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In this research article, thermal and hygrothermal stress analysis of composite layered and 

sandwich plate having one dimension infinitely long and simply supported on the edges is 

presented using a new fifth-order theory.  The proposed theory considers, the effect of 

thickness stretching. The present theory uses a polynomial shape function to account for 

transverse shear deformation using the expansion of thickness up to the fifth-order while 

to consider the effect of thickness stretching the derivative of shape function is used in the 

transverse displacement. In this theory, the shear strain variation is assumed to be 

parabolic across the thickness.  The present displacement field satisfies zero shear stress 

condition both at the top and bottom surfaces and avoids the use of a shear correction 

factor.  The governing equations are derived using the virtual work principle.  For solution 

of problem, Navier’s solution technique is used.  The results generated using the present 

theory are compared with the existing elasticity solution wherever it is available.  

However, many results for the cylindrical flexural analysis of laminated and sandwich 

plates subjected to environmental loading are presented for the first time in this paper. 

1. Introduction 

Composite material is characterized by its low 
density, high-modulus, high strength and low 
weight and its flexibility to tailor it as per the 
structural requirements.  Because of these 
important properties it is widely used in many 
branches of engineering viz.  civil engineering, 
aerospace engineering, mechanical engineering 
etc. Composite material during its life span has to 
carry different types of loadings, like mechanical 
load and environmental loads 
(Thermal/hygrothermal). Environmental loads 
like temperature and moisture result in 
degradation of the properties and reduction in 
the strength.  Hence, considering the use of 
composite material in important applications and 
effect of environmental loads on it, it is necessary 
to analyze composite structures for mechanical 
as well as environmental loads.  

The literature available on cylindrical bending 
analysis of composite laminates subjected to 
environmental loading is scare.  The review of 

available literature on the development of 
theories used to analyze beams, plates and shell 
is documented by Timoshenko and Woinowsky-
Krieger [1], Todhunter and Pearson [2] and 
Carrera et al. [3].  Pagano [4-6] developed bench 
mark exact solution for 1D and 2D bending 
analysis of laminated composite plates and 
sandwiches. Kirchhoff [7] developed the simplest 
theory (Classical Plate Theory i.e. CPT) ignoring 
the shear deformation effect. CPT cannot be 
applied to plates having a considerable thickness 
and in which shear deformation effect is 
significant.  To overcome the drawback of CPT, 
first time Mindlin [8] developed first order shear 
deformation theory (FSDT) assuming constant 
shear strain across the thickness. Hence FSDT 
does not satisfy zero shear stress conditions at 
the top and bottom surfaces of the plate and 
needs a shear correction factor. The limitations of 
CPT and FSDT initiated the need of shear 
deformation theories with a higher order.  Sayyad 
and Ghugal [9-11] used    exponential theory for 
the study of flexural and vibrational analysis of 
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thick plates. Ghugal and Dahake [12] developed a 
trigonometric shear deformation theory using 
the sinusoidal function for the analysis of deep 
beams carrying parabolic load.  Sayyad and 
Ghugal [13] studied the flexural behavior of soft-
core sandwich beams using trigonometric shear 
deformation theory. Sayyad and Ghugal [14] 
presented an nth order theory with consideration 
of the shear deformation effect for the cylindrical 
bending analysis of composites. Sayyad and 
Ghugal [15] also studied bending, buckling and 
free vibrations of homogeneous beams using 
single variable refined beam theories. Shinde and 
Sayyad [16] analyzed isotropic, functionally 
graded, laminated and sandwich beams using a 
quasi-3D polynomial shear deformation theory. 
Sayyad and Ghugal [17] investigated bending, 
buckling, and free vibration responses of 
functionally graded material beams using 
hyperbolic shear deformation theory.  Recently 
Sayyad and Naik [18] developed a new quasi 3-D 
model for the accurate prediction of transverse 
shear stresses in the laminated composites and 
sandwiched plates. Plucinski and Jaskowiech [19] 
presented three-dimensional analysis of 
laminated plate subjected to mechanical load 
using two-dimensional numerical model. A 
detailed review of such higher-order theories and 
solutions is presented by Sayyad and Ghugal [20-
22].  

Because of the various applications of 
composite materials in the field of aerospace 
engineering where the material is subjected to 
thermal and hygrothermal stresses; many 
researchers have presented various theories for 
the thermal and hygrothermal stress analysis of 
the composite laminates.  This section of the 
paper deals with literature related to thermal, 
thermomechanical and hygrothermal stress 
analysis of composite plates. Cho et al. [23] 
presented layer-wise theory for analysis of 
laminates under thermal loading. Bhaskar et al. 
[24] presented thermoelastic solutions for 
composite laminates within the framework of 
linear   uncoupled thermoelasticity. Carrera [25] 
compared different theories formulated on the 
basis of the principle of   virtual work and the 
Reissner mixed variational theorem (RMVT). The 
higher-order theory developed by Rohwer et al. 
[26] for    analysis of laminated plates in thermal 
environment predicts in-plane stresses 
accurately when applied to thick plates carrying 
a mechanical load but gives less accurate 
predictions for sinusoidal thermal loading.  A 
finite element model was proposed by Robaldo 
and Carrera [27] for the thermoelastic analysis of 
anisotropic plates. Kant and Shiyekar [28] 
developed a complete analytical model for the 
thermal stress analysis of composite laminates 
under gradient thermal load. A four-variable 

