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In this study, active control of free and forced vibration of rotating thin laminated
composite cylindrical shells embedded with two magnetostrictive layers is investigated by
means of classical shell theory. The shell is subjected to harmonic load exerted to inner
surface of the shell in thickness direction. The velocity feedback control method is used in
order to obtain the control law. The vibration equations of the rotating cylindrical shell
are extracted by means of Hamilton principle while the effects of initial hoop tension,
centrifugal and Coriolis accelerations are considered. The partial differential equations of
the rotating cylindrical shell are converted to ordinary differential equations by means of
modified Galerkin method. The displacement of the shell is obtained using modal analysis.
The free vibration results of this study are validated by comparison with the results of
published literature. Also, the forced vibration result is compared with the result of fourth
order Runge-Kutta method to prove its correctness. Finally, the effects of several
parameters including circumferential wave number, rotational velocity, the whole
thickness of orthotropic layers, the whole thickness of orthotropic layers, length, the
amplitude and exciting frequency of the load on the vibration characteristics of the

rotating cylindrical shell are investigated.

1. Introduction

Rotating shells have numerous applications in
industry and science fields such as aviation,
chemical, aero-space, civil and mechanics [1].
Mechanical behavior of structures has been
studied by several researchers. Chen et al. [2]
have extracted the general equations for the
vibration of high-speed rotating shells of
revolution considering the effects of Coriolis
acceleration and large deformation. As an
example, the vibration responses of rotating
cylindrical shells have been derived by the finite
element method. Hua and Lam [3] have used Love
type shell theory and the generalized differential
quadrature method to investigate the influences
of boundary conditions on the frequency
characteristics of a thin rotating cylindrical shell.
Guo et al. [4] have extracted the vibration
responses of rotating cylindrical shells by
employing finite element method. Zhao et al. [5]
have studied the vibration of simply supported

rotating cross-ply laminated cylindrical shells
with stringers and rings using an energy method.
Liew et al. [6] have presented the harmonic
reproducing kernel particle method in order to
study the free vibration of rotating cylindrical
shells. Xu [7] has used three methods for
analyzing the forced vibration of an infinite
cylindrical shell filled with fluid. Kim and Bolton
[8] have investigated the vibration of an inflated
rotating circular cylindrical shell in order to
understand the effects of rotation on wave
propagation within a treadband of a tire. Jafari
and Bagheri [9] have used Ritz method and
Sander's theorem in order to analyze the free
vibration of simply supported rotating cylindrical
shells containing circumferential stiffeners. Lee
and Han [10] have obtained forced vibration
responses of shells and plates under arbitrary
loading as well as natural frequencies of
composite and isotropic laminates. Li et al. [11]
have used Rayleigh-Ritz method in order to
investigate forced vibration of conical shells.
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Civalek and Gurses [12] have utilized the Love's
first approximation shell theory and discrete
singular convolution method to analyze free
vibration of rotating cylindrical shells. Akgoz and
Civalek [13] have studied nonlinear free
vibration of thin laminated plates on nonlinear
elastic foundations through discrete singular
convolution method. Sun et al. [14] have utilized
Sanders' shell equations and Fourier series
expansion method to present the vibration
responses of thin rotating cylindrical shells under
various boundary conditions. Ghorbanpour Arani
et al. [15] have studied axial buckling of double-
walled Boron Nitride nanotubes surrounded by
an elastic medium. Barzoki et al. [16] have
studied nonlinear buckling of a cylindrical shell
on an elastic foundation via harmonic differential
quadrature method. Sun et al. [17] have extended
a wave propagation approach to investigate the
frequency characteristics of thin rotating
cylindrical shells. Daneshjou and Talebitooti [18]
have accomplished the free vibration study of
thick rotating stiffened composite cylindrical
shells under different boundary conditions by
using a three-dimensional theory. Civalek [19]
has obtained nonlinear static and dynamic
responses for shallow spherical shells on elastic
foundations. Thai and Kim [20] have reviewed
various theories used for analysis and modeling
of functionally graded plates and shells. Mercan
et al. [21] have studied free vibration of
functionally graded cylindrical shells using
discrete singular convolution method. Civalek
[22] has presented free vibration responses for
conical and cylindrical shells and annular plates
from composite laminated and functionally
graded materials. Zhang et al. [23] have
presented the free and forced vibration
responses of submerged finite elliptic cylindrical
shells. Civalek [24] has applied the discrete
singular convolution method to study the free
vibration of rotating shells. Hussain et al. [25]
have derived vibration responses of rotating
functionally graded cylindrical shell resting on
elastic foundations.

