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In this study, an analytical solution is presented based on the voltage feedback control 

method for the two-dimensional electro-elastic static response of functionally graded 

piezoelectric material (FGPM) cylinders. Using first-order shear deformation theory as 

well as first-order electric potential theory and applying the energy method, a differential 

equations system is extracted, which is solved as a classical eigenvalue problem. The 

results show the significant impact of heterogeneity on the electromechanical behavior of 

the cylinders. Furthermore, control gain affects the electric potential and 

electromechanical behavior of the head where the voltage is applied. The present research 

also introduces an analytical solution with no limitation to specific conditions in cylinder 

heads and without any need for convergence check. Moreover, the results show that any 

changes in cylinder head conditions affect the behavior of FGPM cylinders. The results 

were compared with those from the finite element method (FEM), leading us to a 

reasonable agreement. 

1. Introduction 

Nowadays, researchers are looking for 
materials that, in addition to being endowed with 
such features as constructional suitableness like 
low weight and high strength among others, 
would have other desirable properties with a 
view to a new revolution in structures, 
mechanical devices and equipment. Piezoelectric 
materials are substances in which electric fields 
are deformed or their deformation makes electric 
field in them. Piezoelectric materials can be 
considered as smart materials because the 
electromechanical behavior of these materials 
enables them to be used as sensors, actuators or 
active controllers of the structure. In order to 
improve the structures, the idea of functionally 
graded materials (FGMs) or heterogeneous 
materials was developed, which led to improved 
distribution properties changes. Such materials 
can prove to have better continuity and integrity 
properties than conventional composite 
materials, and their stresses and changes can 
have a continuous state which leads to an 
increase in the material strength. Therefore, 

researchers have focused on the behavior of 
structures with these materials by studying their 
behavior from different perspectives. Among the 
various structures, shells are of particular 
importance mainly due to the high efficiency of 
their behavior against load bearing. Many 
examples of these types of structures, such as 
dome roofs, tankers, fluid storage tanks, nuclear 
reactors, projectiles, missiles, etc., are found in 
artificial systems made by humans. These 
samples are also found in natural systems, for 
example, in skulls, shells and bones among 
others. These samples represent merely a limited 
portion of the extensive use of shells in natural 
and artificial systems [1, 2]. Among diverse shell 
geometries, cylinders have attracted researchers 
the most due to their high rate of usage and easy 
construction. That is why a section is dedicated to 
them in most curriculums and we review it in the 
relevant literature that follows.  

Dai et al. in 2010 [3] obtained a 
heterogeneous electro-thermo-magneto-elastic 
analysis using the plane elasticity theory (PET). 
They considered the heterogeneity of the 
distribution of properties in the cylinder in an 
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exponential state. In their study, the heat transfer 
and electrostatic equilibrium were considered as 
one-dimensional and in radial direction. It was 
also assumed that the cylinder is in the uniform 
magnetic field located in the direction of its axis. 
That led to the creation of heterogeneous 
differential equations. By solving these equations 
and applying boundary conditions, they studied 
the electro-thermo-elastic behavior of the 
cylinder under electro-thermo-elastic loading. In 
the same year, Ghannad and Zamani-Nejad [4] 
analyzed the homogeneous double-headed 
clamped cylinder under internal pressure using 
First-Order Shear Deformation Theory (FSDT) 
and studied the shear stress in the cylinder. They 
showed that in areas far from the boundaries of 
the two cylinder’s heads the shear stress tends to 
zero, causing stresses and displacements to be 
only a function of cylinder radius, while at the 
boundary it is a function of the radius and length 
of the cylinder. They also observed that at points 
far from the boundary, there is a good agreement 
between the theory of shear deformation and the 
plane elasticity. Ghorbanpour Arani et al. [5] 
presented an exact solution for an axisymmetric 
functionally graded piezoelectric (FGP) rotating 
disk with constant thickness subjected to an 
electric field and thermal gradient. Using PET, a 
nonhomogeneous second order differential 
equation is derived and solved. 

In 2012, Ghannad and Zamani-Nejad [6], 
using the theory of plane elasticity and the 
definition of structural relationships in general 
state (plane stress and plane strain), obtained a 
complete solution to the heterogeneous thick 
wall cylinders that were under internal and 
external pressure. They considered the 
heterogeneity of properties for the elasticity 
modulus as the exponential state and assumed 
that the Poisson coefficient was constant. They 
also showed that in order to increase or decrease 
stress and displacement, positive or negative 
values should be taken for the heterogeneity 
constant. Also, they [7] analyzed the 
heterogeneous thick wall cylinders that were 
subjected to internal and external pressure, using 
the shear deformation theory. 

In 2013, Dai and Jiang [8] investigated the 
electro-magneto-thermo-elastic behavior of a 
FGP solid cylinder. The solid cylinder was located 
in a uniform magnetic field and subjected to a 
thermal load, electric excitation, and pressure in 
the outer layer. Using long cylinder assumption 
(plane strain condition) and regardless of the end 
effects of the FGPM solid cylinder, they presented 
an analytical solution for the problem and 
studied the heterogeneity of properties effects on 
electro-magneto-thermo-elastic behavior. 
Kargarnovin et al. [9] presented the exact planar 
solution for electro-elastic analysis of FGP 

structures under thermo-electro-mechanical 
loadings. The material properties were assumed 
to vary exponentially along the thickness. 
Exploiting the potential functions for stress and 
induction, the solution was obtained in a closed 
form manner. The influence of material 
heterogeneity was examined against the electro-
elastic reaction of the FGP media.  