plate theory was developed by Sayyad et al. [29] 
for the thermoelastic flexural analysis of 
laminated composite plates. Sayyad et al. [30] 
presented thermal stress analysis of layered 
composites using exponential shear deformation 
theory. Zenkour and Radwan [31] presented a 
hyperbolic model for the analysis of layered 
plates under thermal load and resting on elastic 
foundations. Shahravi et al. [32] presented an 
analytical approach to study the thermal 
deflections of simply supported composite plates 
under sinusoidal thermal load.  Evran [33] 
presented finite element analysis of laminated 
composite plates under constant temperature 
load using Taguchi method. 

Carrera and Nali [34] presented an advanced 
finite   element formulation for the layered plates 
carrying mechanical, thermal, electrical and 
magnetic fields. Ali et al [35] proposed a theory 
for the thermal and mechanical stress analysis of 
laminated plates, the proposed theory can be 
used for thick plates and for any combination of 
thermal and mechanical loading. Zenkour [36] 
used unified shear deformation theory for 
flexural analysis of laminated plates under 
combined thermal and mechanical load. Kant et 
al. [37] investigated the thermomechanical 
response of laminated composites using semi-
analytical model. Nali and Carrera [38] studied 
buckling of composite plates under combined 
thermomechanical load. Wu et al. [39] presented 
a refined higher-order theory for angle-ply 
composite laminate subjected to 
thermomechanical loads. Ghugal and Kulkarni 
[40, 41] presented a refined sinusoidal theory for 
thermomechanical stress analysis of cross-ply 
laminates. Zenkour et al. [42] used unified theory 
for investigation of bending of cross-ply 
laminated plates under thermomechanical loads. 
Wu and Xiaohui [43] presented 
thermomechanical analysis of multi-layered 
plates using Reddy-type plate theory considering 
the effect of transverse normal strain.      

 Patel et al. [44]   studied characteristics of 
thick composite laminated plates under 
hygrothermal load using a higher-order theory. 
Zenkour [45] has investigated the static response 
of angle-ply laminated plates for variation in 
temperature and moisture concentrations. A 
higher-order global-local model is proposed by 
Wu and Lo [46] for the hygrothermomechanical 
analysis of laminated composite plates. Najafi et 
al. [47, 48] studied the environmental effects on 
mechanical properties of glass/epoxy and fiber 
metal laminates through experimental 
investigations because of hygrothermal and 
isothermal aging. Akbas [49] investigated 
nonlinear static analysis of composite beams 
under hygrothermal effects using finite element 
method. Sayyad and Ghugal [50] presented a 
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simple four variable shear deformation theory 
for the bending of functionally graded plates 
subjected to nonlinear hygrothermomechanical 
loading.   A refined quasi-3D model considering 
the effect of transverse normal strain and shear 
deformation for the bucking response of 
functionally graded plates on elastic foundations 
under hygrothermomechanical loading is 
proposed by Zenkour and Radwan [51].  Garg and 
Chalak [52] presented a critical review of 
literature related to the behavior of laminated 
composites and sandwich structures subjected to 
hygrothermal loading. Moleiro et al. [53] 
developed an exact 3D hygrothermal elasticity 
solution for simply supported rectangular 
composite plates. Das and Niyogi [54] studied 
free vibrations of epoxy-based cross ply 
laminated plates subjected to hygrothermal 
loading.  Recently Naik and Sayyad [55] 
presented an analysis of laminated plates 
subjected to mechanical and hygrothermal loads 
using fifth-order shear and normal deformation 
theory. 

In this paper the fifth order shear and normal 
deformation theory is applied for the cylindrical 
bending of laminated composite and sandwich 
plates under thermal and hygrothermal loads.  
The present theory is developed by Naik and 
Sayyad [56-58] for laminated and sandwich 
plates and by Ghumare and   Sayyad [59-61] for 
the analysis of functionally graded plates 
subjected to mechanical and thermal loads.  

Following points summarizes the features of 
the present study. 

1. The main motivation behind the present 
theory is the contribution and recommendations 
given by Ali et al. [35], Bhaskar et al. [24] and 
Erasmo Carrera [62] regarding the stretching of 
the thickness of the laminated composite plates.  
Carrera [62] studied the effect of the normal 
strain on the analysis of homogeneous and 
layered plates under thermal load and 
recommended the consideration of the thickness 
stretching effect for thermal stress analysis of 
plates particularly when the temperature and 
moisture concentration varies through the 
thickness of the plate.   Carrera has also 
recommended to expand the thickness 
coordinate up to fifth or seventh order for the 
accurate prediction of the behavior of laminated 
and sandwich plates under 
hygrothermomechanical load.  Therefore, in the 
present investigation fifth order shear and 
normal deformation theory (FOSNDT) is 
developed for the cylindrical bending of 
laminated composite and sandwich plates 
subjected to thermal and hygrothermal loading. 