Reviewing literature reveals that improving
the rotating circular cylindrical shells behaviour
by the active control of their free and forced
vibration should be taken into consideration. In
this way, the use of smart materials which could
be used for active vibration control will be
appropriate. Magnetostrictive materials are
among smart materials which can be used for
active vibration control. Terfenol-D is a
magnetostrictive material with high energy
density, high relatively available displacements
which has wide bandwidth [26]. Several
researchers have used magnetostrictive smart
materials in order to suppress the vibration of
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beams [27-29], curved beams [30], plates [31-33]
and shells [34-38].

There are several theories for modelling of the
shells including classical and first order shear
deformation theories. In the classical theory
which is used for thin shells, the normal to the
mid-surface stays straight and normal to it after
deformation [39]; while in first order shear
deformation theory, the normal to the middle
surface is straight after deformation but it is not
normal [40]. The classical theory is simpler and
leads to vibration responses with fewer
mathematical effort. Therefore, for thin shells the
use of classical theory is appropriate. Thus, in this
paper classical shell theory is used to study active
control of free and forced vibration of rotating
laminated composite thin cylindrical shells by
means of velocity feedback control law through
smart magnetostrictive layers. The shell is under
harmonic load which is applied to the inner
surface of the shell in thickness direction. The
partial differential vibration equations of the
rotating laminated composite cylindrical shell
are extracted considering the effects of
centrifugal and Coriolis forces as well as initial
hoop tension. The modified Galerkin method is
applied for converting the partial differential
equations to ordinary differential equations. The
displacement results of the shell are obtained via
modal analysis. The accuracy of this study's
results is investigated by comparison with the
results published in literature for free vibration
and with the result of fourth order Runge-Kutta
method for forced vibration. The effects of
several parameters such as circumferential wave
number, rotation speed, the thickness of
orthotropic layers, the thickness of each
magnetostrictive layer, the length, the amplitude
and exciting frequency of the load on the
vibration characteristics of the rotating
cylindrical shell are investigated.

2. Problem Formulation
2.1. Basic relations

The considered coordinate system (x, 8, z) and
geometric characteristics of the rotating thin
laminated composite circular cylindrical shell are
shown in Fig. 1. The cylindrical shell is composed
of 4 layers of glass-epoxy (Gl-Ep) orthotropic
material and two magnetostrictive layers used
for active vibration control. The schematic of the
cylindrical shell layers is shown in Fig. 2. For the
rotating cylindrical shell, h; is the total thickness,

h is the thickness of each orthotropic layer, h,

is the thickness of each magnetostrictive layer
and h is the thickness of whole orthotropic
layers. In addition, L is the length, R is the
radius and Q is the constant rotation speed. The
longitudinal, circumferential and normal
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directions of the shell are demonstrated as x, 0
and z, respectively. The origin of the coordinate
system is located on the middle surface of an
arbitrary edge of the shell.

The displacements of a point in the middle
surface of the shell in x, 6 and z directions are

expressed by u,, v,and w,, respectively.

