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K E Y W O R D S A B S T R A C T
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In this study, a finite difference method is presented for longitudinal stress wave propagation analysis in 

functionally graded 2D plane strain media. The plane material consists of two ceramics (SiC and Al2O3) 

and two metals (Al 1100 and Ti-6A1-4V (TC4)) with power‐law variation for mechanical properties in 

terms of volume fractions of the constituents. Firstly, the governing equations of wave propagation in the 

functionally graded plane strain media were derived in Cartesian coordinate. It’s assumed that elastic 

module, density, and Poisson’s ratio are variable in all of the media. Secondly, the finite difference method 

was used to discretize the equations. Time step size was obtained using the von Neumann stability 

approach. The materials distribution effects are studied in different states and history of stress, strain, and 

displacement. To validate the numerical simulation, stress is compared with theoretical equations in 

special states. Results show that the wave propagation behavior is considerably influenced by material 

composition variation.

1. Introduction

Functionally graded materials (FGM) were
introduced as a new type of composites by 
Japanese scientists in 1984. These new materials 
are inhomogeneous in microscopic space and 
usually consist of ceramic and metal. FGMs were 
initially used only in spacecraft and nuclear 
reactors [1] but are now used in military, nuclear, 
motorized, and aerospace industries where the 
impact loading effects are important [2-5]. When 
a media is subjected to impact loading, because of 
the inertial effects, stress waves propagate on it. 
The movement of pulse shape waves affects the 
velocity, displacement, and stress of material 
particles. The type of stress is depended on the 
loading condition and can be longitudinal 
(compression or tensile) or torsional (shear). 
When the stress wave reaches the diverse 
discontinuity in media such as section area, 
elastic module, density, or impedance change, it 
shows different behaviors. Since the propagation 
of stress waves is dependent on the impedance of 
material, the wave motion is influenced by 
mechanical property changes in FGMs. Many 
studies have been done concerning one or two 
dimensional wave propagation in FGMs [6-10]. In 

these researches, the elastodynamic behavior of 
the considered structure was analyzed from 
different aspects by dividing the waves into a 
bulk wave, plane wave or surface wave, harmonic 
or transient wave, in Cartesian or polar 
coordinate, etc. The 2D wave propagation in an 
elastic isotropic semi-infinite cylindrical rod that 
is subjected to normal impulsive load was studied 
by Alterman and Karal [11]. The equations were 
solved using the finite difference method in polar 
coordinates in the z and r directions. Chiu and 
Erdogan [12] investigated the one dimensional 
stress wave propagation in a functionally graded 
elastic slab. The slab was made of nickel/zirconia 
or aluminum/silicon. They assumed that the 
stiffness and density of the medium vary 
continuously in the thickness direction and 
initially, it is at rest and stress-free conditions. 
They also reported the distortion, peak stress, 
and energy balance. Bruck [13] optimized the 
failure resistance of the FGMs in order to use 
them as energy absorbers. For this aim, they 
proposed a one-dimensional model to develop 
the stress wave management issues. The 
proposed model was initially applied to discrete 
layer FGMs with continuously graded 
architectures. Han et al. [14] used a numerical 
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method to analyze the effect of transient waves in 
cylindrical shells of a functionally graded 
material (FGM) subjected to impact point load. 
The material property within each element was 
assumed to vary linearly in the thickness 
direction and as a result, the displacement 
response of FGM shells excited by point loads was 
calculated, and the characteristics of waves in 
FGM shells were discussed. The elastic wave 
propagation in a layered media was investigated 
using a finite difference method by Tadi [15]. 
They presented two finite difference 
formulations for elastic wave propagation. Both 
of them had explicit scheme and were of the 
second order accuracy in time and space. Asemi 
et al. [16] considered a thick short length hollow 
cylinder made of functionally graded materials 
(FGMs) under internal impact loading. They used 
a finite element method based on Rayleigh-Ritz 
energy to study the propagation of elastic waves. 
Stress, displacement, wave propagation, and 
natural frequency of the hollow wall were also 
reported.  

