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In this study, a weighted sum, consisting two non-dimensionalized quantities critical 
buckling force and natural frequency, is employed to maximize the objective function for 
a laminated composite circular cylindrical shell. The function is considered to find the 
optimum solutions as the goal. Orientation angels of fibers are mentioned in a well-known 
configuration as candidate design, and critical buckling force and natural frequency values 
are derived with the first order shear deformation theory. The composite shell is 
considered with 8 layers, also the boundary conditions are assumed to be fully simply 
support and to satisfy boundary conditions displacement and slope components are 
defined in form of double Fourier series. After combination of differential operators and 
Fourier series, eventually the matrix L is found and Galerkin method gains function values. 
For this purpose, a program based on MATLAB is employed for the process. Validations of 
numerical results show that the used method is moderately satisfactory and acceptable in 
predicting the critical buckling force and the natural frequency of the shell in comparison 
with other works. As the conclusion, the effect of different weighting ratios, shell length-
to-radius ratios, and shell thickness-to-radius ratios on the optimal designs are 
investigated and the results are compared. 

1. Introduction

Composite physical properties are achieved 
by combining different materials to meet specific 
requirement. Enormous benefits that these 
materials posses attract researchers to explore 
more into it to script its behavior in a well-
defined form to the users. On the other hand, the 
structures are quite often are subjected to in-
plane or external loads which may cause 
buckling. In addition, the vibration can be 
problematic when the excitation frequency 
coincides with the shell’s resonance frequency. 
Such loadings may occur at different times under 
in-service conditions, necessitating a design 
approach that is capable of taking in to account 
these various loading conditions. 

In the recent years, numerical approaches are 
focused on the problems of the composite 
structures. For example, Liu et al. [1] investigated 
nonlinear breathing vibrations of an eccentric 
rotating composite laminated circular cylindrical 
shell, which is subjected to the lateral and 

temperature excitations. It was carried out based 
on Donnell thin shear deformation theory, von 
Kármán-type nonlinear relation and Hamilton’s 
principle. Pitton et al. [2] by a methodology 
involving the design of an Artificial Neural 
Network (ANN) predicted the approximation of 
the buckling load and of the pre-buckling stiffness 
of a composites cylindrical shell. Zhang et al. [3] 
focused on the resonant responses and chaotic 
dynamics of a composite laminated circular 
cylindrical shell with radially pre-stretched 
membranes at both ends and clamped along a 
generatrix. Matsunaga [4] by employing the 
method of power series expansion of 
displacement components, a set of fundamental 
dynamic equations of a two-dimensional 
higherorder theory for laminated composite 
circular cylindrical shells made of elastic and 
orthotropic materials studied vibration and 
buckling through Hamilton’s principle. 
Ungbhakorn, and Singhatanadgid [5] employed 
the similitude invariant and the scaling laws of 
the symmetric cross-ply laminated circular 
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cylindrical shells for buckling and free vibration 
problems by applying the similitude 
transformation to the governing differential 
equations directly. Lam and Loy [6] studied the 
influence of boundary conditions for a thin 
laminated rotating cylindrical shell. The analysis 
was carried out using Love-type shell theory and 
solved using Galerkin's method. Lee [7] defined 
free vibration and dynamic response for the CFRP 
and GFRP cross-ply laminated circular cylindrical 
shells under impulse loads and investigated by 
using the first-order shear deformation shell 
theory. The modal analysis technique was used to 
develop the analytical solutions of the simply 
supported cylindrical shells. Walker and Smith 
[8] presented a methodology for using genetic 
algorithms with the finite element method to 
minimise a weighted sum of the mass and 
deflection of fibre reinforced structures with 
several design variables. Free vibration of 
laminated composite shells with cutouts are 
presented by a nine noded curved C0 finite 
element (FE) formulation developed by Kumar et 
al. [9] based on higher order shear deformation 
theory (HSDT) using Sander's approximations. A 
research by Sepiani et al. [10] investigated the 
free vibration and buckling of a two-layered 
cylindrical shell made of inner functionally 
graded (FG) and outer isotropic elastic layer, 
subjected to combined static and periodic axial 
forces. Wagner et al. [11] believed that the worst 
geometric imperfection is a mathematical 
concept which should deliver in theory a 
lower bound for the buckling load of unstiffened 
cylindrical shells, and the corresponding knock-
down factors could be used as base for improved 
shell design guidelines in order to reduce weight 
and cost of unstiffened shells. The problem of 
local buckling of a thin composite laminated 
cylindrical shell under external pressure is 
studied by Mikhasev et al [12].  Geier et al. [13] by 
a research argued that the buckling loads of 
laminated cylinders can strongly depend on the 
position of the differently oriented layers within 
the shell. Labans et al. [14] presented a research 
that two laminated composite shells, one with a 
conventional straight fiber laminate denoted the 
classical laminated shell and the second one with 
a variable angle tow reinforced composite, had 
been excited and their natural frequencies and 
mode shapes had been measured and monitored 
as a function of the axial compression load. Ng 
and Lam [15] studied the vibration and critical 
speed of thin isotropic cylindrical shells under 
constant axial loads. In the analysis, Donnell's 
theory for a thin-walled cylindrical shell is used. 
Liu and chu [16] investigated Nonlinear 
vibrations of thin circular cylindrical shells. 
Based on Love thin shell theory, the governing 
partial differential equations of motion for the 

rotating circular cylindrical shell are formulated 
using Hamilton principle. Kassegne and chun [17] 
argued that Fiber reinforced composite materials 
continue to experience increased adoption in 
different employment. Walker et al. [18] obtained 
the multiobjective design of a symmetrically 
laminated shell with the objectives defined as the 
maximization of the axial and torsional buckling 
loads. The ply angle is taken as the optimizing 
variable. 