According to classical shell theory, the relations
between the displacements of an arbitrary point
and displacements of a point in the middle
surface of the shell are in the following form [39]:

(1)

while u,vand w demonstrate the displacements
of an arbitrary point of the shell in x, 6 and z
directions, respectively. The relation of strains
(€,,84,€4) with middle surface strains

(€94+€00,€0x0 ) and curvature changes (k, kg, k)

of the rotating cylindrical shell are as follows
[39]:

£ =¢,, +zk,

£, =&, + 2k,

(2)

€ = &g T2ZK g

while [39]:

Fig. 1. The coordinate system and geometric characteristics
of rotating circular cylindrical shell [12]

Magnetostrictive layer

A

orthotropic layers |

W
Magnetostrictive layer

Fig. 2. The schematic of the layers of the considered
cylindrical shell
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The relations between the stresses and
strains of each layer of the shell (orthotropic
layer or magnetostrictive layer) are extracted by
the following equation [37]:

(k) - - — k) — 5 (k)
Oy (311 (312 916 & €3
Oy = ?12 922 926 & r—1€a H
Oxo Qi Qux Qe Exo €3

It should be mentioned that the second part of
Eq. (4) which is related to magnetic field H is
used only for magnetostrictive layers and is zero
for the layers from Gl-Ep material. In addition, in
Eq. (4) superscript k is referred to the number of

layers and (Z]. is used to denote transformed

stiffness coefficients defined as follows [41]:
Q,, =Q,, cos* @+2(Q,,+2Q,, )sin’ pcos’ @
+Q,,sin* @
Q,, =(Q,,+Q,,—4Q,, )sin? @cos® @
+Q,,(sin* @ +cos* @)
Q,, =Q,,sin* @ +2(Q,,+2Q,,)sin* pcos® @
+Q,, cos’ @
Q =(Q;;—Q,,—2Q,,)sin@cos’ @ (5)
+(Q,,—Q,,+2Q,,)sin’ @cos @
Q% =(Q,;—Q,,—2Q,, )sin’ @cos@
+Q,,—Q,,+2Q,,)sin@cos’ @
Qs =(Q1;+Q,,—2Q,,—2Q,, )sin® @cos’ @

+Q,. (sin* @ + cos* @)

while ¢ and @, are respectively the angle of each

layer with x axis and also the stress-reduced
stiffness defined by the following equation [41]:

E v, E
Q= 1 : » Q= 1 122
ViV ViV
. (6)
Q= 1 . » Qs =Gy,
~ViVa
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The variables E,, E,, G,and v,, denote

Young's moduli in x and 6 directions, shear
moduli in the x-6 surface and Poisson's ratio,
respectively. The variable H is the magnetic field
which is induced by the coil current I as [36,37]:

H=kI,  k =——x

Jb: +4r?

The variables k., n

(7)

., b.and r, introduce
magnetic coil constant, the number of the coil
turns, coil width and coil radius, respectively. In
order to obtain a control law, coil current is
introduced as follows:
I=C(w, +1,) (8)
The coefficient ¢ is a designing parameter
which is considered constant in this study. It
should be mentioned that the control gain ckc is

obtained by multiplying ¢ by k. . It should be
noted that for vibration control, it is necessary to
apply the bias point's magnetic field H, to the
system; therefore the whole magnetic field value
is: H, =H+H, . Bias point is the middle point of
the linear region of the induced strain versus
magnetic field curve of the magnetostricive
material [42]. Fig. 3 depicts the schematic

diagram of the active vibration mechanism Dused
in this paper.