2. Sufficient literature is available on the bi-
directional bending of layered plates under 
thermal loading, while limited literature is 

available on the hygrothermal stress analysis of 
composite plates. Based on the above fact, in the 
present investigation cylindrical bending of 
laminated composite plates under thermal and 
hygrothermal loading is presented.  

3. In the present study hygrothermal 
cylindrical flexural analysis of laminated and       
sandwich plates is presented for the first time 
considering the effects of thickness stretching. 

4. In the present study, the detailed 
numerical results and through the thickness 
distributions of stresses are presented for 
cylindrical bending of layered and sandwiched 
plates which will help the researchers to compare 
and validate their studies. 

Following are the some of the advantages of 
the present theory over the other higher order 
theories; which can be summarized as below 

• The present theory is computationally 
simple as compared to other non-polynomial    
theories as it uses polynomial shape function. 

• In the well-known theory of Reddy [63], 
the thickness co-ordinate is expanded up to third-
order and it ignores the effect of thickness 
stretching, while the present theory the thickness 
co-ordinates are expanded up to fifth order and 
hence the present theory improves the accuracy. 

2. Plate Geometry 

In the present study, a rectangular plate of 
orthotropic fibrous composite is considered.  The 
plate is having length ‘a’ along x-direction and ‘b’ 
along the y-direction. The thickness of the plate 
‘h’ is measured in z-direction. The dimension 
b>>a, and hence the plate is subjected to 
cylindrical bending.  For the plate under 
consideration, since the dimension of the plate 
along the y-direction is assumed to be very long 
as compared to other dimensions in x- and z-
directions, the strain in the y-direction is 
neglected.  The plate is subjected to an out of 
plane mechanical load q(x), which is acting on the 
top surface of the plate located at   z = -h/2 and 
sinusoidal thermal and hygroscopic load on the 
top surface.  Fig. 1 shows the plate under 
consideration and the geometry of the plate.   

 
Fig. 1. Plate under consideration and coordinate system 
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3. Mathematical Formulation 

3.1.  Displacement field 

Following are the assumptions made in the 
development of the present theory. 

1) The present theory is displacement-
based shear deformation theory  

2) The in-plane displacements (u) includes 
three components viz. extension, bending and 
shear. 

3) The transverse displacement (w) 
considers the effect of shear and thickness 
stretching. 

4) Three-dimensional Hooke’s law is used 
to determine stresses. 

     In the present work, the in-plane 
displacement ‘u’ and the transverse displacement 
‘w’, are considered in polynomial form to 
accommodate the effect of transverse shear and 
thickness stretch. The effect of transverse 
deformation is considered through polynomial 
shape     function expanded up to fifth order in 
terms of the thickness coordinate.  While the 
derivative of shape function is used in the 
transverse displacement to accommodate the 
effect of thickness stretching.  There are six 
variables and the displacement field satisfy the 
traction free boundaries at the top and bottom 
surfaces of the plate.  The assumed displacement 
field of the present theory is written as  

( ) ( )

( ) ( )
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    (1)                           

where ‘u’ in in-plane displacement at any 
point on the plate in x-direction and ‘w’ is the 
displacements in z-direction. ‘u0’ and ‘w0’ are the 
in-plane displacements of mid-plane in x and z-
directions respectively. andx x   are the 

rotations about y-axis to account the effect of 
transverse shear deformation. andz z   

represent higher-order transverse cross-
sectional deformation modes which account the 
effect of thickness stretching.  Eq. (2) shows the 
non-zero strain components in the present 
displacement field. 
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3.2. Constitutive equations 

The co-ordinate system (x-y-z) is used to 
express the stress-strain relationship. For the kth  

lamina the stresses and the strain are related 
through the relationship given in Eq. (3).  
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where Q11, Q13, Q33 and Q55 are the reduced elastic 
constants in x-z plane and 

x   is the in-plane 

stress acting along x-direction, 
z  is the stress 

acting along z-direction and 
xz   is the transverse 

shear stress acting along the z-direction.  
andx z    are the in-plane and normal strains 

along x and z-directions respectively,  
, and ,x z x z     are the coefficients of linear 

thermal and moisture expansion in x and z-
directions respectively.  The below mentioned 
Eq. (4) states the relationship between elastic 
constants and engineering constants. 
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 55 13Q G Q=                                                                   (4) 

here  1 3andE E  are the moduli of elasticity, 13G is 

the modulus of shear and  

12 21 13 31 23 32, , , , ,       are Poisson’s ratios; the 

subscripts 1, 2, 3 correspond to the coordinate 
system of fibers, while x, y, z directions represent 
the coordinate systems for the plate. In the 
present study, the laminated and sandwich plates 
are analysed for thermal, mechanical and 
hygrothermal loading.  The variations of thermal 
and moisture load are assumed along the 
thickness of the plate and are given in Eq. (5).  
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where, T0, T1, T2 and T3 are thermal loads, C0, C1, 
C2 and C3 are the moisture concentrations. 

