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In this study, active control of free and forced vibration of rotating thin laminated 

composite cylindrical shells embedded with two magnetostrictive layers is investigated by 

means of classical shell theory. The shell is subjected to harmonic load exerted to inner 

surface of the shell in thickness direction.  The velocity feedback control method is used in 

order to obtain the control law. The vibration equations of the rotating cylindrical shell 

are extracted by means of Hamilton principle while the effects of initial hoop tension, 

centrifugal and Coriolis accelerations are considered. The partial differential equations of 

the rotating cylindrical shell are converted to ordinary differential equations by means of 

modified Galerkin method.  The displacement of the shell is obtained using modal analysis. 

The free vibration results of this study are validated by comparison with the results of 

published literature. Also, the forced vibration result is compared with the result of fourth 

order Runge-Kutta method to prove its correctness. Finally, the effects of several 

parameters including circumferential wave number, rotational velocity, the whole 

thickness of orthotropic layers, the whole thickness of orthotropic layers, length, the 

amplitude and exciting frequency of the load on the vibration characteristics of the 

rotating cylindrical shell are investigated. 
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1. Introduction  

Rotating shells have numerous applications in 
industry and science fields such as aviation, 
chemical, aero-space, civil and mechanics [1]. 
Mechanical behavior of structures has been 
studied by several researchers. Chen et al. [2] 
have extracted the general equations for the 
vibration of high-speed rotating shells of 
revolution considering the effects of Coriolis 
acceleration and large deformation. As an 
example, the vibration responses of rotating 
cylindrical shells have been derived by the finite 
element method. Hua and Lam [3] have used Love 
type shell theory and the generalized differential 
quadrature method to investigate the influences 
of boundary conditions on the frequency 
characteristics of a thin rotating cylindrical shell. 
Guo et al. [4] have extracted the vibration 
responses of rotating cylindrical shells by 
employing finite element method. Zhao et al. [5] 
have studied the vibration of simply supported 

rotating cross-ply laminated cylindrical shells 
with stringers and rings using an energy method. 
Liew et al. [6] have presented the harmonic 
reproducing kernel particle method in order to 
study the free vibration of rotating cylindrical 
shells. Xu [7] has used three methods for 
analyzing the forced vibration of an infinite 
cylindrical shell filled with fluid.  Kim and Bolton 
[8] have investigated the vibration of an inflated 
rotating circular cylindrical shell in order to 
understand the effects of rotation on wave 
propagation within a treadband of a tire. Jafari 
and Bagheri [9] have used Ritz method and 
Sander's theorem in order to analyze the free 
vibration of simply supported rotating cylindrical 
shells containing circumferential stiffeners. Lee 
and Han [10] have obtained forced vibration 
responses of shells and plates under arbitrary 
loading as well as natural frequencies of 
composite and isotropic laminates. Li et al. [11] 
have used Rayleigh-Ritz method in order to 
investigate forced vibration of conical shells. 
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Civalek and Gurses [12] have utilized the Love's 
first approximation shell theory and discrete 
singular convolution method to analyze free 
vibration of rotating cylindrical shells. Akgoz and 
Civalek [13] have studied nonlinear free 
vibration of thin laminated plates on nonlinear 
elastic foundations through discrete singular 
convolution method. Sun et al. [14] have utilized 
Sanders' shell equations and Fourier series 
expansion method to present the vibration 
responses of thin rotating cylindrical shells under 
various boundary conditions. Ghorbanpour Arani 
et al. [15] have studied axial buckling of double-
walled Boron Nitride nanotubes surrounded by 
an elastic medium. Barzoki et al. [16] have 
studied nonlinear buckling of a cylindrical shell 
on an elastic foundation via harmonic differential 
quadrature method. Sun et al. [17] have extended 
a wave propagation approach to investigate the 
frequency characteristics of thin rotating 
cylindrical shells. Daneshjou and Talebitooti [18] 
have accomplished the free vibration study of 
thick rotating stiffened composite cylindrical 
shells under different boundary conditions by 
using a three-dimensional theory. Civalek [19] 
has obtained nonlinear static and dynamic 
responses for shallow spherical shells on elastic 
foundations. Thai and Kim [20] have reviewed 
various theories used for analysis and modeling 
of functionally graded plates and shells. Mercan 
et al. [21] have studied free vibration of 
functionally graded cylindrical shells using 
discrete singular convolution method. Civalek 
[22]  has presented free vibration responses for 
conical and cylindrical shells and annular plates 
from composite laminated and functionally 
graded materials. Zhang et al. [23] have 
presented the free and forced vibration 
responses of submerged finite elliptic cylindrical 
shells. Civalek [24] has applied the discrete 
singular convolution method to study the free 
vibration of rotating shells. Hussain et al. [25] 
have derived vibration responses of rotating 
functionally graded cylindrical shell resting on 
elastic foundations.  