In 2014 and 2015, Ghannad and Gharooni [10-
11], using the first-order shear deformation 
theory and higher-order, achieved the 
displacements field and stresses in the 
heterogeneous cylinder whose properties 
changed as an exponential function under 
internal and external pressure. Khorshidi and 
Bakhsheshy analyzed the Free Natural Frequency 
of an FG Composite Rectangular Plate Coupled 
with Fluid using Rayleigh–Ritz Method [12]. In 
this research, the influence of the main 
parameters of the problem on wet natural 
frequencies is discussed. Dynamic elasticity 
solution for a clamped, laminated cylindrical shell 
with two orthotropic layers bounded with a 
piezoelectric layer and subjected to impulse load 
distributed on inner surface was presented by 
Saviz [13].  

Jabbari and Aghdam in 2015 [14] conducted 
the thermo-elastic analysis of three-layered 
cylinders, consisting of two piezoelectric 
homogeneous cylinders and a heterogeneous 
cylinder. Using PET, the governing differential 
equations of the problem at plane strain state and 
based on one-dimensional thermal hypothesis 
are solved. The impact of heterogeneity of 
properties and control of the mechanical 
behavior of the cylinder by piezoelectric layers 
was observed. A free vibration analysis of the FG 
rectangular nanoplates is investigated by 
Khorshidi et al. [15]. Nonlocal elasticity theory is 
employed and the effect of transverse shear 
deformation and rotary inertia is investigated by 
the exponential shear deformation theory. The 
effect of various parameters including nonlocal 
parameters and power law indexes on natural 
frequencies is studied.  

Atrian et al., in 2015 [16] obtained a thermo-
elastic analysis of piezoelectric heterogeneous 
cylinders that were axial-asymmetrically loaded. 
The electro-thermo-elastic behavior of the 
heterogeneous thick wall cylinder was 
investigated in two dimensions and in the radial 
and circumferential directions. The 
heterogeneity of the properties was modeled as 
an exponential function that was changed in the 
radial direction. In this study, the effect of 
heterogeneity and the effect of electro-thermo-
elastic loading on heterogeneous cylinder 
behavior was investigated. The active forced 
vibration control of circular plates coupled with 
piezoelectric layers and laminated composite 
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rectangular plate resting on linear line support is 
presented by [17] and [18], respectively. The 
results of this research show that by applying 
control force at the plates, the amplitude of 
transverse deformation will be controlled and 
reduced. 

Loghman and Parsa [19] using PET, extracted 
a closed form solution for the electro-magneto-
thermo-elastic response to a thick double-
layered cylinder made from a homogeneous 
interlayer and an FGPM outer layer. Ghannad and 
Parhizkar Yaghoobi in 2015 and 2017 presented 
the two-dimensional thermo-elasticity solution 
of homogeneous and heterogeneous thick wall 
cylinders that were placed under their 
thermomechanical loading on the inner and outer 
layers for different boundary conditions in two 
cylindrical heads [20-21]. Using the energy 
method and the first order shear deformation 
theory and assuming linear variations of the 
thermal field along the thickness, they obtained 
the system of governing equations. In their study, 
the effects of different boundary conditions on 
thermoelastic behavior of homogeneous and 
heterogeneous cylinders were studied. Arefi et al. 
[22] presented an analytical method for the 
three-dimensional free vibration analysis of an 
FG cylindrical shell integrated by two thin FGP 
layers. The FSDT and quadratic forms 
formulation are used for the displacement field 
and electric potential, respectively. Using the 
energy method and considering the von Karman 
nonlinear strain-displacement relations, the 
equations of motion are derived. In this research 
the effects of the non-homogeneity of materials 
and geometry on natural frequency are studied. 
The size-dependent free vibration analysis of a 
sandwich nanoplate is studied by Arefi and 
Zenkour [23]. In this paper, the governing 
equation are derived using FSDT and a cosine 
form for electric potential distributions. The 
influence of important parameters of the 
problem such as the applied electric, magnetic 
potentials, etc. on the vibration characteristics of 
the sandwich nanoplate are discussed. 

The exact closed-form solution for sound 
radiation of vibrating circular plates coupled with 
piezo-electric layers is presented by [24]. In this 
paper, the effect of boundary conditions, piezo-
electric thickness, and the piezoelectric layer on 
the acoustical parameters was examined and 
discussed in details. Using differential 
quadrature method (DQM), static analysis of FG 
solid circular and annular plates integrated with 
piezoelectric layers was performed by Alibeigloo 
[25]. It was assumed that the plate has various 
edge boundary conditions and whose material 
properties vary in an exponential law across the 
thickness. The effects of material heterogeneity, 
geometry parameter, and various boundary 

conditions on the response of FG structures were 
studied. Mehditabar et al. [26] conducted 
research on the thermos-elasticity analysis FGP 
rotating hollow cylindrical shell subjected to 
dynamic loads. The material properties were 
varied in radial direction of cylinder by a power 
function. Using DQM and finite difference 
methods, the solution of boundary/initial value 
equations of the problem are provided. Free 
vibrations of composite rectangular piezoelectric 
nanoplate using modified shear deformation 
theories are analyzed by Khorshidi et al. [27]. The 
governing equations are derived based on the 
energy method and using the exponential shear 
deformation and trigonometric shear 
deformation theories. The effect of small scale 
and geometry parameters on the natural 
frequency of composite rectangular piezoelectric 
nanoplate is studied. 