3.3.  Governing equations and boundary 
conditions     

The variationally consistent governing 
equations and the boundary conditions 
corresponding to them are derived using the 
principle of virtual work given in Eq. (6)  
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Integrating Eq. (6) by parts and equating the 

coefficients of 0 0, , , ,x x zu w     and z  to 

zero, six governing equations can be obtained. 
The Eq. (7) below gives governing equations in 
terms of stress resultants. 
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The boundary conditions along edges (x=0, 
x=a) are stated in Eq. (8). 
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In the above governing equations xN  is the in-

plane force resultant;  b

xM  is the moment 

resultant; 1 2,
S S

x xM M  are the shear moment 

resultant; 1 21 2and ; and
S S

xz xz z zQ Q Q Q  are the 

transverse shear and transverse normal stress 
resultants.  Eq. (9) below gives the expressions 
for all above stress resultants used in the 
governing equation.  
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Governing equations in terms of unknown 

variables 0 0, , , , andx x z zu w       can be 

developed using the expressions of stress 
resultants. These governing equations along with 
the mechanical, thermal and moisture 
coefficients are mentioned in Appendix A.   

4. Analytical Solutions 

To obtain the analytical solutions of the 
governing equations for the plates under 
considerations Navier’s solution is used.  It is well 
known that this solution is applicable for simply 
supported boundary conditions only.  For other 
boundary conditions, numerical methods such as 
FEM, FDM, GDQ, Meshfree method and other 
methods can be used.      

In the present study, the plates under 
consideration are carrying a sinusoidally 

distributed mechanical and environmental loads 
on the top surface, whereas the thermal and 
moisture load are varying linearly across the 
thickness of the plates.  Following are the 
kinematic boundary conditions. 
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0 0, 0, 0, 0, 0
S Sb

x x x xw N M M M= = = = =         (10) 

For the unknown displacements to be 
determined and to satisfy the above-mentioned 
boundary conditions following form of closed 
form solution is used. 
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In the above equation , , , ,mn mn xmn xmnu w  

andzmn xmn  are the unknowns to be 

determined. The mechanical, thermal and 
moisture loadings are also expressed using 
double trigonometric Fourier series as stated in 
Eq. (12).   
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In the Eq. (12), T0 and T1 represent constant and 
linear temperature profiles respectively, while T2 

and T3 represent the non-linear temperature 
profiles.  Similarly, C0 represents constant 
moisture load, C1 represents the linear moisture 
profile, C2 and C3 represent the non-linear 
moisture profile.  For the sinusoidally distributed 
loads, positive integers m and n are taken as 
unity.    Substitution of Eqs. (11) and (12) in 
governing equation gives a set of equations which 
are expressed in matrix form as given in Eq. (13) 
below. 
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The stiffness coefficients [Kij] and the force 
vectors used in the Eq. (13) are given in the 
appendix A. 

Values of the unknowns i.e. , ,mn mnu w  

, , andxmn xmn zmn zmn     obtained from the 

solution of Eq. (13) are further used to determine 
the unknown displacements 

0 0, , , , andx x z zu w       from the Eq. (11).  After 



Naik & Sayyad / Mechanics of Advanced Composite Structures 8 (2021) 185-201 

190 

knowing the values of all the unknown variables, 
one can determine all the displacements and 
stresses for the plate under consideration using 
Eqs. (1) - (4). 

Transverse shear stress is calculated using 
equilibrium equation.  If the constitutive equation 
is used to calculate the transverse shear stress, it 
results in discontinuity at the layer interface, 
hence to have a single value of transverse shear 
stress at the layer interface and to avoid 
discontinuity at the layer interface, transverse 
shear stress

xz  is calculated using equilibrium 

equation of theory of elasticity. Because at the 
layer interface, there must be the same stress in 
the upper and the lower layer, and this condition 
is satisfied using equilibrium equation.  Eq. (14) 
states the equilibrium equation used to calculate 
the transverse shear stress. 

1k

k

h k

k x

xz

h

dz C
x




+ 
= − +

                                               (14) 

In addition to continuity of the transverse 
shear stress, this theory also satisfies the 
continuity condition for in-plane displacement 
and transverse displacement as stated in Eq. (15). 

layer ,interface= 1 layer 1,interface= 1k k k k

u u

w w
= + = + +

   
=   

   
          (15) 

5. Solved Numerical Problems 

This section deals with the numerical results 
corresponding to the thermal, hygrothermal and 
mechanical stress analysis of laminated 
composite and sandwich plates. The results are 
presented in Tables 1-6 and graphically plotted in 
Figs. 2-18.  Solutions of the following problems 
are presented in the present study.  
Problem 1: Thermal stress analysis of three-
layered (00/900/00) laminated plate. 
Problem 2: Stress analysis of three-layered 
(00/core/00) sandwiched sandwich plate under 
mechanical loading. 
Problem 3: Thermal stress analysis of three-
layered (00/core/00) sandwiched plate. 
Problem 4: Hygrothermal stress analysis of two-
layered (00/900) laminated plate.  
Problem 5: Hygrothermal stress analysis of 
three-layered (00/900/00) laminated plate. 
Problem 6: Hygrothermal stress analysis of 
three-layered (00/core/00) sandwiched plate. 