Reviewing literature reveals that improving 
the rotating circular cylindrical shells behaviour 
by the active control of their free and forced 
vibration should be taken into consideration. In 
this way, the use of smart materials which could 
be used for active vibration control will be 
appropriate. Magnetostrictive materials are 
among smart materials which can be used for 
active vibration control. Terfenol-D is a 
magnetostrictive material with high energy 
density, high relatively available displacements 
which has wide bandwidth [26]. Several 
researchers have used magnetostrictive smart 
materials in order to suppress the vibration of 

beams [27-29], curved beams [30], plates [31-33] 
and shells [34-38]. 

There are several theories for modelling of the 
shells including classical and first order shear 
deformation theories. In the classical theory 
which is used for thin shells, the normal to the 
mid-surface stays straight and normal to it after 
deformation [39]; while in first order shear 
deformation theory, the normal to the middle 
surface is straight after deformation but it is not 
normal [40]. The classical theory is simpler and 
leads to vibration responses with fewer 
mathematical effort. Therefore, for thin shells the 
use of classical theory is appropriate. Thus, in this 
paper classical shell theory is used to study active 
control of free and forced vibration of rotating 
laminated composite thin cylindrical shells by 
means of velocity feedback control law through 
smart magnetostrictive layers. The shell is under 
harmonic load which is applied to the inner 
surface of the shell in thickness direction. The 
partial differential  vibration equations of the 
rotating laminated composite cylindrical shell 
are extracted considering the effects of 
centrifugal and Coriolis forces as well as initial 
hoop tension. The modified Galerkin method is 
applied for converting the partial differential  
equations to ordinary differential equations. The 
displacement results of the shell are obtained via 
modal analysis. The accuracy of this study's 
results is investigated by comparison with the 
results published in literature for free vibration 
and with the result of fourth order Runge-Kutta 
method for forced vibration. The effects of 
several parameters such as circumferential wave 
number, rotation speed, the thickness of 
orthotropic layers, the thickness of each 
magnetostrictive layer, the length, the amplitude 
and exciting frequency of the load on the 
vibration characteristics of the rotating 
cylindrical shell are investigated.  

2. Problem Formulation  

2.1. Basic relations 

The considered coordinate system (x, —, z) and 
geometric characteristics of the rotating thin 
laminated composite circular cylindrical shell are 
shown in Fig. 1. The cylindrical shell is composed 
of 4 layers of glass-epoxy (Gl-Ep) orthotropic 
material and two magnetostrictive layers used 
for active vibration control. The schematic of the 
cylindrical shell layers is shown in Fig. 2.  For the 
rotating cylindrical shell, 

Th  is the total thickness, 

h   is the thickness of each orthotropic layer, 
mh  

is the thickness of each magnetostrictive layer 
and 

oh is the thickness of whole orthotropic 

layers. In addition, L  is the length, R  is the 
radius and W is the constant rotation speed. The 
longitudinal, circumferential and normal 
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directions of the shell are demonstrated as x , q 

and z , respectively. The origin of the coordinate 
system is located on the middle surface of an 
arbitrary edge of the shell.  

The displacements of a point in the middle 
surface of the shell in x , ʃ and z  directions are 

expressed by 0u , 0v and 0w , respectively. 