2.2. Hamilton principle

The Hamilton principle [39] is written in the
following type for the considered problem:

t, t,
§[nde=5[(T,~U, U, +W)de =0 9)

& t

while the variables T , U_, U,[43] and W

express Kkinetic energy, strain energy, the work
done through centrifugal force and the work done
on the shell through external load, respectively.
These variables are found via following relations:

i,
l
Systein W o
Actuator
e
! . L
T k(. r
L« |

Fig. 3. The schematic diagram for the active vibration

control of the rotating cylindrical shell

(u’2 +V' 2w 2)

_|1 2(,2 2
T_El;[ +0°(v?+w?) tRdxd 6 (10)
+20Q (VW -wv )
N o, We +0.8¢
u, =05y ff| ™ 7 7 IRdxdo  (11)
k=19 X +O'Xg(k)gxg
ow, du
R—2-—%su
( ox aez) 0
N? ou
U, =[[=¢| - 0 sv Rdxd6 (12
" !JRZ o0 ° (12)
v, 0w,
H=2— Sw
(aa aez) °
SW = ”F(x,@,t)R6wdxd6dt (13)
0 x

while I, Ngand F(x,0,t) respectively denote

moment of inertia, initial hoop tension [44] and
the external load which are defined as:

Zi

N Zk1
1= [ p¥dz (14)
k=1 g,
N; =LQ°R’ (15)
F(x,0,t)= fcos30cosQ t (16)

while f and Q,denote the amplitude and

excitation frequency of the exernal load,

respectively.

2.3. Basic vibration equations

Substituting Egs. (10) to (13) into Eq. (9)
leads to the vibration equations of the rotating
cylindrical shell in the following form:

R ON, RO(AGH) N,
OX 2 0Ox 00
+EM+N_OO(_R%
2 00 R OX
1R =0

o’u,
06°

N (17)

N, 18(AzH) N, R O(AH)
00 2 00 ox 2 ox
+16M9+i6(Bng)+aMw

R 00 2R 060 ox
+£6(B36H)+Ng U,

2 X ox 06
+HR(V'+02%V -2 )=0

(18)
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2 2 2
N, AsH M, RIEH) 1M
2 X 2 ox R 06
1 PBLH) M, FBH)
2R 06° ox 00 ox 00
+7ﬂ(_%+82\NO
R o0  06?

+L,R(-W + Q%W +2) =0

while (N,,N,,N,,) and (M,,M,, M) are in-plane
forces and moments obtained in the following

type [36]:

(19)

(20)

N X All A12 A16 Bll BlZ BlG ng
N 0 A12 A22 A26 BlZ BZZ BZG 6009
Nyo _ A Ax Ag By By Be|éune
M X Bll BlZ BlG Dll D12 D16 kx
M 0 BlZ BZZ BZG DlZ D22 D26 kO
M x0 _B1G BZS BGG Dl6 D26 DSG kx()
A31
A32
A
_ 36 H
BSl
BBZ
BSB
while [36]:
= ZQ(“(zk+1 i,j=1,2,6
B, = LS00z~ 22 ,j=1,2,6
ij _E;QU (Zk+1_Zk) Lj=L2 (21)
1 w3 3
EZQIE (241—2,) 1,j=1,2,6
k=1
Ay €3
Ag €:;
Ag SR
= > dz (22)
By k:ml;ﬂzvm o | 28a
By, 285,
By 285

while m,,m,,.. express layer numbers of the
magnetostrictive layers. Substituting Egs. (3), (7),
(8) and (20) into Egs. (17) to (19) leads to the

following expression:

Lll L12 L13 uO 0
Ly Ly Ly |V (= 0 (23)
L31 L32 L33 Wo —RF(x,6,t)

while L, refers to differential operators which

are introduced for symmetric cross-ply rotating
cylindrical shells in the appendix. In addition, for
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the rotating cylindrical shells with simply
supported boundary conditions, simplification of
the Hamilton principle leads to the geometric and
natural boundary conditions which are
respectively in the forms of Egs. (24) and (25):

5w, (0,0,)=0,  6v,(0,6,)=0
24
sw,(L,6,)=0,  6v,(LO,t)=0 (24
~N_R6u,(0,0,6)=0,M R a‘;‘”" (0,6,6)=0
) (25)

N _R6u,(L,6,t)=0,M R a‘;WO
X

(L,6,6)=0

Natural boundary conditions can be rewritten
as following:

u,(0,0) u,(L,6)
(P13 vo(0,8) p=0,  [Py]3v,(L,B) =0 (26)
w,(0,6) w,(L,0)

while differential operators P, are defined in the

appendix.