Following material properties and non-
dimensional forms are used in the present study 
and the effect of temperature and moisture is 
considered through the strain and in-plane forces 
due to temperature and moisture. 

 
Problem 1: 
Material properties [24] 

1 2 13 3 33 3

13 33 3 1

25, 0.5, 0.2,

0.25, 1125

E E G E G E

   

= = =

= = =
         (16) 

Non-dimensional forms 

2

1 0

1 0 3 0 0

Aspect Ratio ( ) , ,

( , )
, ( , ) x xz

x xz

a w
S w

h h T S

u
u

h T S E T



 
 

 

= =

= =

                 (17)           

 
Problem 2: 
Material properties 
Skin material [64]  

1 2 3

12 13 23

12 13 23

1 2

3 12

23 31

12 13 23

131.1 GPa, 6.9 GPa,

3.588 GPa, 3.088 GPa,

0.32, 0.49

Core Material [65]

0.2208 MPa, 0.2001 MPa,

2760 MPa, 16.56 MPa,

455.4 MPa, 545.1 MPa,

0.99, 0.00003

E E E

G G G

E E

E G

G G

  

  

= = =

= = =

= = =

= =

= =

= =

= = =

 

(18) 
Non-dimensional forms 

( )

3

3 3

4

0 0

0 0

100
0, , ,0 ,

2 2

, , 0,0
2 2

x xz

x xz

bE u E wh bh a
u w

q h q a

b ba h

q q

 
 

   
− = =   

   

 
− = = 

 

   (19) 

 
Problem 3: 
Material properties 

1 2

3 12 13 23

12 13 23

5 -1 5 -1

1 3 2

Face Sheet

172.4GPa, 6.89GPa,

6.89GPa, 0.25,

3.45GPa, 1.378GPa,

0.1 10 k , 2.0 10 k

E E

E

G G G

  

  − −

= =

= = = =

= = =

= =  = 

             

1 2 3

12 31 32 12

13 23

6 -1 5 -1

1 3 2

Core

0.276GPa, 3.450GPa,

0.25, 0.1104GPa,

0.414GPa,

0.1 10 k , 0.2 10 k

E E E

G

G G

  

  − −

= = =

= = = =

= =

= =  = 

        (20) 

Non-dimensional forms 
3

4

1 0 1 0

2

2 1 02 1 0

, , ,

,x xz

x xz

a u h w
S u w

h S T T a

E T SE T S

 

 
 



= = =

= =

                         (21) 

 
Problem 4 and 5: 
Material properties 

1 2 12 2 22 2

12 13 23 32 2 1

6 0

1

2

25, 0.5, 0.2,

0.25, 3,

10 (1/ ), 0,

0.44(wt % )

x

y z

E E G E G E

C

H O

     

 

 

−

= = =

= = = = =

= =

= =

            (22)  

Non-dimensional forms 
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1 0 1 0

2

2 1 01 0

2 1 0 2 1 0

2 1 0 2 1 0
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( 2, 2, )10 (0,0, )
, ,

( 2, 2, ) (0,0, )
, ,
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x

x

y xy

y xy
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xz yz

u b z h v b z h
u v

T a T a

a b zw z h
w

E TT a

a b z z

E T E T

a zb z

E T E T

 






 
 

 


 

 

= =

= =

= =

= =

            (23) 

In the material properties mentioned above, 
1, 2 and 3 refer to directions parallel and 
perpendicular to the fibers respectively. 
 
Problem 6 
Carbon fiber reinforced polymer skin material 

1 2

3 12 13 23

12 13 23

6 0 6 0

1 2 3

1 2 3 2

172.4GPa, 6.89GPa,

6.89GPa, 0.25,

3.45GPa, 1.378GPa,

0.5 10 / K, 35 10 K,

0, 0.004 wt %H O

E E

E

G G G

  

  

  

− −

= =

= = = =

= = =

=  = = 

= = =

       (24) 

PVC foam core material 

1 2 3

12 31 32 12

13 23

6 0

1 2 3

1 2 3 2

0.276GPa, 3.450GPa,

0.25, 0.1104GPa,

0.414GPa,

40 10 / K,
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E E E

G
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  

  

  

−

= = =

= = = =

= =

= = = 

= = =

         (25) 

Non-dimensional forms 
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x
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xz yz

u b z h v b z h
u v

T a T a

a b zw z h
w

E TT a

a b z z

E T E T

a zb z

E T E T

 






 
 

 


 
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= =
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= =

          (26) 

6.   Results and Discussion 

Problem 1:  In this problem bending of a 
(00/900/00) laminate plate subjected to 
sinusoidally distributed thermal load over the 
surface of the plate and linearly distributed 
across the thickness of the plate is discussed. The 
plate is having thickness of each layer as h/3. The 
material properties used for this problem are 
given in Eq. (16), while Eq. (17) gives   non-
dimensional forms for the calculations of 
displacements and stresses.  Numerical results 
obtained are summarized in Table 1 for this 
problem. The results obtained by the present 
FOSNDT are compared with the elasticity 
solution presented by Bhaskar et al. [24].  The 
comparison of results is done for different aspect 
ratio (a/h = 4, 10, 20, 50, 100). The          
comparison reveals that the present theory gives 
results which are close to the elasticity solution.  