According to classical shell theory, the relations 
between the displacements of an arbitrary point 
and displacements of a point in the middle 
surface of the shell are in the following form [39]: 

  

0
0

0 0
0

0

1
( )

ʃ

w w

w
u u z

x

w v
v v z

R R

µ
= -

µ

µ
= + - +

µ

=

 (1) 

while u ,v and w demonstrate the displacements 

of an arbitrary point of the shell in x , q and z
directions, respectively. The relation of strains 
( , ,x xq q
e e e) with middle surface strains 

( 0 0 0, ,x xq q
e e e) and curvature changes ( , ,x xk k k

q q
) 

of the rotating cylindrical shell are as follows 
[39]:  

0

0

0

x x x

ʃ ʃ ʃ

xʃ Øʃ Øʃ

ʀ ʀ ÚË

ʀ ʀ ÚË

ʀ ʀ ÚË

= +

= +

= +

 (2)  

while [39]:  

 

Fig. 1. The coordinate system and geometric characteristics 
of rotating circular cylindrical shell [12]  

 
Fig. 2. The schematic of the layers of the considered 

cylindrical shell  
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 (3)  

The relations between the stresses and 
strains of each layer of the shell (orthotropic 
layer or magnetostrictive layer) are extracted by 
the following equation [37]:  

( )( ) ( )

11 12 16 31

12 22 26 32

16 26 66 36

kk k

x x

x x

Q Q Q e

Q Q Q e H

Q Q Q e

q q

q q

s e

s e

s e

è øë û ë û ë û
é ùî î î î î î
= -ì ü ì ü ì üé ù

î î î î î îé ù
í ý í ý í ýê ú

 (4)  

It should be mentioned that the second part of 
Eq. (4) which is related to magnetic field H is 
used only for magnetostrictive layers and is zero 
for the layers from Gl-Ep material. In addition, in 
Eq. (4) superscript k is referred to the number of 

layers and ijQ  is used to denote transformed 

stiffness coefficients defined as follows [41]: 

4 2 2
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(5)  

while j and ijQ  are respectively the angle of each 

layer with x  axis and also the stress-reduced 
stiffness defined by the following equation [41]:  

1 12 2
11 12

12 21 12 21

2
22 66 12

12 21

ʉ
,

1 ʉ ʉ ρ ʉ ʉ

,
1 ʉ ʉ

E E
Q Q

E
Q Q G

= =
- -

= =
-

 (6) 
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The variables 1E , 2E , 12G and 12u  denote 

Young's moduli in x and   directions, shear 
moduli in the x-  surface and Poisson's ratio, 
respectively. The variable H is the magnetic field 
which is induced by the coil current I  as [36, 37]: 

2 2
,

4

c
c c

c c

n
H k I k

b r
= =

+
 (7)  

The variables ck , cn , cb and cr introduce 

magnetic coil constant, the number of the coil 
turns, coil width and coil radius, respectively. In 
order to obtain a control law, coil current is 
introduced as follows: 

( )0 0CI w u= +  (8)  

The coefficient C  is a designing parameter 

which is considered constant in this study. It 
should be mentioned that the control gain ckc is 

obtained by multiplying C  by ck . It should be 

noted that for vibration control , it is necessary to 
apply the bias point's magnetic field bH  to the 

system; therefore the whole magnetic field value 

is:

 
t bH H H= + .  Bias point is the middle point of 

the linear region of the induced strain versus 
magnetic field curve of the magnetostricive 
material [42]. Fig. 3 depicts the schematic 
diagram of the active vibration mechanism Dused 
in this paper. 

2.2. Hamilton principle 

The Hamilton principle [39] is written in the 
following type for the considered problem: 

( )
2 2

1 1

ɩ π
t t

s h ʀ

t t

ɿ ÄÔ ɿ 4 5 5 7 ÄÔ= - - + =ñ ñ  (9)  

while the variables T  , Ue, hU [43] and W  

express kinetic energy, strain energy, the work 
done through centrifugal force and the work done 
on the shell through external load, respectively. 
These variables are found via following relations: 

 
Fig. 3. The schematic diagram for the active vibration 

control of the rotating cylindrical shell  
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(13) 

while 1I , 0Nqand ( , , )F x tq respectively denote 

moment of  inertia, initial hoop tension [44]  and 
the external load  which are defined as: 

1
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1
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0 2 2
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( , , ) cos3 cosɱfF xʃ Ô Æ ʃ Ô=  (16) 

while f  and fW denote the amplitude and 

excitation frequency of the exernal load, 
respectively. 