3. Problem solution

Galerkin method is from weighted resudial
methods while its solution is considered to be
series of comparison functions which satisfy all of
the problem’s boundary conditions [39]. In this
paper, comparison of the Galerkin merthod with
Hamilton principle leads to a modified galerkin

method which contains natural boundary
conditions and is written as following:

L2m

[ (([L“ )) 0} dodx

00 (27)

2m

+J([m

The approximayte solution of the considered
modified galerkin method is only necessary to
satisfy geometric boundary conditions. The
following approximate function satisfies
geometric boundary conditions of the problem
[45]:

o))}~ o

M; N;
ZZCOS(
m=1 n=0
MT NT
ZZsm(
m=1 n=0
M, Ny

ZZSID(

m=1 n=0

{cosnBu,, (t)-sinnbu,,(t)}

{sinnBv, (t)+cosnbv,, (t)}

{cosnBw , (¢)—sinnbw, (t)}

(28)
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while the variables m and n are respectively
introduced longitudinal and circumferential
wave numbers. Substituting Eq. (28) into Eq.
(27), leads to the following ordinary differential
equation for the shell:

(M} +([C]+[C, )+ [K{x} ={E (¢)}

(29)
{X} = {un My Vi) Vg, Wi , Wy, }T

While [M],[K],[C]and[C,] are the mass

matrix, stiffness matrix and matrices due to

velocity feedback control and rotation of the
rotating cylindrical shell, respectively. In

addition, {f (t)} is the load vector which is only

t
related to variable t . Eq. (29) can be written in
state space form as follows [39]:

vi=[Aly}+[Rl,  {y}={xx}’

While [39]

[o] 1]
-[M]"[K] —[M]'l([chr])} GU

(30)

(32)

[0] }
[m]" €.}

The eigenvalues of matix [A] are shown with

A;. For a determined value of circumferential
wave number, backwardA, and forward 7»/,

waves are defined as:
A, _ B, tw,i
A, | Byt i

while B, and o, respectively represent forward

(33)

damping coefficient and forward frequency. On
the other hand, B,and o, indicate backward

damping coefficient and backward frequency,
respectively. The observation results
demonstrate that the absolute values of
backward waves are generally greater than those
of forward waves [44]. For a stationary shell
(Q=0rps), the magnitudes of both backward and

forward waves become identical (A, =—f+ i)
while B and ® are respectively damping

coefficient and frequency for the stationary
cylindrical shell.

The modal analysis is used in order to obtain
the displacement of the shell against time. In this
way, a linear combination of the right
eigenvectors can be considered to be the solution
for the state space form of the problem:
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y®}=[Y]{n(t)} (34)

while [Y] and m(t) respectively refer to the

matrix of right eigenvectors and the vector of
modal coordinates [39]. Substituting Eq. (34) into
Eg. (30) leads to the following relation:

[Y]{n} =[A][Y]{n}+{R]

Multiplying the transpose of the matrix of left
eigenvectors ([Z]T ) [39] by the Eq. (35), and then
normalization of the matricies of right and left
eigenvectors ([Z]T [Y]=[1]) lead to the following

formulation:

(35)

My =[A]{n}+{a(®)} (36)
in which
[2]=[z] [A]lY],  {a}=[2] {R} (37)

Finally, the time response of Eq. (30) can be
obtained as follows:

v} =[¥]exp([A]e){n,}
+[Y]jexp([x](t—r)){q(r)}dr

while {T]O} refers to initial conditions of the shell.

Substituting Eq. (38) into Eq. (28) leads to the
displacement of the rotating shell in any direction
and any point of the shell.

