzTQSRK  (21) 

22hhbA   (22) 

Where the width is     . 
The variation form of the work done by the ex-

ternally transverse loading is defined by what fol-
lows [34]: 


L
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Where   is the external load. Substituting Eqs. 
(13) and (23) into Eq. (12) and using Eq. (15), the 
equation of motion and boundary conditions for the 

micro laminated composite Euler-Bernoulli beam 
based on finite strain is obtained. After that, substi-
tuting Eqs. (17) and (19) into the equation of motion 
and boundary conditions gives: 
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The boundary conditions at     and      
are what follow: 

0w  
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4. Static Bending 

In this section, the static bending of a nonlinear 
size-dependent laminated Euler-Bernoulli beam is 
studied based on the finite strain. Here, we have 
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   ⁄     ⁄ . According to these assumptions and 
introducing the following dimensionless parameters 
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The boundary conditions at     and      
are what follow: 
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The dimensionless form of the equation of mo-
tion (27) and boundary conditions (28a) and (28b) 
on the basis of the finite strain can be derived as: 
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The boundary conditions at     and      
are what follow: 
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Where the dimensionless parameters are the fol-
lowing expressions: 
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5. Generalized Differential Quadrature 

Method 

In this study, the GDQM has been applied to solve 
the nonlinear equations of the finite strain vibration 
of composite beam. In the GDQM, the differential 
function and its derivatives at all grid point in the 
whole domain of spatial coordinate are demonstrat-
ed as a weighted linear sum of the all functional val-
ues. In other words, the governing differential equa-
tions using weighting coefficients change to the 
first-order algebraic equations [41]. In the present 
study, the used GDQM was derived by Du et al. [42]. 
In this method, the first-order derivative of function 
 ( ) can be approximated as a linear sum of the 
weighting coefficients and function values for all 
grid points in the   domain. 
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Where   is the number of grid point in the   
domain,  (  ) is the function in the point of    and 

   
  is the weighting coefficient of the first-order 

derivate. The weighting coefficient for the first-
order derivate is expressed as the following: 
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The rth-order approximation of function  ( ) in 
the GDQM for   domain is given as the following 
[42]: 
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In this research, the Chebyshev-Guass-Lobatto 
sample points [43] have been used to calculate the 
weighting coefficients. 
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6. Numerical Results 

In this section in order to validate the accuracy 
of the presented model, the bending of the cross-ply 
laminated linear beam solved by the GDQM is com-
pared to the bending of the cross-ply laminated lin-
ear Euler-Bernoulli beam, which has been studied 
by Chen et al. [26]. The material properties are 
           ,         ,        and 
           ⁄ . Also, other parameters are 
        ,     and          ⁄ . The shown 
comparison in Fig 2 illustrates that the presented 
numerical model has a good agreement with the 
analytical model. 

In order to study the static bending of a cross-
ply         laminated micro beam, the sizes of the 
beam model are considered with a thickness of 
        and a width of     . Furthermore, the 
material properties of carbon/epoxy are 
           ,           ,        and 
           ⁄   and the material properties of 
glass epoxy are            ,            , 
       and            ⁄ .To study the bending 
of the beam, the nonlinear equation (29) with 
boundary conditions is solved using the GDQM, 
which is developed by Du et al. [42].The normalized 
static deflection of the cross-ply micro beam with-
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out thermal loading influence based on the finite 
strain is shown in Fig. 3 for  ̅   ,       and vari-
ous   ⁄ . The boundary conditions are adopted 
simply supported. The Figure demonstrates that the 
deflection of the beam in MCST is smaller than that 
in the classical elasticity method. 

To compare the finite strain and von-Karman 
assumptions, the deflection of the cross-ply micro 
beam without thermal loading effect is considered 
in Figs. 4 and 5 for  ̅      and    . The Figures 
indicate that there is a remarkable difference be-
tween the finite strain and von-Karman particularly 
for      . Also, the effect of thermal loading on 
the basis of the finite strain assumption subjected to 
different boundary conditions and is investigated 
for carbon/epoxy and glass/epoxy in Figs. 6 and 7, 
respectively. 

 

 
Figure 2. The deflection of the linear beam with     for 

    and          ⁄  

 

 
Figure 3. The deflection of the beam with    ,   ⁄  and   

for  ̅    and       

 
 

 
Figure 4.The deflection comparison between the finite strain 

and von-Karman for      ,  ̅      and      
 

 
Figure 5.The deflection comparison between the finite strain 

and von-Karman for      ,  ̅      and      

 
 

 
Figure 6. The deflection of the beam based on the finite 

strain for carbon/epoxy materials with different boundary 
conditions and thermal loadings 
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Figure 7. The deflection of the beam based on the finite 

strain for glass/epoxy materials with different boundary 
conditions and thermal loadings 

 
It is noted that  ̅   ,      , and    . As 

depicted, the effect of thermal loading on the car-
bon/epoxy is very small. Unlike the carbon/epoxy, 
the influence of the thermal loading on the 
glass/epoxy is remarkable. These Figures have 
shown that with increasing the thermal effect, the 
deflection of the beam is increased, too. In addition, 
Fig 7 indicates that the difference between different 
thermal loadings for the Simply-Supported (S-S) 
beam is more than that difference for the Clamped-
Clamped (C-C) beam.  

 
7. Conclusion 

In this study, the influence of finite strain on 
the bending of the micro laminated composite Eu-
ler-Bernoulli beam in thermal environment based 
on the modified couple stress theory was investigat-
ed. The bending of the micro beam undergoing finite 
strain assumption for the most accurate state was 
studied. The governing equation of motion and 
boundary conditions were obtained using the Ham-
ilton’s principle, and the GDQM was utilized for ob-
taining numerical results. The numerical results 
show that the slope of the deflection curves based 
on the finite strain is less than the von-Karman hy-
pothesis. Also, the bending results demonstrate that 
there is a difference between the finite strain and 
von-Karman assumptions, particularly the differ-
ence is considerable for      . In addition, the 
numerical results indicate that the material proper-
ties have a remarkable effect on the behavior of the 
finite strain micro beam. With increasing the ther-
mal loading, although the deflection of the car-
bon/epoxy laminated composite materials beam for 
different boundary conditions does not change 
dramatically, the deflection of the glass/epoxy lami-
nated composite materials beam undergoes a signif-
icant change especially for simply supported 
boundary condition. 
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