2.3. Basic vibration equations 

Substituting Eqs. (10) to (13) into Eq. (9) 
leads to the vibration equations of the rotating 
cylindrical shell in the following form: 
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while ( ,xN N
q, xN

q) and ( ,xM M
q, xM

q) are in-plane 

forces and moments obtained in the following 
type [36]: 
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while [36]:  

( )
1

1

( ) 2 2
1

1

( ) 3 3
1

1

(z z ) , 1,2,6

1
(z z ) , 1,2,6

2

1
(z z ) , 1,2,6

3

N
k

ij ij k k
k

N
k

ij ij k k
k

N
k

ij ij k k
k

A Q i j

B Q i j

D Q i j

+

=

+

=

+

=

= - =

= - =

= - =

ä

ä

ä

 (21) 

1

1 2

31 31

32 32

36 36

, ,...31 31

32 32

36 36

k

k

zN

k m m z

A e

A e

A e
dz

B ze

B ze

B ze

+

=

ë û ë û
î î î î
î î î î
î î î îî î î î

=ì ü ì ü
î î î î
î î î î
î î î î
î î î îí ý í ý

ä ñ  (22) 

while 1 2, ,...m m  express layer numbers of the 

magnetostrictive layers. Substituting Eqs. (3), (7), 
(8) and (20) into Eqs. (17) to (19) leads to the 
following expression: 
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while ijL  refers to differential operators which 

are introduced for symmetric cross-ply rotating 
cylindrical shells in the appendix. In addition, for 

the rotating cylindrical shells with simply 
supported boundary conditions, simplification of 
the Hamilton principle leads to the geometric and 
natural boundary conditions which are 
respectively in the forms of Eqs. (24) and (25): 
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Natural boundary conditions can be rewritten 
as following: 
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while differential operators ijP are defined in the 

appendix. 

3. Problem solution  

Galerkin method is from weighted resudial 
methods while its solution is considered to be 
series of comparison functions which satisfy all of 
the problemȭs boundary conditions [39]. In this 
paper, comparison of the Galerkin merthod with 
Hamilton principle leads to a modified galerkin 
method which contains natural boundary 
conditions and is written as following: 
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The approximayte solution of the considered 
modified galerkin method is only necessary to 
satisfy geometric boundary conditions. The 
following approximate function satisfies 
geometric boundary conditions of the problem 
[45]:  
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while the variables m  and  n  are respectively 
introduced longitudinal and circumferential 
wave numbers. Substituting Eq. (28) into Eq. 
(27), leads to the following ordinary differential 
equation for the shell:  

[]{} [][ ]( ){}[]{} (){ }

{} { }, , , ,
T

t+ + + =

= t1 t2 t1 t2 t1

r t

t2u u v ,v w

M x C C x K x f

x w
 (29) 

While []M ,[]K ,[]C and[ ]rC   are the mass 

matrix, stiffness matrix and matrices due to 
velocity feedback control and rotation of the 
rotating cylindrical shell, respectively. In 

addition, (){ }ttf  is the load vector which is only 

related to variable t . Eq. (29) can be written in 

state space form as follows [39]: 

{}[]{}[] {}{ }, ,
T

= + =y A y R y x x   (30) 

While [39] 

[]
[] []

[][] [] [][ ]( )
1 1- -

è ø
é ù=
- - +é ùê úr

0 I
A

M K M C C
  (31) 

[]
[]

[]{}
1

0

t

-

è ø
=é ù
é ùê ú

R
M f

 (32) 

The eigenvalues of matix []A are shown with 

il. For a determined value of circumferential 

wave number, backward bl  and forward fl

waves are defined as: 

ʇ ɼ ʖ

ʇ ɼ ʖ
f f f

b b b

i

i

- °ë ë
=ì ì
- °í í

 (33) 

while fb  and fw  respectively represent forward 

damping coefficient and forward frequency. On 

the other hand,  bband 
bw indicate backward 

damping coefficient and backward frequency, 
respectively. The observation results 
demonstrate that the absolute values of 
backward waves are generally greater than those 
of forward waves [44]. For a stationary shell 
( 0 rpsW= ), the magnitudes of both backward and 

forward waves become identical ( s il =-b°w) 

while b and w are respectively damping 

coefficient and frequency for the stationary 
cylindrical shell. 