Variation in transverse displacement with 
aspect ratio is plotted in Fig. 2, while through-the-
thickness variations of displacements and 
stresses are presented in Figs. 3-5 for a/h = 4. 

Problem 2: In this problem the present 
theory before it is application to thermal stress 
analysis of sandwich plate, it is applied to a 
sandwich plate subjected to sinusoidal 
mechanical loading. The top and bottom layers 
are having thickness 0.1h, while the thickness of 
the middle core is 0.8h. The material properties 
and the non-dimensional forms used are given in 
Eqs. (18) and (19). The results obtained using 
present theory are compared with those 
predicted by sinusoidal shear and normal plate 
theory (SSNPT) of Sayyad and Ghugal [66], higher 
order shear deformation theory (HSDT) of Reddy 
[63], first order shear deformation theory (FSDT) 
of Mindlin [8] and classical plate theory (CPT) of 
Kirchhoff [7]. The comparison is shown in Table 
2 revels that the present theory gives results in 
good agreement with SSNPT and HSDT.     

 
Table 1. Comparison of deflections and stresses for (00/900/00) laminated plate under cylindrical bending subjected to the linear 

temperature field

S Model ( / 2)u h  % Error ( / 2)w h  % 
Error 

( / 6)x h   
% 

Error 
( / 6)xz h   

% 
Error 

4 
Present 7.206 -3.5341 18.55 1.255 375.6 0.886 3.033 7.173 

Bhaskar et al. [24] 7.470 - 18.32 - 372.3 - 2.830 - 

10 
Present 4.976 -0.6588 5.441 0.610 375.1 0.914 2.441 -5.387 

Bhaskar et al. [24] 5.009 - 5.408 - 371.7 - 2.580 - 

20 
Present 4.564 -0.5447 3.476 -0.086 375.0 0.942 1.376 -4.510 

Bhaskar et al. [24] 4.589 - 3.479 - 371.5 - 1.441 - 

50 
Present 4.444 -0.5148 2.920 -0.443 374.9 0.942 0.569 -4.208 

Bhaskar et al. [24] 4.467 - 2.933 - 371.4 - 0.594 - 

100 
Present 4.426 -0.5169 2.840 -0.525 374.9 0.942 0.286 -4.026 

Bhaskar et al. [24] 4.449 - 2.855 - 371.4 - 0.298 - 
CPT [7] 4.444 - 2.829 - 371.4 - - - 
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For a thin plate having an aspect ratio equal to 
100, present theory gives results almost equal to 
those predicted by the other theories.  It shows 
that the present theory can be applied efficiently 
to analyse sandwich plates as well. 

Problem 3:  In this problem bending 
response of (00/core/00) sandwich plate 
subjected to   sinusoidal thermal load is studied.  
For the plate under consideration; the face sheets 
are having a thickness equal to 0.1h and the core 
is of thickness 0.8h.  The material properties   
stated in Eq. (20) are used in the present example 
and the non-dimensional forms stated in Eq. (21) 
are used for the calculations of unknown 
displacements and stresses.   
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Fig. 2. Variation of non-dimensional transverse displacement 

( w  ) with respect to the aspect ratio (S) for (00/900/00) 

laminated plate subjected to linear thermal load 
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Fig. 3. Variation of non-dimensional in-plane displacement (

u ) along the thickness for (00/900/00) laminated plate 

subjected to linear thermal load 
 

-10 -8 -6 -4 -2 0 2 4 6 8 10

 x

-0.5

-0.375

-0.25

-0.125

0

0.125

0.25

0.375

0.5

z/
h

 
Fig. 4. Variation of non-dimensional in-plane normal stress (

x ) along the thickness for (00/900/00) laminated plate 

subjected to linear thermal load 
 

 
Table 2. Comparison of deflections and stresses for (00/core/00) sandwich plate under cylindrical bending subjected to sinusoidal 

mechanical load 

a/h z  Model ( / 2)u h  ( / 2)w h  ( / 2)x h   ( 0.4 )xz h   

4 0  FOSNDT 1.9096 8.6150 28.8295 1.4005 

 0  SSNPT [66] 1.8901 8.4532 28.9670 1.3841 

 0 HSDT [63] 1.9081 8.5369 28.6061 1.3855 
 0 FSDT [8] 1.3295 5.4694 19.9320 1.4089 
 0 CPT [7] 1.3295 1.3225 19.9320 1.4089 