The propagation of surface waves such as 
Love waves [17], Lamb waves [18, 19], and SH-
wave [20] in FG materials and Rayleigh wave 
motions in an orthotropic half-space under time 
harmonic loadings [21] have also been studied. 
The Simultaneous effects of Nonlinear transient 
thermal stress and elastic wave propagation 
analysis in hollow thick temperature-dependent 
FGM cylinders, using a second-order point-
collocation method was investigated by Shariyat 
et.al [22]. In a similar research, an exact 
elastodynamic solution for functionally graded 
thick-walled cylinders subjected to dynamic 
pressures was investigated in [23]. In another 
research, Hosseini and Abolbashar found a 
general analytical solution for elastic radial wave 
propagation and dynamic analysis of functionally 
graded thick hollow cylinders subjected to 
impact loading [24]. Wave propagation in 
functionally graded and layered materials was 
analyzed using the space-time discontinuous 
Galerkin method in [25]. Using the finite-
difference method the elastic wave propagation 
in functionally graded circular cylinders [26] and 
disks [27] have been investigated. In both of 
these papers, the impulsive load is assumed to be 
applied in the axial direction and then the stress 
and displacement fields were calculated. 

To address recent contributions, the 
Optimization of volume fraction distribution in a 
thick hollow heterogeneous was studied by 
Asgari [28]. The considered cylinder was 
subjected to impulsive internal pressure. The 
main objective was to minimize the amplitude of 
stress waves propagating through the structure 
during a specified time interval. Bednarik et al. 
[29] investigated the propagation of one-

dimensional propagation of longitudinal elastic 
waves through a plate that is made of FGMs with 
the assumption of material distribution 
according to trigonometric law. Yang and Liu [30] 
proposed a new boundary element method for 
modeling the 2-D wave propagation problem in 
FGM materials in the frequency domain. They 
investigated gradation direction and frequency 
on the wave propagation. 

In most of the mentioned researches, the 
mechanical properties of materials change only 
in one direction. In the current paper, a two 
dimensional wave propagation analysis in a 
plane strain media is performed. The media 
consists of two elastic metals (SiC and Al2O3) and 
two elastic ceramics (Al 1100 and Ti-6A1-4V) 
with power law variation of mechanical 
properties in terms of volume fractions of the 
constituents for both of the x and y directions. 
Two impulsive loadings are applied to this media 
and consequently, elastic waves propagate on it. 
The governing equations of the wave motion in 
assumed media are achieved by elastodynamic 
theories. A finite difference scheme is used to 
solve the governing equations. Later on, 
displacement, stress, and strain fields are 
calculated. The positions of pure materials in 
different corners are changed and the effect of 
material distribution will be investigated too. The 
verification of the proposed model is achieved 
through comparison with existing published 
results. The main contributions of this paper are 
summarized as follows. 

Firstly, in most of the researches, the wave is 
considered to be harmonic. By this consideration, 
wave propagation equations can be solved by the 
separation of variables. While in the present 
study, the transient response of media under 
impact loading is investigated.  

Secondly, considering the FGM structure as a 
two dimensional media that the material 
properties are changed in x and y directions 
while in other researches materials properties 
vary only in one direction, and also in the 
presented study, the stress wave is propagated in 
two directions. 

Thirdly, all of the mechanical properties such 
as density, elastic module, and Poisson’s ratio are 
assumed to be variable, while in most studies, the 
Poisson’s ratio is considered constant. 

Moreover, the loading of the media is applied 

in x and y directions.  

On the other hand, the history of researches 
shows that in all studies, FGMs are made of only 
two materials while in some applications it’s 
needed to use a combination of materials with 
different mechanical and thermal properties. For 
example, nowadays, FGM turbine blades are 
made of ceramic-metal composite. The external 
parts are made of ceramic because of its good 
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thermal and mechanical properties and their 
strength against the impact loading of floating 
particles. The internal parts are made of metal 
due to their good heat transfer properties.  