 The modal analysis is used in order to obtain 
the displacement of the shell against time. In this 
way, a linear combination of the right 
eigenvectors can be considered to be the solution 
for the state space form of the problem: 

{ } []{ }( ) ( )t t=y Y ʂ   (34) 

while []Y  and ( )tʂ  respectively refer to the 

matrix of right eigenvectors and the vector of 
modal coordinates [39]. Substituting Eq. (34) into 
Eq. (30) leads to the following relation: 

[]{} [][]{}{}= +Y ʂ ! 9 ʂ 2 (35) 

Multiplying the transpose of the matrix of left 

eigenvectors ([]
T

Z ) [39] by the Eq. (35), and then 

normalization of the matricies of right and left 

eigenvectors ([][][]
T

=Z Y I ) lead to the following 

formulation:  
 

{} []{}{ }( )t= +ʂ ʇ ʂ Ñ   (36) 

in which 

[][][][] {}[]{}l= =,
T T

Z A Y q Z R   (37) 

Finally, the time response of Eq. (30) can be 
obtained as follows: 

{} [] []( ){ }

[] []( ){ }
0

exp

exp ( ) ( )
t

t

t ʐ ʐ Äʐ

=

+ -ñ

0y Y ʇ ʂ

Y ʇ Ñ
 (38) 

while { }0ʂ  refers to initial conditions of the shell. 

Substituting Eq. (38) into Eq. (28) leads to the 
displacement of the rotating shell in any direction 
and any point of the shell. 

4. Results and Discussions 

In this paper, active control of free and forced 
vibration  of rotating laminated composite 
cylindrical shells embedded with two smart 
magnetostrictive layers is studied. It should be 
mentioned that in the whole of this section, the 
simply supported boundary conditions in both 
sides of the shell are considered. At first, in order 
to validate the accuracy of this study, some 
numerical results are compared with literature. 
In this way, Table 1 shows the comparison of 

frequency parameter results  22R E*w =w r  of 

the used method with literature for a three 
layered orthotropic non-rotating cylindrical shell 
with stacking sequence πЌȾωπЌȾπЌand 
geometric characteristics of 0.002h R=  and

1L R= . The relevant material properties of each 

layer of the considered cylindrical shell are as 
follows: 

22 11 22 12

3
12

7.6 GPa, 2.5,G 4.1 GPa,

ʑ πȢςφȟʍ ρφτσ ËÇ Í ȟÍ ρ

E E E= = =

= = =
  (39) 
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Table 1 shows good adaptation between the 
results of the used method with literature. Table 
2 demonstrates the results of non-dimensional 

backward ( )21b bR E*w =w -u r and forward 

( )21f f R E*w =w -u r frequencies for a rotating 

cylindrical shell with various non-dimensional 

rotating speeds ( )21R E*W =W -u r. The values 

of different parameters of the cylindrical shell are 

0.3,h 500Ru= = and ὒ υὙ. Table 2 shows good 

agreement between the results of this study with 
literature results. 

Now, at the rest of the paper, the effects of 
different parameters on the active control 
responses of free and forced vibration of the 
rotating laminated composite cylindrical shell 
embedded with two magnetosrictive layers are 
investigated. The orthotropic and smart 
magnetostrictive layers are respectively from Gl-
Ep and Terfenol-D materials while the lamination 
scheme άὥὫȾπЌȾωπЌ  is considered. The term 
mag is used to represent magnetostrictive layers. 
The constants of Gl-Ep and Terfenol-D are 
tabulated in Table 3. 

In addition, the values of the shell properties 
are:

 
=0.3 mL , =1 mR , =1 mmh , =2 mmmh , 

ȿὧὯὧȿ ςρπ, 3n= , 3TM = and 10 rpsW=  

unless other values are noted. In addition the 
forced vibration is induced from a load which acts 
harmonically to the inner surface of the shell in 
thickness direction with amplitude and excitation 
frequency of  20 KPaf =  and 50 rad/sfW =  

unless other values are mentioned. It should be 
mensioned that all of the diagrams of 
displacement versus time are obtained in 
thickness direction for a point on the shell with 

location( )( ), , 0.5 ,0,0x z Lq = . At first it is 

necessary to validate the forced vibration 
responses. For this purpose, Fig. 4 compares the 

displacement result of modal analysis with the 
result of the fourth order Runge-Kutta method. 
This figure shows excellent agreement between 
the results of these two methods. 