10 0  FOSNDT 22.203 2.4914 133.100 3.5242 

 0  SSNPT [66] 22.092 2.4739 133.754 3.5122 

 0 HSDT [63] 22.235 2.4889 133.340 3.5128 
 0 FSDT [8] 20.773 1.9860 124.575 3.5223 
 0 CPT [7] 20.773 1.3225 124.575 3.5223 

100 0  FOSNDT 20781.0 1.3337 12433.0 35.285 

 0  SSNPT [66] 20680.2 1.3272 12477.5 35.220 

 0 HSDT [63] 20.788.4 1.3342 12466.4 35.222 
 0 FSDT [8] 20773.2 1.3291 12457.3 35.221 
 0 CPT [7] 20773.2 1.3225 12457.3 35.221 

 

This problem is presented for the first time in 
this paper and no results are reported in the 
literature, hence only present results are 
tabulated in Table 3. Variation in transverse 
displacement with respect to aspect ratio is 
plotted in Fig. 6 and variations of normalized 
displacements and stresses along the     thickness 
are plotted in Figs. 7-9 for a/h = 4.  Since in the 
literature no results are available for this 
problem, the results presented in this paper will 
serve as a benchmark solution for the future 
research. 
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Fig. 5. Variation of non-dimensional transverse shear stress 

( xz ) along the thickness for (00/900/00) laminated plate 

subjected to linear thermal load 
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Table 3. Deflections and stresses in (00/core/00) sandwich 
plate subjected to the linear temperature field using present 

FOSNDT 

  S ( / 2)u h  ( / 2)w h  ( / 2)x h   ( 0.4 )xz h   

  4 0.0990 20.589 0.0526 0.0075 
10 0.0387 2.5890 0.0058 0.0012 
20 0.0193 0.6220 0.0017 0.0000 
50 0.0077 0.0980 0.0002 0.0000 
100 0.0039 0.0250 0.0000 0.0000 
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Fig. 6. Variation of non-dimensional transverse displacement 

( w  ) with respect to aspect ratio (S) for (00/core/00) 

sandwich plate subjected to linear thermal load 
 

-0.12 -0.08 -0.04 0 0.04 0.08 0.12

u

-0.5

-0.25

0

0.25

0.5

z/
h

 
Fig. 7. Variation of non-dimensional in-plane displacement (

u  ) along the thickness for (00/core/00) sandwich plate 

subjected to linear thermal load 
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Fig. 8. Variation of non-dimensional in-plane normal stress (

x  ) along the thickness for (00/core/00) sandwich plate 

subjected to linear thermal load 
 

Problem 4: In this problem bending of 
(00/900) laminated plate subjected to linearly 
varying hygrothermal load, and having material 
properties given in Eq. (22) is presented.  The 
non-dimensional forms stated in Eq. (23) are 
used to calculate the displacement and stresses. 

 

Each layer of the plate is having a thickness 
equal to h/2. Only results obtained using the 
present theory are summarized in this paper in 
Table 4 and the same are plotted for a/h = 4 in 
Figs. 10- 12.   
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Fig. 9. Variation of non-dimensional transverse shear stress (

xz ) along the thickness for (00/core/00) sandwich plate 

subjected to linear thermal load 

 
Table 4.  Deflections and stresses in (00/900) laminated 

plate subjected to the linear hygrothermal loading for 
present FOSNDT (T0=100.0; T0M=0; T1M=T0; T2M=0; T3M=0; 

C0=3x10-4; C0M=0; C1M=C0; C2M=0; C3M=0) 

S ( / 2)u h−  ( / 2)w h−  ( / 2)x h −  (0)xz  

4 0.0482 1.6432 2.2784 -0.1326 
10 0.0191 1.4783 2.1355 -0.0529 
20 0.0096 1.4539 2.1433 -0.0265 
50 0.0038 1.4470 2.1480 -0.0106 
100 0.0019 1.4460 2.1488 -0.0053 
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Fig. 10. Variation of non-dimensional in-plane displacement 

( u ) along the thickness for (00/900) laminated plate 

subjected to linear hygrothermal load 
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Fig.11. Variation of non-dimensional in-plane normal stress 

( x ) along the thickness for (00/900) laminated plate 

subjected to linear hygrothermal load 
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Problem 5: In this problem bending of 
(00/900/00) laminated plate subjected to linearly 
varying hygrothermal load is presented.  All the 
layers are having equal thickness i.e., h/3 and 
having the material properties stated in Eq. (22).  
The non-dimensional forms mentioned in the Eq. 
(23) are used to obtain results.  The results 
obtained using the present theory are tabulated 
in Table 5 and plotted in Figs. 13-15. 