4. Results and Discussions

In this paper, active control of free and forced
vibration of rotating laminated composite
cylindrical shells embedded with two smart
magnetostrictive layers is studied. It should be
mentioned that in the whole of this section, the
simply supported boundary conditions in both
sides of the shell are considered. At first, in order
to validate the accuracy of this study, some
numerical results are compared with literature.
In this way, Table 1 shows the comparison of

frequency parameter results " =®R,/p/E,, of

the used method with literature for a three
layered orthotropic non-rotating cylindrical shell
with  stacking sequence [0°/90°/0°]and
geometric characteristics of h/R=0.002 and
L/R=1.The relevant material properties of each

layer of the considered cylindrical shell are as
follows:
E,, =7.6 GPa,E,, /E,, = 2.5,G,, = 4.1 GPa,

39
v, =0.26,0=1643 kg/m* ,m=1 (39)
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Table 1 shows good adaptation between the
results of the used method with literature. Table
2 demonstrates the results of non-dimensional

backward o, =w,R,[(1-v*)p/E and forward
o, =oR (l—oz)p/E frequencies for a rotating

cylindrical shell with various non-dimensional

rotating speeds " =QR,[(1-v?)p/E . The values

of different parameters of the cylindrical shell are
v=0.3,h=R/500 and L = 5R. Table 2 shows good
agreement between the results of this study with
literature results.

Now, at the rest of the paper, the effects of
different parameters on the active control
responses of free and forced vibration of the
rotating laminated composite cylindrical shell
embedded with two magnetosrictive layers are
investigated. The orthotropic and smart
magnetostrictive layers are respectively from Gl-
Ep and Terfenol-D materials while the lamination
scheme [mag/ 0°/90°], is considered. The term
mag is used to represent magnetostrictive layers.
The constants of GI-Ep and Terfenol-D are
tabulated in Table 3.

In addition, the values of the shell properties
are: L=03m, R=1m, h =2 mm,
|ckc|=2%10%, n=3,M, =3and Q=10 rps
unless other values are noted. In addition the

forced vibration is induced from a load which acts
harmonically to the inner surface of the shell in

h=1 mm,

displacement result of modal analysis with the
result of the fourth order Runge-Kutta method.
This figure shows excellent agreement between
the results of these two methods.

Figs. 5(a) and (b) respectively show the
diagrams of backward and forward damping
coefficients versus the circumferential wave
number n for different values of rotation speed
Q. Figs. 5(a) and (b) demonstrate that the
increase of circumferential wave number leads to
the decrease of both backward and forward
damping coefficients. In addition, it can be
concluded from Figs. 5 (a) and (b) that for a fixed
value of n, rotation speed has negligible effect on
the values obtained for backward or forward
damping coefficients. Figs. 6(a) and (b)
respectively depict the variations of the values of
backward and forward frequencies versus n for
different values of Q. Figs. 6 (a) and (b)
demonstrate that for a constant Q, the values of
backward and forward frequencies decrease with
increase of circumferential wave number.
Besides, for a determined value of nin the range
of almost n>6, the increase of rotation speed
leads to the observable increase of the backward
and forward frequencies. This may be caused

because of the presence of terms Q°n* or Qn in
the stiffness matrix obtained from simplifying the
differential operators L, as illustrated in section

3 of this study.

Table 1. Comparison of the frequency parameter
responses of a non-rotating laminated cylindrical shell with

thickness direction with amplitude and excitation literature
frequency of f=20KPa and Q,=50rad/s Ref [44] Error
unless other values are mentioned. It should be n Present pe(roze)nt
men51oned that all f)f the dlagr{ims .Of 1 1061596 1061284 0.03
d1§placemept versus tlmg are obtained in 2 0.804583 0.804054 0.07
thickness direction for a point on the shell with 3 0.599444 0.598331 0.19
location (x,6,z)=(0.5L,0,0). At first it is 4 0.452652 0.450144 0.56
. . . 5 0.350831 0.345253 1.62
necessary to validate the forced vibration 6 0282504 0.270754 434

responses. For this purpose, Fig. 4 compares the

Table 2. Comparison of non-dimensional backward and forward frequencies with literature for a rotating isotropic cylindrical shell

with different rotating speeds

o n Backward Forward
Percent Ref.[46] Error percent (%) Percent Ref[46] Error percent (%)