Parhizkar Yaghoobi et al. [28] in 2018 
performed a longitudinal piezoelectric 
heterogeneous cylinder (plane strain state) and 
thin piezoelectric heterogeneous discs (plane 
stress states) analysis of stress and active control 
analysis. In their research, they assumed that the 
internal surface of the structure is like a sensor 
and its external surface is like an actuator, and is 
based on the method of solving the Lame. They 
finally provided an exact one-dimensional 
solution (in radial direction). The effect of 
heterogeneity constant and control coefficient 
factor on the electro-thermomechanical behavior 
are studied. Arefi and Bidgoli [29] presented 
electro-elastic analysis of the piezoelectric 
doubly curved shells resting on Winkler's 
foundation subjected to applied voltage. Using 
the energy method and the first order shear 
deformation theory, they derived the system of 
governing equations. The influence of important 
parameters such as applied electric potential and 
Winkler’s parameter were investigated on the 
electro-elastic behaviors of the structure. 

Creep stress and strain in Laminated 
Composite Pressure Vessels are analyzed by 
Ghasemi and Hosseinpour [30]. The classical 
lamination theory is used to derive the governing 
equations as a second-order equation to 
determine the radial, circumferential, axial, and 
effective stresses in the cylinder wall. The effect 
of orientation of fibers on creep strain 
distribution in the wall of a cylinder is studied. 
The two-dimensional electro-elastic analysis of 
FG carbon nanotubes reinforced composite 
cylindrical pressure vessels integrated with 
piezoelectric face-sheets as sensor and actuator 
is extracted by Arefi et al. [31]. The governing 
equations of the problem are derived based on 
the principle of virtual work. Using the classical 
eigenvalue-eigenvector method the problem is 
solved and the electro-elastic behavior of the 
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structure is studied. Also, the effect of 
characteristics and distribution of porosity on the 
electro-elastic behavior of laminated vessels with 
piezoelectric face-sheets based on higher order 
modeling is analyzed by Arefi et al. [32].   

The electro-elastic analysis of FG carbon 
nanotubes reinforced composite cylindrical 
shells with piezoelectric layers based on third-
order shear deformation theory is done by 
Mohammadi et al. [33]. Using the classical 
method, the analytical solution for the problem is 
obtained and the results are discussed. The 
thermo-magneto-mechanical long-term creep 
behavior of three-phase nano-composite cylinder 
is investigated by Ghasemi and Hosseinpour [34]. 
The results show that the values of creep strain 
and radial displacement in the magnetic field are 
lower than without a magnetic field, for two lay-
ups. Also, the effects of the magnetic field in the 
creep behavior of three-phase laminated 
composite cylindrical shells are analyzed by [35]. 
It was found that temperature increase in the 
magnetic field is less effective on the in-creased 
values of creep strain and radial displacement. 
The fluid-structure interaction of vibrating 
composite piezoelectric plates is investigated by 
Khorshidi and Karimi [36]. The governing 
equations are derived based on Hamilton’s 
principle and using the exponential shear 
deformation theory and a cosine form for electric 
potential distributions. The natural frequencies 
of the fluid-structure system are computed using 
the Galerkin method and the influence of the 
main variables on natural frequencies are 
discussed. 

 Considering the literature background of the 
subject, it seems that the problem of two-
dimensional solution of the electro-elasticity 
static response of FG thick wall cylinders in the 
general case of boundary conditions with a 
voltage feedback control method has not been 
taken into account, and electro-elastic analysis 
has been achieved only in limited cases with 
simplification in the boundary conditions. For 
this reason, using the first-order shear 
deformation theory, first-order electric potential 
theory and applying the energy method the 
governing equations to heterogeneous cylinders 
that are under electromechanical loading are 
obtained under arbitrary electromechanical 
boundary conditions with a voltage feedback 
control method. The governing equilibrium 
equations are arranged in the form of a set of 
ordinary differential equations, which are solved 
by analytical method. By applying arbitrary 
electromechanical boundary conditions with a 
voltage feedback control method in the two 
cylinder’s heads, the analytical constants of 
ordinary differential equations system are 
obtained and the numerical results for the 

cylinder are shown under two different boundary 
conditions. These results are compared with the 
results of FEM. 

2. Formulation and Derivation of 
Governing Equations 

The analyzed cylindrical shell is axial 
symmetry in terms of geometry, properties, 
loading, and boundary conditions, and it is 
possible to neglect changes in the circumferential 

direction ( ( ) 0



=


); therefore, the functions 

representing the mechanical and electrical 
behavior are only a function of the radius r and 
the x axis of the cylinder. 

According to what was stated, the 
displacement field in this case is as follows.  

( , )

0

( , )

r r

x x

u u r x

u

u u r x



=

=

=

 (1) 

ru , u  and xu  are the displacement 

components in radial, circumferential, and axial 
directions, and ( , )ru r x  and ( , )xu r x  are a 

function of cylinder radius and axis. 
The studied cylindrical shell has a continuous 

wall and is made of heterogeneous and 
transversely isotropic materials, whose material 
property in the radial direction is different from 
the two other directions. The heterogeneity of 
properties in this research is considered as a 
power state similar to [7], and using the 
relationship (2) the heterogeneous modeling of 
properties for analysis is presented.  