It is noteworthy that in an FGM blade, the 
stress on the root of the blade is more than the tip 
because of the moment. While heat transfer and 
thermal properties are more important in the tip 
of the blade. Moreover, the lower density of the 
blade tip can reduce the centrifuge stresses. So 
that, apart from the fact that we need the material 
changes in thickness, sometimes it’s better to 
change the properties in other directions. 

In summary, this study presents a generalized 
and extended solution for stress wave 
propagation in FGM’s rather than the previous 
researches that results of it can be potentially 
used for designing the energy absorbers. 

2. Problem formulation 

2.1. Material properties definition for 2D 
functionally graded media 

2D functionally graded materials (2D-FGM) 
are made by several continuous gradient phases. 
In the present research, the material distribution 
is selected based on the volume fraction in the 
2D-FGM cylinder reported by Asgari and 
Akhlaghi [31] and generalizing it to a cartesian 
coordinate. To this aim, a Cartesian coordinate is 
defined to contain the reference point in (0, 0) 
and x and y-axis. The length of sides in x and y 
directions are Lx and Ly respectively, as shown in 
Fig. 1. To satisfy the plane strain condition, the 
depth (z-direction) of Fig. 1 is considered to be 
infinite. 

The volume fraction of each material in 
functionally graded media is reported in Eqs. 1a 
to 1d. 

1 1
x yn n

C

x y
V

b b

    
= −           

(1a) 

2 1 1
x yn n

C

x y
V

b b

     
= − −              

(1b) 
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x y
V

b b
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=    
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(1c) 

2 1
x yn n

m

x y
V

b b

    
= −           

(1d) 

 
Fig. 1. Cartesian coordinate with 2D material distribution 

where nx and ny represent the constituent 
distributions in x and y directions and subscripts 
m and C denote metal and ceramic phases.  

To use volume fractions, the following rules in 
Eq. (2) should be considered: 

1 2 1 2 1Vc Vc Vm Vm+ + + =  

(2) 

1

2

1

2

0 1

0 1

0 1

0 1
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Vc

Vm

Vm

 
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 

 

Material properties at each point can be 
obtained by using the linear rule of mixtures. 
Material property, P (P could be an elastic 
module, density and Poisson’s ratio) at any 
arbitrary point (x, y) in the 2D-FGM media is 
determined by a linear combination of volume 
fractions and material properties of the basic 
materials, from Eq. (3). 

1 1 2 2 1 1 2 2C C C C m m m mP P V P V P V P V= + + +  (3) 

where PC1, PC2, Pm1, Pm2 are properties of pure 
materials. 

2.2. Governing Equations 

The Cartesian coordinate system (x, y, z) is 
assumed to simulate the stress wave propagation 
in 2D FGM. Due to the plane strain condition, the 
deformation is considered to be negligible in the 
z-direction. So for 2D media in the absence of the 
body forces, equations of motion in terms of 
stress component are given by Eq. (4) [32]  

2

2

xyxx u

x y t




 
+ =

  
 (4) 

2

2

xy yy v

x y t

 


  
+ =

  
 

where u(x, y) and v(x, y) are the displacement 
components, σxx and σyy are normal stresses in x 
and y directions respectively. σxy is the shear 
stress component, t is time and ρ is the density. 

The constitutive equations of the functionally 
graded media can be expressed as Eq. 5. [33] 

( )2xx

u v

x y
   

 
= + +

   

(5) ( )2 )yy

v u

y x
   

 
= + +

   

xy

u v

y x
 

  
= + 

    
The properties of the elastic medium are 

given by the Lame constants. λ and μ  in Eq. (5) can 

be obtained from Eq. (6). 
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( , )
( , )
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E x y
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x y
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
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+  
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To write the equation of motion in terms of 
displacements, substituting Eq. (5) in Eq. (4) 
yields Eq. (7) 

( )

( )

2 2 2

2 2

2

2

2 ( )

2x x y x

y

u u v

x y x y

u u v

x y y

v u
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    

   
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 (7b) 

By solving these equations, displacement 
fields are calculated, using the resultant relations 
one can obtain the stress and strain distribution 
in different x and y. 