0 1 0.1860  0.1875 0.8 0.1860  0.1875 0.8
3 0.0382  0.0386 1.04 0.0382  0.0386 1.04

0.03 3 0.1035  0.1036 0.10 0.0673  0.0674 0.15
1 0.2321  0.2336 0.64 0.1371  0.1385 1.01

0.05 3 0.1630  0.1631 0.06 0.1026  0.1027 0.10
0.1 1 0.2749  0.2765 0.58 0.0853  0.0868 1.73

Table 3. The values of the constants of Gl-Ep and
Terfenol-D materials [36]

Eu Ez2 Gz . p
materal (Gpa) (GPa) (GPa) Z”  (kgm?)
Gl-Ep 53.78  17.93 896 _ 0.56 1900
Eerfe“‘)l' 265 265 1325 0 9250
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3 x10% T T T T

——Fourth order Runge-Kutta method
25 = = =Modal analysis 4

Displacement (m)

0 0.1 0.2 0.3 04 0.£
t(s)

Fig. 4. Comparison of the diagrams of displacement
versus time obtained using modal analysis and fourth
order Runge-Kutta method.

Figures 7 (a) and (b) respectively show
diagrams of backward and forward damping
coefficients against the thickness of the whole
orthotropic layers h, for different values of Q
while h, =1 mm . Figs. 7 (a) and (b) indicate that

for a constant value of rotation speed, the values
of backward and forward damping coefficients

decrease as h increases. In addition, for a

constant value of h , the effect of rotation speed

on the values of damping coefficients is
negligible. Figs. 8 (a) and (b) respectively depict
the curves of backward and forward frequencies
against the whole orthotropic layers' thickness
h,for h,=1mm. One can conclude from Figs. 8

(a) and (b) that the increase of h, leads to the

increase of both backward and forward
frequencies. On the hand, for a constant value of
h,, rotating speed has negligible effect on the

backward and forward frequencies.
Figure 9 demonstrates the effect of h, on the

displacement in normal direction which is caused
due to the external loading while h,=1mm. Fig.

9 shows that the increase of h, leads to the

decrese of the amplitude of the displacement. In
addition, this figure shows that using active
vibration control leads to effective damping of
the noises of the displacement.

Fig. 10 (a) shows the effect of the thickness of
each magnetostrictive layer on the curves of
backward and forward damping coefficients
against rotation speed. One can conclude from
Fig. 10 (a) that the increase of the thickness of
each magnetostrictive layer leads to greater
values for backward and forward frequencies.
Fig. 10 (b) depicts the curves of backward and
forward frequencies against rotation speed for
different values of the thickness of each

magnetostrictive layer. It is obvious from this
figure that the increase of the thickness of each
magnetostrictive layer leads to decrease of both
backward and forward frequencies.

Fig. 11 demonstrates the effect of the
thickness of each magnetostrictive layer on the
displacement in thickness direction caused due
to external loading. This figure demonstrates that
the increase of the thickness of each
magnetostrictive layer leads to the decrees of the
vibration amplitude.

Fig. 12(a) shows the variation of backward
and forward damping coefficients versus rotation
speed for different values of length. This figure
demonstrates that for a constant value of rotating
speed, backward and forward damping
coefficients get larger values as the value of
length becomes smaller. In addition, for each
value of L, the values of backward and forward
damping coefficients respectively increase and
decrease with the increase of rotation speed.
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Fig. 5. The variation of backward and forward damping
coefficients with circumferential wave number for
different values of rotation speed
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Fig. 9. The influence of the whole thickness of the
orthotropic layers on the forced vibration of the shell

Figure 12 (b) depicts the backward and
forward frequencies versus rotation speed for
different values of length. This figure illustrates
that for a constant value of rotation speed,
absolute values of backward and forward
frequencies become larger as L gets smaller
values. In addition, for a constant value of length,
the value of backward frequency increases as
rotation speed becomes larger.