Employing a weighted sum, consisting two 
non-dimensionalized quantities critical buckling 
force and natural frequency, is considered to 
maximize objective function for a laminated 
composite circular cylindrical shell. Orientation 
angels of fibers are considered as design variable. 
Critical buckling force and natural frequency 
values are derived with the first order shear 
deformation theory. Eventually, the effect of 
different weighting ratios, shell aspect ratio, and 
shell thickness-to-radius ratios on the optimal 
designs are investigated and the results are 
compared.  

2. Governing Equations 

A circular cylindrical shell, the schematic of 
the k-layer of the shell and coordinates are shown 
in Fig. 1. Based on first-order shear deformation 
theory, the equilibrium equations for a shell 
under axial loads 𝑁𝑎 are as follows and the 
deformations are assumed to be small [19]: 

 

 

Fig. 1. K-layer laminated composite circular cylindrical shell 
and coordinate 
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𝜕𝑁𝑥
𝜕𝑥

+
𝜕𝑁𝑥𝜑

𝑅𝜕𝜑
+ 𝑞𝑥(𝑥, 𝜑, 𝑡)

= 𝐼1
𝜕2𝑢

𝜕𝑡2
+ 𝐼2

𝜕2𝛽𝑥
𝜕𝑡2

 

𝜕𝑁𝑥𝜑

𝜕𝑥
+
𝜕𝑁𝜑

𝑅𝜕𝜑
+
𝑄𝜑

𝑅
+ 𝑁𝑎

𝜕2𝑣

𝜕𝑥2

+ 𝑞𝜑(𝑥, 𝜑, 𝑡)

= (𝐼1 +
2𝐼2
𝑅
)
𝜕2𝑣

𝜕𝑡2

+ (𝐼2 +
𝐼3
𝑅
)
𝜕2𝛽𝜑

𝜕𝑡2
 

𝜕𝑄𝑥
𝜕𝑥

+
𝜕𝑄𝜑

𝑅𝜕𝜑
−
𝑁𝜑

𝑅
+ 𝑁𝑎

𝜕2𝑤

𝜕𝑥2
+ 𝑞𝑟(𝑥, 𝜑, 𝑡)

= 𝐼1
𝜕2𝑤

𝜕𝑡2
 

𝜕𝑀𝑥

𝜕𝑥
+
𝜕𝑀𝑥𝜑

𝑅𝜕𝜑
+𝑚𝑥(𝑥, 𝜑, 𝑡) − 𝑄𝑥

= 𝐼2
𝜕2𝑢

𝜕𝑡2
+ 𝐼3

𝜕2𝛽𝑥
𝜕𝑡2

 

𝜕𝑀𝑥𝜑

𝜕𝑥
+
𝜕𝑀𝜑

𝑅𝜕𝜑
+𝑚𝜑(𝑥, 𝜑, 𝑡) − 𝑄𝜑

= (𝐼2 +
𝐼3
𝑅
)
𝜕2𝑣

𝜕𝑡2

+ 𝐼3
𝜕2𝛽𝜑

𝜕𝑡2
 

(1) 

𝐼1, 𝐼2 and 𝐼3 are defined by the following 
relation [19]: 

(𝐼1, 𝐼2, 𝐼3) = ∫ (1, 𝑧, 𝑧2)

ℎ

2

−ℎ

2

𝜌𝑘𝑑𝑧 (2) 

All of the equivalent material properties for 
each layer is obtained with regard to ‘rule of 
mixture’. Equation constitution of composite 
shell based on classical laminate theory are 
defined by the following relations [7]: 

{

𝑁𝑥
𝑁𝜑
𝑁𝑥𝜑

} = [

𝐴11 𝐴12 𝐴16
𝐴12 𝐴22 𝐴26
𝐴16 𝐴26 𝐴66

] {

𝜀𝑥
0

𝜀𝜑
0

𝛾𝑥𝜑
0

} +

[

𝐵11 𝐵12 𝐵16
𝐵12 𝐵22 𝐵26
𝐵16 𝐵26 𝐵66

] {

𝜅𝑥
0

𝜅𝜑
0

𝜅𝑥𝜑
0

}  

{

𝑀𝑥

𝑀𝜑

𝑀𝑥𝜑

} = [

𝐵11 𝐵12 𝐵16
𝐵12 𝐵22 𝐵26
𝐵16 𝐵26 𝐵66

] {

𝜀𝑥
0

𝜀𝜑
0

𝛾𝑥𝜑
0

} +

[

𝐷11 𝐷12 𝐷16
𝐷12 𝐷22 𝐷26
𝐷16 𝐷26 𝐷66

] {

𝜅𝑥
0

𝜅𝜑
0

𝜅𝑥𝜑
0

}  

{
𝑄𝑥
𝑄𝜑
} = [

𝐻55 𝐻45
𝐻45 𝐻44

] {
𝛾𝑥𝑧
0

𝛾𝜑𝑧
0 }  

(3) 