Figs. 5(a) and (b) respectively show the 
diagrams of backward and forward damping 
coefficients versus the circumferential wave 
number n for different values of rotation speed
W. Figs. 5(a) and (b) demonstrate that the 
increase of circumferential wave number leads to 
the decrease of both backward and forward 
damping coefficients. In addition, it can be 
concluded from Figs. 5 (a) and (b) that for a fixed  
value of n , rotation speed has negligible effect on 
the values obtained for backward or forward 
damping coefficients. Figs. 6(a) and (b) 
respectively depict the variations of the values of 
backward and forward frequencies versus n  for 
different values of W. Figs. 6 (a) and (b) 
demonstrate that for a constantW, the values of 
backward and forward frequencies decrease with 
increase of circumferential wave number. 
Besides, for a determined value of n in the range 
of almost 6n> , the increase of rotation  speed 

leads to the observable increase of the backward 
and forward frequencies. This may be caused 

because of the presence of terms 
2 2nW  or 

2nW  in 
the stiffness matrix obtained from simplifying the 
differential operators ijL as illustrated in section 

3 of this study. 

Table 1. Comparison of the frequency parameter 
responses of a non-rotating laminated cylindrical shell with 

literature  

n Present 
Ref [44] Error 

percent 
(%) 

1 1.061596 1.061284 0.03 
2 0.804583 0.804054 0.07 
3 0.599444 0.598331 0.19 
4 0.452652 0.450144 0.56 
5 0.350831 0.345253 1.62 
6 0.282504 0.270754 4.34 

 
Table 2. Comparison of non-dimensional backward and forward frequencies with literature for a rotating isotropic cylindrical shell 

with different rotating speeds 

 n 
Backward Forward 

Percent Ref. [46] Error percent (%) Percent Ref [46] Error percent (%) 
0 1 0.1860 0.1875 0.8 0.1860 0.1875 0.8 
 3 0.0382 0.0386 1.04 0.0382 0.0386 1.04 

0.03 3 0.1035 0.1036 0.10 0.0673 0.0674 0.15 
 1 0.2321 0.2336 0.64 0.1371 0.1385 1.01 

0.05 3 0.1630 0.1631 0.06 0.1026 0.1027 0.10 
0.1 1 0.2749 0.2765 0.58 0.0853 0.0868 1.73 

 
Table 3. The values of the constants of Gl-Ep and 

Terfenol-D materials [36] 

materal 
E11 

(GPa) 
E22 
(GPa) 

G12 
(GPa) 

12 
 ʍ 
(kgm-3)  

Gl-Ep 53.78 17.93 8.96 0.56 1900 
Terfenol-
D 

26.5 26.5 13.25 0 9250 

 

*W
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Fig. 4. Comparison of the diagrams of displacement 

versus time obtained using modal analysis and fourth 
order Runge-Kutta method. 

Figures 7 (a) and (b) respectively show 
diagrams of backward and forward damping 
coefficients against the thickness of the whole 
orthotropic layers Ὤ for different values of W

while 1 mmmh = . Figs. 7 (a) and (b) indicate that 

for a constant value of rotation speed, the values 
of backward and forward damping coefficients 

decrease as oh increases. In addition, for a 

constant value of oh , the effect of rotation speed 

on the values of damping coefficients is 
negligible.  Figs. 8 (a) and (b) respectively depict 
the curves of backward and forward frequencies 
against the whole orthotropic layers' thickness 

oh for 1 mmmh = . One can conclude from Figs. 8 

(a) and (b) that the increase of oh leads to the 

increase of both backward and forward 
frequencies. On the hand, for a constant value of 

oh , rotating speed has negligible effect on the 

backward and forward frequencies. 
Figure 9 demonstrates the effect of oh on the 

displacement in normal direction which is caused 

due to the external loading while 1 mmmh = . Fig. 

9 shows that the increase of oh  leads to the 

decrese of the amplitude of the displacement. In 
addition, this figure shows that using active 
vibration control leads to effective damping of 
the noises of the displacement. 

Fig. 10 (a) shows the effect of the thickness of 
each magnetostrictive layer on the curves of 
backward and forward damping coefficients 
against rotation speed. One can conclude from 
Fig. 10 (a) that the increase of the thickness of 
each magnetostrictive layer leads to greater 
values for backward and forward frequencies. 
Fig. 10 (b) depicts the curves of backward and 
forward frequencies against rotation speed for 
different values of the thickness of each 

magnetostrictive layer. It is obvious from this 
figure that the increase of the thickness of each 
magnetostrictive layer leads to decrease of both 
backward and forward frequencies. 