Figure 13 depicts the influence of the length
value on the forced vibration of the shell. This
figure shows that the shell with greater value of
length has higher amplitude of the displacement.

Fig. 14 shows the diagram of the displacement
against time for different values of the rotation
speed. This figure shows that increase of the
rotation speed has negligible effect on the
displacement of the shell due to the external
loading.

Fig. 15 depicts diagrams of displacement
against time for different values of the amplitude
of the external load. It is obvious from Fig. 15 that
the increase of the load amplitude leads to the
increase of the amplitude of the shell's
displacement in thickness direction.

Figs. 16 (a) and (b) demonstrate the diagrams
of the displacement against exciting frequency of
the external load for non-controlled and
controlled shells, respectively. It should be
mentioned that the backward and forward
frequencies of this uncontrolled shell are
obtained as 2281.3314 rad/s and 2265.1189
rad/s, respectively. Fig. 16 (a) depicts that this
diagram has peaks approximately in the points
that the exciting frequency coincides with the
frequencies of the system.
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It should be mentioned that resonance
phenomenon takes place when the exciting
frequency coincides with the natural frequency of
the system which leads to dangerous deflections
and failure [47]. It is obvious from this figure that
displacement in these points is relatively very
large which may lead to the failure of the system.
Fig. 16 (b) shows that using the designed active
vibration control leads to effective decrease of
the displacement and the improvement of the
shell behavior.

5. Conclusions

In this study, active control of free and forced
vibration of thin rotating laminated composite
cylindrical ~ shells embedded with two
magnetostrictive layers on its outer and inner
surfaces is investigated based on classical shell
theory. The motion equations of the rotating shell
are derived through Hamilton principle
considering the effects of Coriolis and centrifugal
forces as well as initial hoop tension.
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Fig. 16. The effect of the active vibration control on the
diagram of the displacement versus exciting frequency

The shell is under external loading which acts
harmonically to the inner surface of the shell. The
partial differential equations of the shell are
converted to ordinary differential equations by
means of modified Galerkin method. The
displacement response is obtained using modal
analysis. The accuracy of the used method for free
vibration responses is proved by comparison of
some results with the results of non-rotating and
rotating cylindrical shells of literature. In
addition, the validation of the forced vibration
results is obtained by comparison with the result
of the fourth order Runge-Kutta method. The
effects of circumferential wave number, rotation
speed, thickness of the whole orthotropic layers,
the thickness of each magnetostrictive layer,
length, the amplitude of the load and the exciting
frequency of the load on the vibration
characteristics of the rotating laminated
composite cylindrical shell are investigated.

It can be concluded that the increase of
circumferential wave number, the whole
orthotropiclayers thickness or length leads to the
decrease of damping coefficients and increase of
the frequencies. On the other hand, the increase

of the thickness of each magnetostrictive layer
makes greater values for damping coefficients
and smaller values for frequencies. The results
also show that the increase of "the thickness of
each magnetostrictive layer or the whole
thickness of the orthotropic layers leads to
smaller amplitude for the forced vibration. On the
other hand, the value of the forced vibration
amplitude increases as the value of the length or
the load amplitude increases. In addition, the
amplitude of forced vibration has negligible
change due to the increase of the rotation speed.
Besides, the use of active vibration control leads
to the effective decrease of the value of shell
displacement in resonance condition.

Appendix

The differential operators L; for the rotating

symmetric cross-ply cylindrical shell used in this
study are defined as:

2 2 2
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13 2 6X8t lZaX 0 ax ( )
2 2 2
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2 o6ot ox 06 ox 06
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