The A, B, D, and H matrices are defined as 
follows, where [19]: 

𝐴𝑖𝑗 =∑(�̅�𝑖𝑗)𝑘
(ℎ𝑘 − ℎ𝑘−1)

𝑁

𝑘=1

 

𝐵𝑖𝑗 =
1

2
∑(�̅�𝑖𝑗)𝑘(ℎ𝑘

2 − ℎ𝑘−1
2)

𝑁

𝑘=1

 

𝐷𝑖𝑗 =
1

3
∑(�̅�𝑖𝑗)𝑘(ℎ𝑘

3 − ℎ𝑘−1
3)

𝑁

𝑘=1

 

𝐻𝑖𝑗 = 𝑘0∑(�̅�𝑖𝑗)𝑘
(ℎ𝑘 − ℎ𝑘−1)

𝑁

𝑘=1

 

(4) 

{

𝜀𝑥
0

𝜀𝜑
0

𝛾𝑥𝜑
0

} =

{
  
 

  
 

𝜕𝑢

𝜕𝑥
𝜕𝑣

𝑅𝜕𝜑
+
𝑤

𝑅
𝜕𝑢

𝑅𝜕𝜑
+
𝜕𝑣

𝜕𝑥}
  
 

  
 

 

{

𝜅𝑥
0

𝜅𝜑
0

𝜅𝑥𝜑
0

} =

{
  
 

  
 

𝜕𝛽𝑥
𝜕𝑥
𝜕𝛽𝜑

𝑅𝜕𝜑

𝜕𝛽𝑥
𝑅𝜕𝜑

+
𝜕𝛽𝜑

𝜕𝑥 }
  
 

  
 

 

{
𝛾𝑥𝑧
0

𝛾𝜑𝑧
0 } =

{
 

 𝛽𝑥 +
𝜕𝑤

𝜕𝑥

𝛽𝜑 +
𝜕𝑤

𝑅𝜕𝜑
−
𝑣

𝑅}
 

 
 

(5) 

𝑘0 equals 
𝜋2

12
 in the last portion of Eq. (4). Then 

[19]: 
�̅�11 = 𝑄11 𝑐𝑜𝑠

4 𝜃 + 2(𝑄12
+ 2𝑄66) 𝑠𝑖𝑛

2 𝜃 𝑐𝑜𝑠2 𝜃
+ 𝑄22 𝑠𝑖𝑛

4 𝜃 

�̅�12 = (𝑄11 + 𝑄22 − 4𝑄66) 𝑠𝑖𝑛
2 𝜃 𝑐𝑜𝑠2 𝜃

+ 𝑄12(𝑠𝑖𝑛
4 𝜃 + 𝑐𝑜𝑠4 𝜃) 

�̅�22 = 𝑄11 𝑠𝑖𝑛
4 𝜃 + 2(𝑄12

+ 2𝑄66) 𝑠𝑖𝑛
2 𝜃 𝑐𝑜𝑠2 𝜃

+ 𝑄22 𝑐𝑜𝑠
4 𝜃 

�̅�16 = (𝑄11 − 𝑄12 − 2𝑄66) 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠
3 𝜃

+ (𝑄12 − 𝑄22
+ 2𝑄66) 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛

3 𝜃 

�̅�26 = (𝑄11 − 𝑄12 − 2𝑄66) 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛
3 𝜃

+ (𝑄12 − 𝑄22
+ 2𝑄66) 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠

3 𝜃 

�̅�66 = (𝑄11 + 𝑄22 − 2𝑄12
− 2𝑄66) 𝑠𝑖𝑛

2 𝜃 𝑐𝑜𝑠2 𝜃
+ 𝑄66(𝑠𝑖𝑛

4 𝜃 + 𝑐𝑜𝑠4 𝜃) 

�̅�44 = 𝑄44𝑐𝑜𝑠
2 𝜃 + 𝑄55 𝑠𝑖𝑛

2 𝜃 

�̅�45 = (𝑄55 − 𝑄44) 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 

�̅�55 = 𝑄55𝑐𝑜𝑠
2 𝜃 + 𝑄44 𝑠𝑖𝑛

2 𝜃 

 

(6) 
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𝑄11 =
𝐸1

1 − 𝜈12𝜈21
 

𝑄12 =
𝜈12𝐸2

1 − 𝜈12𝜈21
 

𝑄22 =
𝐸2

1 − 𝜈12𝜈21
 

𝑄66 = 𝐺12 𝑄44 = 𝐺23 𝑄55 = 𝐺13 

 

3. Boundary Conditions 

The boundary conditions for the cylindrical 
shell with fully simply support are considered as 
[10]: 
𝑁𝑥(0, 𝜑, 𝑡) = 𝑁𝑥(𝐿, 𝜑, 𝑡) = 0 