( )

Pr

Pr

n

n

i i

i

r
Pr r Pr Pr r

r

 
= = 

 

 (2) 

In the above relations ir  is the internal radius 

of the cylinder and iPr  is the property of the 

material in the inner layer of the cylinder, which 
can have mechanical and electrical properties 
such as modulus of elasticity, density, Poisson 
ratio, piezoelectric constants and dielectric 
stability constants. Prn  in Eq. (2) above is the 

heterogeneity constant for property; the 
heterogeneity constant can take positive and 
negative real values. It is noteworthy that 0Prn =  

denotes the homogeneous materials. 
To use the first-order shear deformation 

theory, as shown in Fig. 1, the distance between 
each point of the cylindrical shell to its axis of 
symmetry r ranges is expressed as its distance to 
the midline of the cylinder z plus the distance 
from the middle layer to the cylinder R symmetry 
axis. This work causes the coordinate change the 
differential component from r to z (dr,(r,θ,x)→
dz,(r,θ,x)) [7]. 
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Fig. 1. Schematic of geometry and cross section of FGPM 

cylinder. 

Given what has been said, we have. 

2

o i

o i
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= +

+
=

= −

 
(3) 

Also, for z and x variations we have: 

2 2

0

h h
z

x L

−  

 

 (4) 

The displacement field for axial symmetric 
cylinder is described using the first order shear 
deformation theory as follows [7]. 

0 1 0 1

0 1 0 1

( , ) ( ) ( )

0

( , ) ( ) ( )

z z z z z z

x x x x x x

U U z x U x zU x U zU

U

U U z x U x zU x U zU



= = + = +

=

= = + = +

 (5) 

In the above relation, zU , U  and xU  are the 

components of the displacement field along 
radial, circumferential and axial directions; also, 
according to the shear deformation theory, 0

zU  

and 1

zU  have zero-order and one-order 

components of radial displacement, respectively 
and 0

xU  and 1

xU  are zero-order and one-order 

components of axial displacement, respectively 
which are only a function of axial coordination. 

Also, using the first-order electric potential 
we have [37]. 

0 1 0 1( , ) ( ) ( )z x x z x z     = = + = +  (6) 

Where 0  and 1  are respectively zero-order 

and first- order electric potentials, which are the 
only functions of the x-axis coordination. 

The electric field and strain field are extracted 
using gradient relationships in the cylindrical 
coordinates [37] and the relations (5) and (6). 

1
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(7) 

z ,   and 
x  are radial, circumferential, and 

axial normal strains respectively. Also, 
zx  is the 

radial-axial shear strain. 
1

0 1

0

d d

d d

z

x

E

E

E z
x x





 

= −

=

= − −

 
(8) 

zE , E  and 
xE  are the components of the 

electric field in the radial, circumferential and 
axial directions respectively. The constitutive 
equations are expressed as follows [38]. 
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(9) 

In Eq. (9), 
z ,  , and 

x  are radial, 

circumferential and axial normal stresses 
respectively, 

zx  is the radial-axial shear stress, 

and Dz and Dx are the components of the electric 
displacement vector in radial direction and axial 
directions respectively. Also, c11, c12, c22, c23, and 
c55 are the elastic constants e11, e12, and e35 are 
piezoelectric-stress constants and 11  and 22  

are the dielectric constants in the above-
mentioned relationship. 

For heterogeneity modeling in properties, the 
relationship (2) or power distribution is used, 
and the properties used in the structural relation 
(9) are modeled in an exponential state. So we 
will have. 

11 11 12 12 22 22 23 23 55 55

11 11 12 12 35 35

11 11 22 22

; ; ; ;

; ; ;

; ;

n n n n n

i i i i i

n n n

i i i
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c c r c c r c c r c c r c c r

e e r e e r e e r

r r

= = = = =

= = =

 =  =

 (10) 

In the relation (10) c11i, c12i, c22i, c23i, and c55i 
are the elastic constants values, e11i, e12i, e35i are 
the piezoelectric-stress constants and 11i  and 

22i  are the values of dielectric constants in the 

heterogeneous inner cylinder and n is the 
heterogeneity constant. 
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Fig. 2. FGPM cylinder cross section under loading on inner 
and outer surfaces. 
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Figure 2 shows the cross-section of a 
heterogeneous cylinder that is 
electromechanically loaded at its internal and 
external surfaces. As can be seen, the pressure Pi 
and the electric charge density Qi are applied to 
the cylinder inner surface and the pressure Po and 
the electric charge density Qo are applied to the 
outer surface of the cylinder. 

Mechanical and electrical resultants are 
defined as follows. 

/ 2

/ 2
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Based on the principle of virtual work, energy 
changes in the electromechanical potential of the 
structure are equal to the variation of work due 
to external forces applied to the structure δw=δU 
[37, 39-40] where U is the total 
electromechanical energy of the whole body and 
W is the whole work due to the applied of the 
pressure and electrical charge density on the 
inner and outer surfaces of the cylinder. The 
energy of electromechanical potential of the 
whole body and the work resulting from these 
forces are calculated as follows. 
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In Eq. (17) the physical interpretation of the 

terms 
i o

i or r r r
Q Q 

= =
− −  are the electrical work  

done after applying the electrical surface charge 
density on the inner and outer surfaces of the 
cylinder respectively. 