Fig. 11 demonstrates the effect of the 
thickness of each magnetostrictive layer on the 
displacement in thickness direction caused due 
to external loading. This figure demonstrates that 
the increase of the thickness of each 
magnetostrictive layer leads to the decrees of the 
vibration amplitude. 

Fig. 12(a) shows the variation of backward 
and forward damping coefficients versus rotation 
speed for different values of length.  This figure 
demonstrates that for a constant value of rotating 
speed, backward and forward damping 
coefficients get larger values as the value of 
length becomes smaller. In addition, for each 
value ofL , the values of backward and forward 
damping coefficients respectively increase and 
decrease with the increase of rotation speed.  

a. 

 
b. 

 
Fig. 5. The variation of backward and forward damping 

coefficients with circumferential wave number for 
different values of rotation speed 
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a. 

 

b. 

 
Fig. 6. Diagrams of the backward and forward frequencies versus circumferential wave number for different values of rotational 

velocity 

a. 

 

b. 

 
Fig. 7. Diagrams of backward and forward damping coefficients against the whole thickness of orthotropic layers for different 

rotation speeds 

 

a. 

 

b. 

 
Fig. 8. Diagrams of backward and forward frequencies against the whole thickness of orthotropic layers for different rotational 

velocities 
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Fig. 9. The influence of the whole thickness of the 

orthotropic layers on the forced vibration of the shell 

Figure 12 (b) depicts the backward and 
forward frequencies versus rotation speed for 
different values of length. This figure illustrates 
that for a constant value of rotation speed, 
absolute values of backward and forward 
frequencies become larger as L gets smaller 
values. In addition, for a constant value of length, 
the value of backward frequency increases as 
rotation  speed becomes larger. 

Figure 13 depicts the influence of the length 
value on the forced vibration of the shell. This 
figure shows that the shell with greater value of 
length has higher amplitude of the displacement. 

Fig. 14 shows the diagram of the displacement 
against time for different values of the rotation 
speed. This figure shows that increase of the 
rotation speed has negligible effect on the 
displacement of the shell due to the external 
loading. 

Fig. 15 depicts diagrams of displacement 
against time for different values of the amplitude 
of the external load. It is obvious from Fig. 15 that 
the increase of the load amplitude leads to the 
increase of the amplitude of the shell's 
displacement in thickness direction. 

Figs. 16 (a) and (b) demonstrate the diagrams 
of the displacement against exciting frequency of 
the external load for non-controlled and 
controlled shells, respectively. It should be 
mentioned that the backward and forward 
frequencies of this uncontrolled shell are 
obtained as 2281.3314 rad/s and 2265.1189 
rad/s , respectively. Fig. 16 (a) depicts that this 
diagram has peaks approximately in the points 
that the exciting frequency coincides with the 
frequencies of the system. 

 

 

a. 

 
b. 

 
Fig. 10. The influence of "the thickness of each 

magnetostrictive layer on the curves of forward and 
backward, a. damping coefficients, b. frequencies, against 

rotation speed 

 

Fig. 11. The effect of the thickness of each 
magnetostrictive layer on the forced vibration responses 

of the rotating cylindrical shell 
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a. 

 
b. 

 
Fig. 12. The variation of backward and forward, a. 

damping coefficients, b. frequencies, with rotation speed 
for different values of length 

 
Fig. 13. The effect of the length on the diagrams of the 

displacement versus time induced through external 

loading 

 

 

 

 
Fig. 14. Diagrams of displacement versus time for 

different values of rotational velocity 

 
Fig. 15. The effect of the amplitude of the load on the 

diagram of the displacement versus time 

It should be mentioned that resonance 
phenomenon takes place when the exciting 
frequency coincides with the natural frequency of 
the system which leads to dangerous deflections 
and failure [47]. It is obvious from this figure that 
displacement in these points is relatively very 
large which may lead to the failure of the system. 
Fig. 16 (b) shows that using the designed active 
vibration control leads to effective decrease of 
the displacement and the improvement of the 
shell behavior. 

5. Conclusions 

In this study, active control of free and forced 
vibration of thin rotating laminated composite 
cylindrical shells embedded with two 
magnetostrictive layers on its outer and inner 
surfaces is investigated based on classical shell 
theory. The motion equations of the rotating shell 
are derived through Hamilton principle 
considering the effects of Coriolis and centrifugal 
forces as well as initial hoop tension. 