𝑀𝑥(0, 𝜑, 𝑡) = 𝑀𝑥(𝐿, 𝜑, 𝑡) = 0 

𝑤(0, 𝜑, 𝑡) = 𝑤(𝐿, 𝜑, 𝑡) = 0 

𝑣(0, 𝜑, 𝑡) = 𝑣(𝐿, 𝜑, 𝑡) = 0 

(7) 

The external excitations are taken to be zero 
in order to solve the buckling and free vibration 
problems. After substituting Eq. (7) into the 
equations of motion, the results are simplified in 
the following form: 

[𝐿]{𝑈} = {0} (8) 

where: 

𝐿 =

[
 
 
 
 
𝐿11
𝐿21
𝐿31
𝐿41
𝐿51

𝐿12
𝐿22
𝐿32
𝐿42
𝐿52

𝐿13
𝐿23
𝐿33
𝐿43
𝐿53

    

𝐿14
𝐿24
𝐿34
𝐿44
𝐿54

𝐿15
𝐿25
𝐿35
𝐿45
𝐿55]

 
 
 
 

 

{𝑈} =

{
 
 

 
 
𝑢(𝑥, 𝜑, 𝑡)

𝑣(𝑥, 𝜑, 𝑡)

𝑤(𝑥, 𝜑, 𝑡)

𝛽𝑥(𝑥, 𝜑, 𝑡)

𝛽𝜑(𝑥, 𝜑, 𝑡)}
 
 

 
 

 

(9) 

All components of matrix L are expanded in 
the appendix segment. To satisfy the boundary 
conditions, u, v, w, 𝛽𝑥  and 𝛽𝜑 are defined by the 

following double Fourier series [7]: 
𝑢

=∑∑�̅�𝑚𝑛𝑇𝑚𝑛(𝑡)

𝑛𝑚

=∑∑𝐴𝑚𝑛 𝑐𝑜𝑠 (
𝑚𝜋𝑥

𝐿
) 𝑐𝑜𝑠(𝑛𝜑)𝑇𝑚𝑛(𝑡)

𝑛𝑚

 

𝑣

=∑∑�̅�𝑚𝑛𝑇𝑚𝑛(𝑡)

𝑛𝑚

=∑∑𝐵𝑚𝑛 𝑠𝑖𝑛 (
𝑚𝜋𝑥

𝐿
) 𝑠𝑖𝑛(𝑛𝜑)𝑇𝑚𝑛(𝑡)

𝑛𝑚

 

(10) 

𝑤

=∑∑𝐶�̅�𝑛𝑇𝑚𝑛(𝑡)

𝑛𝑚

=∑∑𝐶𝑚𝑛 𝑠𝑖𝑛 (
𝑚𝜋𝑥

𝐿
) 𝑐𝑜𝑠(𝑛𝜑)𝑇𝑚𝑛(𝑡)

𝑛𝑚

 

𝛽𝑥

=∑∑�̅�𝑚𝑛𝑇𝑚𝑛(𝑡)

𝑛𝑚

=∑∑𝐷𝑚𝑛 𝑐𝑜𝑠 (
𝑚𝜋𝑥

𝐿
) 𝑐𝑜𝑠(𝑛𝜑)𝑇𝑚𝑛(𝑡)

𝑛𝑚

 

𝛽𝜑

=∑∑�̅�𝑚𝑛𝑇𝑚𝑛(𝑡)

𝑛𝑚

=∑∑𝐸𝑚𝑛 𝑠𝑖𝑛 (
𝑚𝜋𝑥

𝐿
) 𝑠𝑖𝑛(𝑛𝜑)𝑇𝑚𝑛(𝑡)

𝑛𝑚

 

T is the function of time in the above 
equations. Also A, B, C, D and E are the constant 
coefficients of the natural mode shapes. Galerkin 
method is employed to solve the differential 
equations [6]. 

∫ ∫ ∫ (𝐿11𝑢 + 𝐿12𝑣 + 𝐿13𝑤 + 𝐿14𝛽𝑥

𝐿

0

2𝜋

0

𝑡

0

+ 𝐿15𝛽𝜑) 𝑐𝑜𝑠(𝑛𝜑)𝑑𝑥𝑑𝜑𝑑𝑡 = 0 

∫ ∫ ∫ (𝐿21𝑢 + 𝐿22𝑣 + 𝐿23𝑤 + 𝐿24𝛽𝑥

𝐿

0

2𝜋

0

𝑡

0

+ 𝐿25𝛽𝜑) sin(𝑛𝜑)𝑑𝑥𝑑𝜑𝑑𝑡 = 0 

∫ ∫ ∫ (𝐿31𝑢 + 𝐿32𝑣 + 𝐿33𝑤 + 𝐿34𝛽𝑥

𝐿

0

2𝜋

0

𝑡

0

+ 𝐿35𝛽𝜑) 𝑐𝑜𝑠(𝑛𝜑)𝑑𝑥𝑑𝜑𝑑𝑡 = 0 

∫ ∫ ∫ (𝐿41𝑢 + 𝐿42𝑣 + 𝐿43𝑤 + 𝐿44𝛽𝑥

𝐿

0

2𝜋

0

𝑡

0

+ 𝐿45𝛽𝜑) 𝑐𝑜𝑠(𝑛𝜑)𝑑𝑥𝑑𝜑𝑑𝑡 = 0 

∫ ∫ ∫ (𝐿51𝑢 + 𝐿52𝑣 + 𝐿53𝑤 + 𝐿54𝛽𝑥

𝐿

0

2𝜋

0

𝑡

0

+ 𝐿55𝛽𝜑) sin(𝑛𝜑)𝑑𝑥𝑑𝜑𝑑𝑡 = 0 

(11) 