For work and energy changes, we have: 
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(18) 

By substituting the Eqs. (7-9) in (18), the 
application of the principle of virtual work and 
performing mathematical operations and 

simplifying, the system of governing equations is 
obtained as follows. 
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(19) 

Also, for boundary conditions we have: 

0 1 0 1 0 1 1

0,
[ ] 0m m m m

x x x x x z zx z x x L
N U M U Q U M U D D     + + + + + =  (20) 

3. Analytical Solution of FGM 
Piezoelectric Cylinders 

In this section an analytical solution for the 
equation system (19) is presented. As shown in 
the system of Equations (19), mechanical and 
electrical resultants are more numerous than the 
equations. Therefore, it is not possible to solve 
the system of equations (19) on the basis of 
resultants, and the equations (19) must be 
expressed on the basis of displacement field (4 
unknown components) and electric potential (2 
unknown components) so that they would be 
solved. Thus, using the relations (11) to (15) 
(definition of mechanical and electrical 
resultants) and the relations (5) to (10) and 
applying mathematical operations, the governing 
equations system is rewritten as equations (21) 
based on the displacement field and electric 
potential components. So we will have: 

 

2 2
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
= +



 
(21) 

Where 6 6A  , 6 6B  , and 6 6C   are the coefficients 

matrices and 6 1F  and 6 1y   are respectively 

electromechanical force quasi-vector and 
electromechanical quasi-vector, whose non-zero 
components are defined and presented in 
Appendix A. Moreover, the "T" superscript shows 
the transpose of quasi-vector. K9 and K10 are 
solved constants created by integrating the first 
and fifth equations of governing Eq. (19), and F3 
to F6 are presented in Appendix A. Solving this 
equation’s system consists of two parts; 
particular solving section 

py  and general solving 

section 
gy . 
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g py y y= +  (22) 

3.1. Particular Solution 

As can be seen from Eq. (21), the 
heterogeneous part of the differential equation 
system is a first-order polynomial. Therefore, 
solving a particular part is considered as a first-
order polynomial with non-definite coefficients. 
Therefore, we have: 

1 0p py y x y= +  (23) 

These indefinite (unknown) coefficients 
become definite (known) as follows. 

 
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−

−

= 

=  −

 (24) 

3.2. General Solution 

To solve the general problem, the equation 
system should be solved in the following form. 

2 2

2 2

d d d
0

d d d
A y B y C y

x x x
+ + =  (25) 

The general solution is considered in the 
following form. 

emx

gy =  (26) 

The general solution form of (26) is valid for 
Equation (21) when the coefficients matrix C 
does not have zero rows or columns. For this 
purpose, in deriving equations (21), the first and 
fifth equations of the system of equations (19) 
have been integrated. Furthermore, in defining 
the electromechanical quasi-vector, instead of 
zero-order axial displacement component and 
zero-order component of electric potential, their 
derivatives have been used. 

By substituting the relation 26 in equation 25, 
the eigenvalue problem is obtained. 

( )2 e 0mxAm Bm C + + =  (27) 

To this end, the determinant of the Eq. (27) 
must be set to zero. 

( )2det 0Am Bm C+ + =  (28) 

By solving the above eigenvalue problem 
whose eigenvalue equation is an eight-order one 
and by finding eigenvalue vectors, the following 
general solution is obtained. 

8

1

e im x

g i

i

y K 
=

=  (29) 

Therefore, the solution of the system of 
equations (21) is obtained. 
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x x


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 
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 
  (30) 

Given that (30) yields the obtained solution 
for the derivatives of the functions 0

xU  and 0 , in 

order to obtain these functions, it is necessary to 
integrate the proposed solution for the derivation 
of these functions, in which case the constants K11 
and K12 are obtained. Now these boundary 
constants are obtained by applying boundary 
conditions in the two cylinder heads. 

3.3. Boundary Conditions 

In this section, an adaptive voltage feedback 
control method is applied to supply control 
voltage for activating the voltage in the upper 
cylinder head. It is assumed that the voltage of 
lower cylinder head ( ( ,0)L z = ) that is without 

electrical surface charge is measured by the 
embedded voltage sensor and fed back to the 
upper cylinder head as a control voltage by the 
controller. The control voltage used for operating 
the upper cylinder head is proportional to the 
voltage of lower cylinder head with a control gain 
(control factor) Cf and may be expressed as 
follows [14, 28, 41]. 

0 0

1 1

0 ( ) (0)
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M L
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           

 (31) 

The mechanical boundary conditions in both 
cylinder’s heads could be of essential conditions. 
For example, the equation for the cylinder with 
two clamped heads in these conditions is as 
follows: 
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(32) 

The mechanical boundary conditions on the 
two cylindrical heads can be a combination of 
essential and natural conditions, for example, for 
a cylinder with lower clamped head and upper 
free head, the mechanical boundary conditions in 
both heads of the cylinders are expressed as 
follows: 
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(33) 

Therefore, by applying the boundary 
conditions on the two cylindrical heads – 6 
conditions in one head (4 mechanical conditions 
and 2 electrical conditions) and 6 conditions on 
the other head (4 mechanical conditions and 2 
electrical conditions) – K1-K12 constants can be 
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achieved. It is noteworthy that the process of 
mathematical solution using coding in MAPLE 13 
software is achieved. 

4. Results and Discussion 

For a numerical study, a heterogeneous 
cylinder with an inner and outer diameter of 40 
mm and 60 mm respectively and a length of 800 
mm is considered. The internal layer of this 
heterogeneous cylinder is made of PZT-4 and has 
the mechanical and electrical properties 
mentioned in the inner layer in accordance with 
Table 1 [42].  