2.3. Initial and Boundary condition 

As mentioned before, the 2D FGM media is 
composed of four materials containing two 
metals (Ti-6A1-4V and Al 1100) and two 
ceramics (SiC and Al2O3). The mechanical 
properties of these materials are shown in Table 
1. 

Table 1. Mechanical properties of 2D FGM media [34]. 

C
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/
m

3
) 
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m1 Ti-6A1-4V 115 4515 0.31 

m2 Al 1100 69 2715 0.33 

C1 SiC 440 3210 0.14 

C2 Al2O3 150 3470 0.21 

The dimensions of the plane strain body are 
considered to be 1 m in the x-direction (Lx) and 
0.5 m in the y-direction (Ly). 

To investigate the effect of compositional 
gradient exponents (nx, ny), 5 states are assumed. 
As shown in Fig.1, there are two materials in top 
of the surface (C1 and m1), two materials in 
bottom surface (C2 and m2), two materials in right 
hand surface (m1 and m2), and two materials in 
left hand side (C1 and C2). For different nx and ny, 
the richness of each of the materials changes is 
shown in Table 2. 

It’s to be mentioned that if Lx = Ly, the volume 
fraction of material in some states are equal. 

The gradient of the elastic module, density, 
and Poisson’s ratio in the first state are shown in 
Fig 2. 

As can be seen, unlike composites that their 
properties change stepwise, in the FG materials, 
the properties are changed uniformly. This 
unique feature of these materials, which was 
described in the previous sections, has led to 
more applications. 

Table 2. Compositional gradient exponents (nx, ny) and the 
materials distribution. 

 Nx ny 
Volume fraction 

compression 

State 1 1 1 1 2 1 2m m C CV V V V= = =
 

State 2 0.2 0.2 1 2 1 2m m C CV V V V  
 

State 3 5 5 1 2 1 2m m C CV V V V  
 

State 4 0.2 5 2 1 2 1m m C CV V V V  
 

State 5 5 0.2 2 1 2 1m m C CV V V V  
 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 2. The gradient of elastic module (a), density (b), and 
Poisson’s ratio (c) in the first state 
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In this research, it has been considered that 

two impact loads are applied on the x and y 
directions. The surfaces are free. The time 
variation of impact loads is assumed as the 
following function in Eq. (8). 

( )F P t= 
 

(8) 

where P = 106 Pa. Variation of the loading P. ω(t) 
was represented by ramped loading and 
unloading paths as shown in Fig 3. The loading is 
started in time t = 0 and in t = 10 μs it reaches the 
maximum value which is equal to 1 MPa and then 
it starts to unloading and finally in t = 20 μs the 
load value reduces to zero. 

Initial conditions are indicated at t= 0 as 
follows: 

0 0
u v

and u v
t t

 
= = = =

   
(9) 

This means that the displacement and velocity 
of the particles in t = 0 are equal to zero. In 
addition, lateral boundaries in the top and right 
hand edges of Fig. 4 are assumed to be free. The 
traction boundary conditions are also taken into 
account for this problem. The compressive force 
input to the functionally graded media is always 
entered at the x = 0 and y = 0 axes (the bottom 
and left hand edges in Fig. 4). 

 
Fig. 3. Time variation of loading and unloading. 

 
Fig. 4. The boundary condition of the problem. 

2.4. Finite-difference implementation 

The finite difference is one of the well-known 
methods for solving differential equations. This 
method consists of approximating the differential 
operator by replacing the derivatives in the 
equation using differential quotients. In this 
article, for both spatial and temporal derivatives, 
central difference approximations have been 
used. The grid size is uniform in both directions. 
Let Δx and Δy be the grid sizes and Nx and Ny be 
the total mesh points in the x and y direction 
respectively [35]. In this study, Δx and Δy are 
equal to 0.01 m, Nx and Ny are taken to be 100 and 
50 respectively. According to this, 5000 elements 
exist in the final model. 