4. Buckling Analysis 

In the buckling analysis, the material and the 
geometry of the shell are assumed to be perfect 
and no imperfection exists. To calculate the 
buckling load, the static solution is performed 
(i.e. T= 0). After Solving Eq. (8) by Galerkin 
method and its simplification, the following 
equation was obtained [5]: 

[𝐶𝑖𝑗]{𝐴𝑚𝑛 𝐵𝑚𝑛 𝐶𝑚𝑛 𝐷𝑚𝑛  𝐸𝑚𝑛}
𝑇

= 0  (𝑖, 𝑗 = 1,… ,5) (12) 

Determinant of the coefficients 𝐶𝑖𝑗  is set to be 

zero; thus, the buckling loads equation is derived 
as [5]: 
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𝛾1𝑁𝑐𝑟
2 + 𝛾2𝑁𝑐𝑟 + 𝛾3 = 0 (13) 

In Eq. (13), 𝛾𝑖  are the constant coefficients and 
𝑁𝑐𝑟  is the axial critical buckling load [5]. 

5. Free Vibration Analysis 

To solve the free vibration problem, the 
function of time is assumed as follows [5]: 

𝑇𝑚𝑛(𝑡) = 𝑒
−𝑖𝜔𝑚𝑛𝑡  (14) 

A method similar to the buckling analysis 
method is employed to be derived the following 
set of equations [5]: 

[[𝐾𝑖𝑗] −

𝜔𝑚𝑛
2 [𝑀𝑖𝑗]] {𝐴𝑚𝑛 𝐵𝑚𝑛  𝐶𝑚𝑛  𝐷𝑚𝑛  𝐸𝑚𝑛}

𝑇 = 0  

(𝑖, 𝑗 = 1,… ,5) 

(15) 

The determinant of the coefficients is set to be 
zero, thus the characteristic frequency equation 
is derived as [5]: 

𝛿1𝜔
10 + 𝛿2𝜔

8 + 𝛿3𝜔
6 + 𝛿4𝜔

4 + 𝛿5𝜔
2

+ 𝛿6𝜔 = 0 
 (16) 

where 𝛿𝑖 are the constant coefficients, after 
solving the Eq. (16), natural frequencies are 
calculated, and substitution of these frequencies 
in Eq. (15) infer the constant coefficients of the 
mode shapes [5]. 

6. Problem Formulation 

The following non-dimensionalized 
quantities are introduced to the all computations 
[8]: 

𝑁∗ =
𝑁𝑐𝑟
𝑁0

𝐹∗ =
𝑓𝑐𝑟
𝑓0

 (17) 

where 𝑁0 and 𝑓0 correspond to lamination angles 
(0°, 0°, 0°, 0°)𝑠𝑦𝑚 for eight layers. Maximization of 

the fundamental natural frequency and critical 
buckling load of the shell with the laminate 
configurations given by a combination of 𝜃, 0°, 
90° ply angles is considered as a optimization 
problem to find the best orientation angles of 
fibres in the laminated cylindrical shells. The 
objective function, OF, can be describes as follows 
[8]: 

OF = α𝐹∗ + β𝑁∗       (18) 

where 𝛼 and 𝛽 are the weighting factors which 
have following conditions 𝛼, 𝛽 ≥ 0, 𝛼 + 𝛽 = 1. As 
the first case, the single objective designs can be 
obtained as special cases by setting α=0 or α =1. 
As the second case, to equalize the effect of each 
component of the objective function formula 
(OF), α should be set to 0.5. Furthermore, α=0.25 
or α=0.75 provide a space between the first case 

and the second case. In this study, five laminate 
configurations are considered as candidate 
designs [8]. 

7. Verification and Numerical Result 

The material properties related to Fig. 2 are 
shown in Table 2. Fig. 2 indicates the comparison 
between the frequency results for a fully simply 
supported (SSSS) boundary condition of the shell 
for the present research and Ref. [6]. To ensure 
the accuracy of the model for buckling of the 
cylindrical shell, the buckling loads obtained by 
Ref. [5] was compared with the same results 
obtained by the present work. Table 4 shows the 
discrepancy between the results.  Table 3, shows 
the ply properties of the composites used in Table 
4 and Ref. [5]. As it is shown in Figs. 2 and Table 
4, the results are in good agreement. 

The numbers (m, n) in the parenthesis 
represent the buckling modes, i.e., number of 
axial half waves (m) and number of 
circumferential waves (n). 