In order to study the effect of heterogeneity of 
properties and control gain on the 
electromechanical behavior of the cylinder, the 
heterogeneity constant (n) for the values n = 2, 1, 
0, -1 and -2, and the control gain (Cf) for the 
values Cf = -10, -5, 0, 5, 10 and 10, are studied. It 
is noteworthy that the inner layer of this cylinder 
under the surface charge density is 

7 215 10 (C/m )−  and its outer layer is under 

pressure of 6 bar. This heterogeneous cylinder is 
studied in two cases: (a) two clamped heads; and 
(b) one lower clamped head and the upper free 
head. The static electric field that causes 
depolarization (Ede) often varies between 

52 10 (V/m)  and 55 10 (V/m) , depending on the 

temperature of the applied electrical field [43]. 
The maximum amount of electric field imposed 
by Cf = 10 inside the cylinder is about 

51.5 10 (V/m)  that it is less than the lower limit 

of the assumed depolarizing electric field. The 
select ranges for the control factor must be 
chosen based on the amount of electrical surface 
charge density at the inner and outer surfaces of 
the cylinder. 

In order to validate the results, the voltage of 
the lower end of cylinder (b) was assumed at 
zero. Figs. 3 and 4 show the distribution of radial 
displacement and electric potential in the FG 
cylinder (b) for validation. The results are 
predicted based on two analytical methods 
(present research and PET [28]) and FEM.  

Table 1. Mechanical and electrical properties of the inner 
layer of FGPM cylinder. 

Properties of PZT-4 

Elastic constants (GPa) 

c11 115 

c12 74 

c22 139 

c23 78 

c55 25.6 

Piezoelectric-stress constants 

(C/m2) 

e11 15.6 

e12 -5.2 

e35 12.7 

Dielectric Constants (10-8C/Vm) 
∊11 0.562 

∊22 0.646 

 

Figure 5 shows the distribution of electric 
potential, radial and axial displacement in FG 
cylinders. Because of the existence of electrical 
and mechanical boundary conditions at the two 
ends of the cylinder and the interaction of these 
conditions caused by the piezoelectricity of the 
cylinder, the distribution field of the 
displacement field and the electric potential near 
the boundaries are non-uniform. 

Furthermore, in cylinder (a) or a cylinder with 
two clamped heads, where electrical boundary 
conditions in two cylinder heads (Eq. (31)) are 
non-uniform, the contour of the radial 
displacement behavior distribution is not 
symmetric with respect to the middle of the 
cylinder length; It is rather slightly asymmetric.  

As can be seen in Fig. 5, cylinder (b), unlike 
cylinder (a), has only one mechanical constrained 
head and the upper head is free; this causes the 
maximum amount of displacements values to 
increase substantially in the cylinder. The 
greatest increase is related to the axial 
displacement of the cylinder, where the amount 
of maximum axial displacement has increased 
about 40 times. The radial and axial displacement 
changes along the thickness (except for axial 
displacement near the boundaries) are negligible, 
but the electric potential along the thickness has 
considerable variation.  

 

 
Fig. 3. Distribution of radial displacement in the middle 

length of FGP cylinder (n=1). 

 
Fig. 4. Distribution of electric potential in the middle length 

of FGP cylinder (n =1). 
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Fig. 5. Distribution of radial and axial displacement and 
electric potential in FG cylinders (n=2, Cf =10). 

In fact, the electric potential sensitivity to the 
cylinder's thickness is greater than the sensitivity 
of the displacement field to the thickness. 
Maximum displacement values occur in or near 

the boundary areas (cylinder’s head). Therefore, 
when considering the requirements of the design, 
engineers should pay attention to the boundary 
areas of the structure. 

Figures 6 and 7 show the radial and axial 
displacement distribution in the inner and 
middle layer of heterogeneous cylinders 
respectively. Reduction of heterogeneity causes a 
significant increase in the distribution of 
displacement values. But it has no effect on the 
location of the emergence of maximum 
displacement values, and the maximum 
displacement values occur in the border regions 
or near the boundaries. As can be seen, the non-
constrained state of one cylinder head causes the 
maximum displacement to increase, which is a 
larger increase in axial displacement and is more 
significant. 

Although in the initial review it seems that Fig. 
7 is not true for cylinder (b), by considering the 
mechanical conditions related to the two ends of 
the cylinder (b) compared with cylinder (a), the 
axial displacement behavior in the longitudinal 
direction is valid. Cylinder (a) is a clamped-
clamped ends one while cylinder (b) is a 
clamped-free ends one. As can be seen in Fig. 5, a 
little away from the lower end of the cylinder 
(clamped condition), the supportive effects of the 
lower boundary on the axial displacement 
behavior vanishes and the axial displacement 
along the longitudinal distribution is almost 
linear. 

 

 

Fig. 6. Distribution of radial displacement in the inner layers 
of FG cylinders (Cf =0). 
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Fig. 7. Distribution of axial displacement in the middle layer 
of FG cylinders (Cf =0). 

Figures 8 and 9 show the effect of control gain 
on the radial and axial displacement in the inner 
and middle layer of heterogeneous cylinders 
respectively. Generally, the effect of control gain 
on the radial and axial displacement can be 
ignored and it doesn’t cause a remarkable effect 
on radial and axial displacement; however, this 
effect is more visible in the heads of cylinder 
where the control voltage is applied. 

Figure 10 shows the distribution of electric 
potential in the outer layer of the heterogeneous 
cylinder (em and ϵm are the average of 
piezoelectric-stress and dielectric constants in 
the inner layer of FG cylinder respectively). An 
increase in the heterogeneity constant causes the 
distribution of the electric potential in the 
heterogeneous cylinder decrease; in other words, 
the increase in heterogeneity constant leads to a 
decrease in the intensity of electric potential 
changes in the heterogeneous cylinder. The 
maximum and minimum values of electric 
potential occurred near the cylinder heads 
(boundary areas). Therefore, designers and 
engineers should pay attention to this issue when 
using and designing piezoelectric heterogeneous 
cylinders. 