Problem 6: A sandwich plate (00/core/00) 
subjected to linearly varying hygrothermal load 
is analyzed in this problem.  Thickness of each 
face sheet is assumed as 0.1h and core is having a 
thickness of 0.8h, where h is the thickness of the 
plate under consideration. 
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Fig. 12. Variation of non-dimensional transverse shear stress 

( xz ) along the thickness for (00/core/00) sandwich plate 

subjected to linear thermal load 
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Fig. 13.  Variation of non-dimensional in-plane displacement 

( u ) along the thickness for (00/900/00) laminated plate 

subjected to linear hygrothermal load 

 
Table 5. Deflections and stresses in (00/900/00) laminated 

plate subjected to the linear hygrothermal loading for 
present FOSNDT (T0=100.0; T0M=0; T1M=T0; T2M=0; T3M=0; 

C0=3x10-4; C0M=0; C1M=C0; C2M=0; C3M=0) 

S ( / 2)u h−  ( / 2)w h−  ( / 2)x h −  (0)xz  

4 0.0421 1.2590 -0.3504 -0.0237 
10 0.0165 1.0824 -0.1013 -0.0075 
20 0.0082 1.0558 -0.0556 -0.0035 
50 0.0033 1.0483 -0.0423 -0.0014 
100 0.0016 1.0473 -0.0403 0.0000 

 
 
 
 
 

The plate is having a skin of orthotropic 
carbon fiber reinforced polymer (CFRP) and the 
core is made of polyvinyl chloride (PVC).  The face 
sheet is having material properties as given in Eq. 
(24) while those used for the core are given in Eq. 
(25). The non-dimensional displacements and 
stresses are calculated using the non-
dimensional forms stated in Eq. (26).  The results 
are presented in Table 6 and are plotted in Figs. 
16-18.  Only the results obtained using present 
FOSNDT are given in the table as no results are 
available in the literature for the cylindrical 
bending of sandwich plates subjected to 
hygrothermal loading. 

 
 

-0.4 -0.2 0 0.2 0.4

 x

-0.5

-0.25

0

0.25

0.5

z/
h

 
Fig. 14. Variation of non-dimensional in-plane normal stress 

( x ) along the thickness for (00/900/00) laminated plate 

subjected to linear hygrothermal load 
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Fig. 15. Variation of non-dimensional transverse shear stress 

( xz ) along the thickness for (00/900/00) laminated plate 

subjected to linear hygrothermal load 

 
Table 6 Deflections and stresses in (00/core/00) sandwich 

plate subjected to the linear hygrothermal loading for 
present FOSNDT (T0=100.0; T0M=0; T1M=T0; T2M=0; T3M=0; 

C0=3x10-4; C0M=0; C1M=C0; C2M=0; C3M=0)  

S ( / 2)u h−  ( / 2)w h−  ( / 2)x h −  (0)xz  

4 0.0878 3.9846 -6.4290 -0.0269 
10 0.0307 0.2617 -2.9577 -0.0083 
20 0.0151 0.0520 -2.4656 -0.0040 
50 0.0060 0.0077 -2.3280 -0.0016 
100 0.0030 0.0019 -2.3084 0.0000 
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Fig.16. Variation of non-dimensional in-plane displacement (

u ) along the thickness for (00/core/00) sandwich plate 

subjected to linear hygrothermal load 
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Fig. 17.  Variation of non-dimensional in-plane normal stress 

(
x ) along the thickness for (00/core/00) sandwich plate 

subjected to linear hygrothermal load 
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Fig. 18. Variation of non-dimensional transverse shear stress 

( xz ) along the thickness for (00/core/00) sandwich plate 

subjected to linear hygrothermal load 

7. Conclusions 

This paper presents a new displacement-
based fifth-order shear and normal deformation 
theory (FOSNDT) for the thermal and 
hygrothermal stress analysis of layered 
composite and sandwiches having one dimension 
infinitely long. To assess the performance of the 
present theory, the results are generated for 
cylindrical bending of 00/900/00 plate carrying 
linear thermal load.  The results obtained are 
compared with the available elasticity       solution.  
The comparison shows that the present theory 
predicts the in-plane displacement, transverse 
displacement in close agreement with the 
elasticity solution.  The percentage error in the 
prediction of in-plane displacement is -3.5341% 
for aspect ratio 4 and reduces to -0.51% for a 

plate having aspect ratio 100. For the transverse 
displacement and in-plane stress the percentage 
error in prediction decreases with increase in 
aspect ratio. Thus, it can be concluded that the 
present theory under predicts the in-plane 
displacement and over predicts the transverse 
displacement and in-plane stresses.  The 
transverse shear stress prediction using the 
present theory is on the higher side as compared 
to the elasticity solution. Similarly for the 
sandwich plate under mechanical loading the 
present theory predicts the behaviour in good 
agreement with other well established theories.   

     For cylindrical bending of layered 
composites and sandwiches under hygrothermal 
load results are not reported in the literature for 
comparison.  Hence, in the present paper the 
results generated for cylindrical bending of 
laminated and sandwich plates for hygrothermal 
loading are presented without comparison, but 
after validating the theory for thermal loading, 
and mechanical loading thus these results will 
serve as a benchmark for the future research. 

Appendix A 

Following are the governing equations derived by 
applying principle of virtual work in Eq. (6), 
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Following are stiffness matrix coefficients [K] 
used in Eq. (13) 
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   

   
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   

   
= −   

   

 
= − − 

 

 
= − − 

 

                  (A.10) 

Following are force vectors used in Eq. (13) 
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h h
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h h




 



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+ + + +
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