Numerical results are given for 
graphite/epoxy material, and the laminated 
cylindrical shell is constructed of equal thickness 
layers. H/R = 0.2 and L/R = 1 are considered. 

Table 1. Laminate Configurations 

Prompt Laminate Configuration 

C1 (𝜃°, −𝜃°, 𝜃°, −𝜃°)
𝑠𝑦𝑚

 

C2 (𝜃°, −𝜃°, 90°, 0°)
𝑠𝑦𝑚

 

C3 (𝜃°, −𝜃°, 0°, 0°)
𝑠𝑦𝑚

 

C4 (𝜃°, 𝜃°, 0°, 90°)
𝑠𝑦𝑚

 

C5 (𝜃°, 𝜃°, 90°, 90°)
𝑠𝑦𝑚

 

 

 
Fig. 2 Comparison of variation of frequency with 

circumferential wave number for the SSSS composite 

cylindrical shell with Ref. [6],  ℎ 𝑅⁄ = 0.002, 𝐿 𝑅⁄ = 20, 

stacking sequence: [90/0/90] 
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Table 2. Relative material properties with Fig. 2 

𝐸11
(GPa)

 
𝐸22
(GPa)

 
𝐺12
(GPa)

 
𝐺13
(GPa)

 
𝐺23
(GPa)

 
𝜈12 𝜌

(
kg

m3)
 

19 7.6 4.1 4.1 4.1 0.26 1643 

Table 3. Ply properties of the composites used in Ref. [5] 

 
P

ly
 

T
h

ic
k

n
es

s 
(m

m
)

 
𝜈12 𝐺12

(GPa)
 
𝐸22
(GPa)

 
𝐸11
(GPa)

 

Graphite/Epoxy 
0.127 0.24 5.65 10.8 132 

Kevlar/Epoxy 
0.127 0.34 2.07 5.50 76.8 

E-glass/Epoxy 
0.127 0.26 4.14 8.27 38.6 

Table 4. Comparison between the results for buckling loads 
of a simply supported anisotropic cross-ply cylindrical shell 

with the lay up  [0/90]2𝑠 , 𝑅 = 0.2 

Configuration  Buckling Loads (KN/m) 

Material Ratio 
(L/R) 

 Present 
Study 

Ref. 
[5] 

Discripancy 
(%) 

Graphite/Epoxy 1  85.44 
(11,3) 

84.23 
(11,3) 

1.41 

 3  85.44 
(11,9) 

84.23 
(11,9) 

1.41 

Kevlar/Epoxy 1  41.09 
(10,3) 

39.38 
(10,3) 

4.16 

 2  40.62 
(10,5) 

38.96 
(10,5) 

4.08 

E-glass/Epoxy 1  43.72 
(12,3) 

42.97 
(12,3) 

1.71 

 3  43.72 
(12,9) 

42.97 
(12,9) 

1.71 

 

7.1. Effect of weighting ratios on the results 

The effect of five different weighting ratios on 
the optimal results is given for different five 
laminate configurations in Figs. 3 and 4 and Table 
5. As seen from Fig. 3 and 4, the best laminate 
configuration is C1 for all the quantities of 𝛼. The 
(OF)MAX is almost the same for C2, C3, C4, and C5 
laminate configurations, whereas C1 is 
completely different, and obtain the best quantity 
of OF 1.97 with Theta(𝜃) 39.43. As seen from Fig. 
3 and 4, as the weighting ratio increases, the 
(OF)MAX decreases for all the states. Overall C1 
displays the best result and maximized OF 
amongst other states. The best fiber angle in Fig. 
3 varies around 40. As mentioned above, the 
largest amount assigned to the objective function 
was 1.97. This value belonged to α=0. This truely 
indicate the greater importance and influence of 
natural frequency than critical buckling force. 
Therefore, the values and orientation angles of 
fiber that lead to the maximum values of the 
natural frequency will most definitely have the 
maximum values of the weight function. 

7.2. Effect of shell lengths on the results 

The effect of shell lengths on the optimal 
results is given in Fig. 5 for five laminate 
configurations. As seen from the figure, as the 
shell length increases, the OF decreases. Also, the 
best fiber angle decreases for all state’s despite of 
the rise of shell lengths, with the exception of C1. 
The optimum fiber angles and (OF)max are given 
for all laminate configurations for shell lengths in 
Table 6. 

7.3. Effect of shell thickness on the results 

The effect of shell thickness on the optimal 
results is given in Fig. 7 for five different laminate 
configurations. As seen from Fig. 7, as the shell 
thickness increases, the OF increases. Each case 
of the Fig. 7 clearly demonstrate an intersection 
between 70 deg and 80 deg. The best fiber 
orientation angles for all cases alters in 40 deg 
approximately. The optimum fiber angles and 
(OF)max are given for all laminate configurations 
for shell thickness in Table 7. 

8. Conclusions 

In this study, maximization of a weighted sum 
of the frequency and buckling load under external 
load for laminated composite circular cylindrical 
shell is investigated. Five shell configurations 
with eight layers are considered as candidate 
designs. The best design enjoys the highest 
quantity for OF, which equals to a weighted sum 
of the objectives non-dimensionalized quantities 
of the critical buckling force and the first natural 
frequency. 