 

 

 

   

 

Fig. 8. Result of control gain on radial displacement in the 
inner layer of FG cylinders (n = -2). 

 

 

 

Fig. 9. Result of control gain on axial displacement in the 
middle layer of FG cylinders (n = -2). 



M. Parhizkar Yaghoobi, M. Ghannad / Mechanics of Advanced Composite Structures 8 (2021) 15-31 

25 

 

 

Fig. 10. Distribution of electric potential in the outer layer of 
FGPM cylinders (Cf=0). 

Figure 11 shows the effect of control gain on 
the electric potential in the outer layers of FG 
cylinders. The control gain has significant effects 
on the electric potential behavior profile 
especially in the upper head of cylinder where the 
voltage is applied. In order to better consider and 
evaluate the control gain effect on electric 
potential in the middle of the middle layer, the ζ 
is defined based on Eq. (33),which φ(0,L/2) and 
φ1.25(0,L/2) are the electric potential in the 
middle of the middle layer with arbitrary control 
gain value and Cf=1.25, respectively. 

Figure 12 illustrates the effect of control gain 
on electric potential behavior of FG cylinders in 
z=0 and x=L/2. Fig. 10 predicts the same behavior 
for control-ability FG cylinder structure like [35] 
by highlighting the effect of cylinder heads or 
cylinder boundary conditions. It shows changes 
in the boundary conditions from clamped-
clamped ends to clamped-free ends (mechanical 
boundary conditions) cause changes at about 10 
percent in the control-ability of FG cylinder. 

1.25

1.25

(0, / 2) (0, / 2)
100

(0, / 2)

L L

L

 




−
=   (34) 

Figure 13 shows the stress distribution inside 
the FGPM cylinder along the thickness in the 
middle of the cylinder length. Shear stress is 
negligible compared to other stresses in distant 
areas from boundaries and can be neglected. 

 

 

Fig. 11. Result of control gain on electric potential in the 
outer layer of FG cylinders (n = -2). 

 

Fig. 12. Result of control gain on the electric potential 
behavior of FG cylinders in z=0 (n = -2). 

Circumferential stress has a dominant effect 
among the stresses and has great effect on 
determining the effective stress behavior 
calculated based on the von Mises failure theory 
[21]. Also, the axial stress caused by the existence 
of the free cylinder head in the cylinder (b) has 
tension state and compression state distribution. 

( ) ( ) ( )( )
0.5

2 2 2 21
6

2
eff x x z z zx        = − + − + − +  (35) 

Figure 14 shows the effective stress 
distribution. The maximum amount of effective 
stress occurs near the boundary areas, which 
increases with any increase in the heterogeneity 
constant. As can be seen, the intensity of the 
heterogeneity constant effect on the cylinder of 



M. Parhizkar Yaghoobi, M. Ghannad / Mechanics of Advanced Composite Structures 8 (2021) 15-31 

26 

type (a) or of the cylinder with two constrained 
heads is greater and causes more changes. 

 

 

 

Fig. 13. Distribution of stresses in the middle of FGPM 
cylinders length (Cf=0, n=-2). 

 

 

Fig. 14. Distribution of effective stress in the middle layers of 
FGPM cylinders (Cf=0). 

Figure 15 shows the effect of control gain on 
the effective stress in the middle layer of 
heterogeneous cylinders. Generally, the effect of 
control gain on the effective stress is negligible 
except in the upper cylinder head that the voltage 
is applied on it. Special attention should be 
considered for the head of cylinder with applied 
voltage when it was designed. 

Figure 16 shows the distribution of the 
electric field along the axial direction in 
heterogeneous cylinders. The heterogeneity 
constant has no observable effect on the 
distribution of the electric field along the axial 
direction. As it is seen, the largest distribution of 
the electric field occurs in the vicinity of the 
boundaries or within the boundaries themselves, 
requiring more attention to these areas. 

2 2

x zE E E= +  (36) 

Figure 17 shows the of control gain on electric 
field in the middle layers of heterogeneous 
cylinders, which is calculated according to the Eq. 
(35). As it is seen, the effect of control gain on 
electric field.is remarkable at the upper head or 
applied voltage head. Therefore, the designers 
should pay special attention to this head. 

Table 2 shows the results of solving analytical 
and finite element problems using the ANSYS 
12.0 software. As can be seen, there is a good 
consensus between the predicted results of the 
two methods that showed in Figs. 6, 7, 10 and 14. 

 

 

 

Fig. 15. Result of control gain on effective stress in the 
middle layer of FG cylinders (n = -2). 
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Fig. 16. Distribution of axial component of electric field in the middle layers of FGPM cylinders (Cf =0). 

 

  

Fig. 17. Result of control gain on electric field in the middle layers of FG cylinders (n = -2). 

Table 2. The numerical results achieved for analytical solution and FE solution of FGPM cylinders (x=L/2, Cf =0). 