By substituting centered difference equations 
of the second order derivatives of a displacement 
component with respect to the time t and spatial 
variables x and y at the nodal point (i, j) in Eq. (7) 
we obtain: 
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Now by arranging the Eq. (10) finally we get: 
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In Eq. (11) Δt is the time step size and k  refers 

to the time index that varies from 0 to nt, the total 
number of time steps. In this research, the explicit 
finite difference method has been used. In the 
explicit method, the equation is solved for t + Δt 
by using the specified current state of the 
problem (at time t), the problem state at time t is 
determined and the stiffness matrix is also 
known at this moment. the time step size Δt is 
determined using the von Neumann stability 
criterion [36]. 

3. Numerical result 

3.1. Validation of numerical results 

In order to verify the derived model and 
solutions, firstly we reduce the governing 
equations of FGM material to a homogenous 
material (Ti-6Al-4V) and compare the obtained 

results with [7]. If the gradient variation of 
material properties vanishes, the equations 
would describe a homogenous material. So, we 
substitute the Young modulus, density, and 
Poison's ratio of Ti-6Al-4V in the equations 10 
and 11 as well as considering nx and ny equal to 
zero. Consequently, the material properties are 
constant at all points. The results have been 
obtained by writing an appropriate program in 
MATLAB. 

Figure 5 shows the behavior of wave, 35 μs 
after propagating in media that is made 
completely from Ti-6A1-4V. As it can be seen, the 
wave in the x and y directions is moving and in a 
special point, two waves interfere together that 
causes an increment in stress. 

Two arbitrary points A (0.05, 0.45) and B 
(0.05, 0.5) are selected to investigate the wave 
propagation. Fig. 6 shows the comparison of σx, 
σy, and σvon at different times. At t = 35 μs only the 
wave in the x-direction is crossed from point A, so 
the value of σx is equal to the incident wave and 
σy that is made by Poisson’s ratio effects. But 
point B is affected by the wave in x and y 
directions, so history of stress shows that σx and 
σy are equal to the summation of stress wave and 
the effects of Poisson’s ratio on them. The von 
Mises stress is also calculated at this point to 
show the behavior of stress in different 
directions. 

The compression of numerical and analytical 
stresses in Fig. 6 shows that they have acceptable 
adaptation. 

Now for FGM media, initially, the 
displacement, stresses, and von Mises stress 
diagrams are plotted and analyzed for three 
different times and in 5 different states. Then, 4 
points are considered on the four sides of the 
body, and the analysis is done on them. The 
distributions of displacements component u(x, y) 
and v(x, y) are plotted in Figs. 7 and 8. The 
displacements u(x, y) are shown in the five states 
and at three different times. 

The diagrams show that the axial 
displacement in the third state has the highest 
value and, conversely, state 2 has the lowest 
value. But the apparent motion of the particles in 
each of the five states is almost the same. Also, by 
comparing all states, in the fifth state, the wave 
has reached the end of the FG media earlier and 
has returned. In all states, the u-displacement is 
positive. 

 
Fig. 5. The von Mises stress distribution in an isotropic 

media. 
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Fig. 6. Analytical and numerical wave propagation 

compression in an isotropic media. 

Relatively, vertical displacement v(x, y) values 
in this study are larger than the axial 
displacement. In Fig. 8 vertical displacements are 
plotted for five states and in three times. As it is 
known and in all cases, for the time being, the 
wave has reached the end of the FG media and 
reflected. It is observed that in state 5, particle 
velocity is faster than the other states, and 
conversely, the lowest velocity of particle 
displacement is related to state 4. 

The distributions of the von Mises Stress (σv) 
are plotted in Fig. 9 for the five different states at 
35, 65, and 95 μs, respectively. 