Present results can lead designer to apply 
optimal laminate configuration which can be 
functional in an acceptable manner. The effect of 
different weighting ratios, length, and thickness 
on the optimal results are investigated. Graphs, 
demonstrating the relation of the fiber angle with 
OF, illustrate that the maximum OF occurs at a 
specific value of the fiber angle and this value can 
be several times higher than the OF at other fiber 
angles. This fact emphasizes the importance of 
optimization in modern design to obtain the best 
performance of laminated composite shells. 
Eventually, it can be said that the fundamental 
frequency generally has a more significant effect 
than the buckling load on the maximum OF, and 
the weighting ratio generally has not a marked 
effect on the fiber angles. 

Nomenclature 

𝑅 Radius, (mm) 
𝐿 Length, (mm) 
𝐻 Thickness, (mm) 
𝑢, 𝑣, 𝑤 Displacement components in the 

axial, tangential and radial directions 
𝑞𝑥, 𝑞𝜑, 𝑞𝑟  External forces 
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𝑚𝑥 𝑚𝜑, External moments 
𝑁𝑥, 𝑁𝜑,𝑁𝑥𝜑 Internal forces 
𝑀𝑥, 𝑀𝜑,𝑀𝑥𝜑 Internal moments 
𝑄𝑥, 𝑄𝜑 Shear forces 
 𝐼1, 𝐼2, 𝐼3 Moment of Inertia, (mm4) 

𝐴, 𝐵, 𝐷, 𝐻 Extensional, coupling, bending and 
thickness shear stiffness matrices 

𝑘0 Shear correction factor 

 

 

  

  

 

Fig. 3 The dependence of the OF (Objective Function) on fibre angle for five different laminate configurations 

Table. 5 The best configurations and (Objective Function) MAX of the five different candidates for weighting ratios 

Laminate 𝜃𝑜𝑝𝑡(°)  (OF)MAX 

Configuratio
n 

𝛼 = 0 𝛼 = 0.25 𝛼 = 0.5 𝛼 = 0.75 𝛼 = 1  𝛼 = 0 𝛼 = 0.25 𝛼 = 0.5 𝛼 = 0.75 𝛼 = 1 

C1 39.43 39.43 39.43 39.43 39.43  1.97 1.83 1.68 1.54 1.40 

C2 40.44 40.44 39.43 39.43 39.43  1.69 1.59 1.49 1.40 1.30 

C3 47.52 47.52 47.52 47.52 47.52  1.71 1.61 1.51 1.41 1.31 

C4 39.43 39.43 38.42 38.42 38.42  1.70 1.60 1.50 1.40 1.31 

C5 38.42 38.42 38.42 38.42 37.41  1.61 1.53 1.44 1.35 1.26 
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Fig. 4 The dependence of the OF (Objective Function) on fibre angle for different weighting ratios 

Table. 6 The best configurations and (Objective Function) MAX of the five different candidates for L/R ratio 

Laminate 𝜃𝑜𝑝𝑡(°)  (OF)MAX 

Configuration 𝐿/𝑅 = 2 𝐿/𝑅 = 4 𝐿/𝑅 = 6 𝐿/𝑅 = 8  𝐿/𝑅 = 2 𝐿/𝑅 = 4 𝐿/𝑅 = 6 𝐿/𝑅 = 8 

C1 32.06 34.25 37.04 40.08  1.86 1.84 1.81 1.77 

C2 59.02 46.2 45.81 40.04  1.98 1.86 1.74 1.63 

C3 59.51 48.14 47.71 47.54  1.99 1.89 1.78 1.64 

C4 59.78 47.31 48.62 45.05  1.94 1.83 1.73 1.61 

C5 44.23 44.54 43.89 40.14  1.83 1.73 1.62 1.54 

 



R. Ashrafian, A. Ghoddosian / Mechanics of Advanced Composite Structures 8 (2021) 87-98 

95 

  

  

 

Fig. 5 Effect of shell length on the optimal results for different five laminate configurations (H/R = 0.2, α = 0.5). 

Table. 7 The best configurations and (Objective Function) MAX of the five different candidates for H/R ratio 

Laminate 𝜃𝑜𝑝𝑡(°)  (OF)MAX 

Confiruration 𝐻/𝑅 = 0.4 
 

𝐻/𝑅 = 0.35 𝐻/𝑅 = 0.30 𝐻/𝑅 = 0.25  𝐻/𝑅 = 0.4 𝐻/𝑅 = 0.35 𝐻/𝑅 = 0.30 𝐻/𝑅 = 0.25 

C1 39.52 38.17 36.24 32.26  1.48 1.39 1.34 1.30 

C2 40 41.48 40.04 38.2  1.37 1.30 1.26 1.23 

C3 47.54 44.48 45.14 41.58  1.39 1.32 1.27 1.25 

C4 40.09 42.29 41.48 41.28  1.37 1.31 1.26 1.23 

C5 39.43 35.61 35.23 34.16  1.32 1.26 1.22 1.20 

 
�̅� Transformed stiffness matrix 
𝑀 Number of axial half waves 
𝑁 Number of circumferential waves 
𝐾 Stiffness Matrix 
𝑀 Mass Matrix 
𝑁0   Axial critical buckling load, (KN/m) 
𝑓0 Fundamental frequency, (Hz) 