Cylinder (b) Cylinder (a)    

n = 2 n= 0 n = -2 n = 2 n = 0 n = -2    

-0.000612 -0.000931 -0.001344 -0.000469 -0.000706 -0.001007 Analytical   

-0.000626 -0.000954 -0.001379 -0.000481 -0.000726 -0.001039 FEM 
Ur  

(mm) 
Inner Layer 

2.24 2.41 2.54 2.49 2.75 3.07 Difference (%)   

-0.000598 -0.000919 -0.001340 -0.000430 -0.000654 -0.000942 Analytical   

-0.000604 -0.000935 -0.001379 -0.000435 -0.000667 -0.000977 FEM 
Ur  

(mm) 
Outer layer 

0.99 1.71 2.83 1.15 1.95 3.58 Difference (%)   

1.2406 1.8936 2.7429 0.9705 1.4482 2.0423 Analytical   

1.4647 2.1750 3.0646 1.2748 1.8776 2.6202 FEM 
σeff  

(MPa) 
Inner layer 

15.30 12.94 10.50 23.87 22.87 22.06 Difference (%)   

2.0583 1.4110 0.9194 1.5751 1.0450 0.6552 Analytical   

1.9697 1.3792 0.9325 1.3526 0.8540 0.4857 FEM 
σeff  

(MPa) 
Outer layer 

4.50 2.31 1.40 16.45 23.37 34.89 Difference (%)   

644.34 1079.73 1703.42 373.45 660.44 1102.63 Analytical   

587.14 993.18 1576.90 368.53 660.74 1114.90 FEM φ  (V) Inner layer 

9.74 8.71 8.02 1.33 0.05 1.10 Difference (%)   

775.98 1258.94 1927.67 632.10 1043.48 1636.92 Analytical   

768.52 1227.40 1833.60 656.11 1068.10 1639.20 FEM φ  (V) Outer layer 

0.97 2.57 5.13 3.66 2.30 0.14 Difference (%)   
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5. Conclusions 

In this study, Active control and the two-
dimensional analytical solution of piezoelectric 
FGM cylinders under mechanical and electrical 
loading in their internal and external layers and 
different boundary conditions in two cylinder’s 
heads Using First-Order Electric Potential Theory 
and a voltage feedback control method was 
presented. A numerical study was carried out for 
the two states of boundary conditions: (a) two 
clamped heads; and (b) one lower clamped head 
and the upper free head, and the effects of 
heterogeneity, control gain, boundary conditions, 
and electromechanical loading were studied. 
Then, the results of this study were compared 
with the results obtained from FEM, which 
showed a good agreement between the findings. 
The results of this study can be summarized as 
follows. 

1. The present study presents a two-
dimensional analytical solution for the electrical 
and mechanical field, which, unlike other 
previous studies of two-dimensional analyzes, is 
not a series solution method of differential 
equations, and there is no need to investigate the 
convergence of the response. Therefore, it is of 
less computational volume and higher accuracy 
and takes less time for computation. 
Furthermore, it is not specific to the special 
mechanical boundary conditions in the two 
cylinder’s heads and is able to answer different 
boundary conditions in the two cylinder’s heads. 
It is clear that the above method can easily be 
used to achieve the optimal values of 
heterogeneity constant, control gain and type of 
support conditions in the structure. 

2. Reviewing and comparing the results of 
two analytical and finite element methods shows 
that using the first-order theory of electric 
potential reliable and useful and predicts the 
results accurately. However, when the computing 
time and volume increase are considered to be of 
lower priority than higher accuracy in 
calculations, one can use higher-order theory of 
electric field potential and displacement field. 

3. The results show that unlike the 
displacement field that has no significant changes 
in areas far from the boundary in the direction of 
cylinder thickness, the displacement field 
behavior can be assumed to be independent of 
thickness, however, electric potential changes 

even in the areas far from the boundaries cause 
significant changes in line with the thickness. 
Therefore, a two-dimensional mechanical-
electrical analysis of short-cylindrical 
piezoelectric cylindrical sensors, actuators and 
controllers with boundary conditions in both 
heads is of special importance. 

4. The results show that the heterogeneity 
constant has significant effects on displacements, 
electric potential, and effective stress (based on 
von Mises failure theory). By increasing the 
heterogeneity constant, the displacement field 
and electric potential value in the cylinder are 
reduced, but the effective stress increases in the 
cylinder. Therefore, in the design of such 
structures, it is necessary to look for an optimal 
heterogeneity constant because, with a steady 
reduction of heterogeneity constant besides 
creating a lower displacement in the structure, 
more stress is also created, which is an 
undesirable factor in the design. 

5. Investigating and evaluating the results 
of the cylinders with different boundary 
conditions in both heads showed that the 
maximum absolute value of the mechanical and 
electrical behavior parameters of the cylinders 
(displacement field, electric potential, stresses 
and electric field) occurs near the boundaries or 
at the cylinder boundaries. Therefore, designers 
and engineers should pay special attention to the 
border areas and nearby locations. 

6. The results show that the control gain 
has remarkable influence on the electric potential 
behavior. However, the other parameters are 
significantly affected only in cylinders head 
where the voltage is applies. However, it may 
ignore the effect of control gain on displacements, 
stress and electrical field in the faraway region of 
FG cylinder from the heads, but designers or 
engineers should be careful when applied voltage 
for control electric potential in structure because 
it significantly affects the mechanical and 
electrical behavior in heads where the voltage is 
applied. 

7. Considering FG cylinders with different 
mechanical boundary conditions shows that it 
affects the controllability of FG cylinders, and 
based on the value of control gain, it can increase 
or decrease the controllability. In the short length 
cylinder, this issue should be considered in 
design and calculations. 
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Appendix 

Non-zero components of 6 6A   matrix are calculated as follows: 
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 Which in the above relations Ks is the shear correction coefficient and is equal to 5/6 [7]. Also, for the 

non-zero components of 6 6B   matrix we have: 
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And for 6 6C   matrix non-zero components, we have: 
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Quasi-vector non-zero components 6 1F   are calculated as follows: 
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