As seen in these figures, the maximum of von 
misses stress occurs in the interaction of 
horizontal and vertical waves. The path of the 
maximum stress is different in states 1-5. It’s 
depended on the Impedance of material 
distribution. Moreover, when the impedance 
changes, the transient and reflected wave 
changes and this problem complicate the 
prediction of stress wave especially after 
reflection of the wave from the edges of the plane. 
The maximum stress happens in state 1 and in 
time 65 µs and the level of stress in state 3 is less 
than in other states.  

 

 

 

 
Fig. 7. Distribution of the axial displacement u(x, y) for the five states in 35, 65, and 95 μs. 
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Fig. 8. Distribution of the vertical displacement v(x, y) for the five states in 35, 65, and 95 μs. 

 
As seen in these figures, the maximum of von-

misses stress occurs in the interaction of 
horizontal and vertical waves. The path of the 
maximum stress is different in states 1-5. It’s 
depended on the Impedance of material 
distribution. Moreover, when the impedance 
changes, the transient and reflected wave 

changes and this problem complicate the 
prediction of stress wave especially after 
reflection of the wave from the edges of the plane. 
The maximum stress happens in state 1 and in 
time 65 µs. and the level of stress in state 3 is less 
than in other states. 
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Fig. 9. Distribution of the von Mises stress (σv) for the five states in 35, 65, and 95 microseconds. 

 
In Fig. 10 and Fig. 11 the time histories of u 

and v displacement components are computed at 
evaluation points A (0.2, 0.4), B (0.8, 0.4), C (0.2, 
0.1) and D (0.8, 0.1). 

In Fig. 10 the time histories of displacement in 
x-direction were evaluated for 5 states at points 
A, B, C, and D. Once the load is applied on the left 
surface of the FG media, the wave will reach 
points A and C firstly. With the comparison of 
time in different states, it is observed that at the 
instant of 3 microseconds in state 5, the wave 
reaches point A. then, after a short time, at states 
1, 2, 3, and 4 wave reaches this point (point A). As 

it is known, the maximum displacement at point 
A is related to state 3 and state 4. Also on average, 
the minimum level of change in this interval for 
this point is related to state 2. 

In Fig. 10 the time histories of displacement in 
x-direction were evaluated for 5 states at points 
A, B, C, and D. Once the load is applied on the left 
surface of the FG media, the wave will reach 
points A and C firstly. With the comparison of 
time in different states, it is observed that at the 
instant of 3 microseconds in state 5, the wave 
reaches point A. then, after a short time, at states 
1, 2, 3, and 4 wave reaches this point (point A). As 
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it is known, the maximum displacement at point 
A is related to state 3 and state 4. Also on average, 
the minimum level of change in this interval for 
this point is related to state 2. 

After point A, we arrive to point B, as shown 
in the diagram. The wave first reaches point B at 
4.1 microseconds in state 5, after that at 5.78 
microseconds, and in state 1, the wave goes to 
point B. And finally, at 6.2 microseconds, waves 
have reached point B in states 2 and 4. It is 
noteworthy that in state 4, up to 12 
microseconds, the variations in the 
displacement-time graph are very small, but after 
a 12 microsecond, a significant slope has been 
achieved. 

An optional point C is assumed at the bottom 
and left of the FG media .in this diagram, wave at 
first in state 5 arrived to point C and then in other 
states arrived at this point. It is noteworthy that 
although the wave amplitude is different in these 
five states, but it can be said that the wave in all 
states has the same behavior at point C. the 
maximum value of the axial displacement in point 
C is observed at state 3. 

 

 

 

 
Fig. 10. Time histories of axial displacement at A (0.2, 0.4), B 

(0.8, 0.4), C (0.2, 0.1), D (0.8, 0.1). 

Point D is considered at the end of the 
functionally graded media to show changes in the 
axial displacement of particles in this area. In all 
states, except for the 5th state, after 10 
microseconds, the wave has reached point D. At t 
= 14 μs, the vertical displacement value has 
changed from positive to negative. 