𝛽𝑥 𝛽𝜑, Slopes in planes x-z and 𝜑-z 
𝜌𝑘 Density for each layer, (kgm-3) 

𝜀𝑥
0, 𝜀𝜑

0 , 𝛾𝑥𝜑
0   Mid-surface engineering strains 

𝛾𝑥𝑧
0 , 𝛾𝜑𝑧

0   Transverse shear strains 
𝜅𝑥
0, 𝜅𝜑0 , 𝜅𝑥𝜑0  Curvature and twist of the shell 
𝜔𝑚𝑛 Natural frequency, (Hz) 
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Fig. 6 Effect of shell thickness on the optimal results for different five laminate configurations (L/R = 1, α = 0.5). 

 

Appendix 

𝐿11 = 𝐴11
𝜕2

𝜕𝑥2
+
2𝐴16
𝑅

𝜕2

𝜕𝑥𝜕𝜑
+
𝐴66
𝑅2

𝜕2

𝜕𝜑2
 

𝐿12 = 𝐿21 = 𝐴16
𝜕2

𝜕𝑥2
+ (

𝐴12 + 𝐴66
𝑅

)
𝜕2

𝜕𝑥𝜕𝜑

+
𝐴26
𝑅2

𝜕2

𝜕𝜑2
 

𝐿13 = −𝐿31 =
𝐴12
𝑅

𝜕

𝜕𝑥
+
𝐴26
𝑅2

𝜕

𝜕𝜑
 

𝐿14 = 𝐿41 = 𝐵11
𝜕2

𝜕𝑥2
+ (

2𝐵16
𝑅
)
𝜕2

𝜕𝑥𝜕𝜑
+
𝐵66
𝑅2

𝜕2

𝜕𝜑2
 

𝐿15 = 𝐿51 = 𝐵16
𝜕2

𝜕𝑥2
+ (

𝐵12 + 𝐵66
𝑅

)
𝜕2

𝜕𝑥𝜕𝜑

+
𝐵26
𝑅2

𝜕2

𝜕𝜑2
 

𝐿22 = (𝐴66 +𝑁𝑎)
𝜕2

𝜕𝑥2
+ (

2𝐴26
𝑅
)
𝜕2

𝜕𝑥𝜕𝜑
+
𝐴22
𝑅2

𝜕2

𝜕𝜑2

−
𝐻44
𝑅2

 

𝐿23 = −𝐿32 =
𝐴26 + 𝐻45

𝑅

𝜕

𝜕𝑥
+
𝐴22 + 𝐻44

𝑅2
𝜕

𝜕𝜑
 

𝐿24 = 𝐿42 = 𝐵16
𝜕2

𝜕𝑥2
+ (

𝐵12 + 𝐵66
𝑅

)
𝜕2

𝜕𝑥𝜕𝜑

+
𝐵26
𝑅2

𝜕2

𝜕𝜑2
+
𝐻45
𝑅
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𝐿25 = 𝐿52 = 𝐵66
𝜕2

𝜕𝑥2
+ (

2𝐵26
𝑅
)
𝜕2

𝜕𝑥𝜕𝜑
+
𝐵22
𝑅2

𝜕2

𝜕𝜑2

+
𝐻44
𝑅

 

𝐿33 = (𝐻55 +𝑁𝑎)
𝜕2

𝜕𝑥2
+ (

2𝐻45
𝑅

)
𝜕2

𝜕𝑥𝜕𝜑
+
𝐻44
𝑅2

𝜕2

𝜕𝜑2

−
𝐴22
𝑅2

 

𝐿34 = 𝐿43 = (𝐻55 −
𝐵12
𝑅
)
𝜕

𝜕𝑥
+ (

𝐻45
𝑅
−
𝐵26
𝑅2
)
𝜕

𝜕𝜑
 

𝐿35 = −𝐿53 = (𝐻45 −
𝐵26
𝑅
)
𝜕

𝜕𝑥
+ (

𝐻44
𝑅
−
𝐵22
𝑅2
)
𝜕

𝜕𝜑
 

𝐿44 = 𝐷11
𝜕2

𝜕𝑥2
+ (

2𝐷16
𝑅
)
𝜕2

𝜕𝑥𝜕𝜑
+
𝐷66
𝑅2

𝜕2

𝜕𝜑2
− 𝐻55 

𝐿45 = 𝐿54 = 𝐷16
𝜕2

𝜕𝑥2
+ (

𝐷12 + 𝐷66
𝑅

)
𝜕2

𝜕𝑥𝜕𝜑

+
𝐷26
𝑅2

𝜕2

𝜕𝜑2
−𝐻45 

𝐿55 = 𝐷66
𝜕2

𝜕𝑥2
+ (

2𝐷26
𝑅
)
𝜕2

𝜕𝑥𝜕𝜑
+
𝐷22
𝑅2

𝜕2

𝜕𝜑2
− 𝐻44 
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