Figure 11 shows the variations of the v 
displacement at 15 microseconds at four points 
(A, B, C, and D) for the 5 states of FG media. 

In point A, in all five states, the wave arrived 
at t = 3 μs. The vertical displacement at t = 7.2 μs 
has reached its highest value in state 4. Also, the 
smallest variation in vertical displacement at 
point A is relative to state 5. 

In point B, the vertical displacement in the 
positive direction becomes maximal at t = 7.4 μs 
in states 2 and 4. Also, the minimum peak 
occurred in state 5. 

The third diagram in Fig. 10 is related to the 
vertical displacement of point C. in all states, 
between 0.8 to 1.2 μs, the wave reached point C. 
According to the diagram and in this period of 
time, it is shown that the minimum variation in 
this point occurred at states 4.  

 

 

 

 
Fig. 11. Time histories of vertical displacement at A (0.2, 

0.4), B (0.8, 0.4), C (0.2, 0.1), D (0.8, 0.1). 
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In point D, although the first excitement 
occurred at t = 1.4 μs, with the passage of time, 
changes of the vertical displacement at this point 
are close to zero in states 2 and 4. In state 5, the 
difference in the peak normal displacement levels 
are more discernible in comparison with the 
other states. 

Figure 12 shows the variations of σxx, σxy and 
σv

 
stress components at point A in the period of t 

= 15 μs for five states of functionally graded 
media. Point A has been selected near the loading 
zone. 

At first, σxx becomes maximal at t = 3 μs in 
state 5 and over time, amplitudes have decreased, 
after that, states 1, 3, 2, and 4 reach their 
maximum point, respectively. At point A with 
comparison σxx and σyy, diagrams, it is known that 

the yyσ values in this case are higher than the σxx. 

Also, in all states, the first peak of the σyy, stress 
occurred with a longer time delay than the σxx. In 
the σxx, diagram, the maximum value is related to 
state 5, but this value in σyy, diagram belongs to 
state 1. The third diagram in Fig. 11 is regarding 
to the von Mises stress that in this research is 

shown with a v . In v the diagram, it is 

observed that after a small initial peak, there are 
two large peaks for all the states that the 
difference between them is almost 0.5 MPa. 
Contrary to the two preceding diagrams, in Fig. 
12, von Mises stress values are obtained 
positively. Fig. 13 shows distributions of the σxx, 
σyy, and σv at point B in five states for FG media. 

 

 

 
Fig 12. Time histories of σxx, σyy, and σv stress components at 

A (0.2, 0.4). 

 
Among the selected points for analysis, the 

furthest point where the wave reaches is point B. 
at the end of functionally graded media, point B 
and in the σxx diagram, at first because the highest 
amount of compression is taken by ceramics, so 
the stress value was taken the amount in state 5. 
In this diagram, the maximum value of σxx is 
related to state 1 at t = 9.6 μs. 

In the σyy diagram, accurately to the chart 
becomes clear that the stress wave of its first 
peak has experienced at 5.1 microseconds. The 
maximum value of stress variation in state 2 
occurs at 10.8 microseconds. Also, it is 
noteworthy that in states 2 and 4, due to the 
compression of the metal, the stress wave in 
these states with longer intervals reaches point B. 

The last diagram in this figure belongs to the 
von Mises stress (σv) at point B. The following 
information is available from the σv diagram: The 
maximum stress value related to state 5 at t = 6.8 
μs first peaks of von Mises stress at point B in 
states 1, 3 and 2, 4 was occurred between 6.5 to 
7.5 microsecond and then after the second peak, 
the amplitude of σv stress is severely reduced. By 
comparison the σxx, σyy and σv diagram, it becomes 
clear that the maximum value of stress in point B 
occurred in the von Mises diagram. 

The time histories of stress components at 
point C were plotted in Fig. 14. 

It is obvious that the wave has reached point 
C earlier than point A, although two points are 
located on a radius. It can be seen that the first 
peak of von Mises has larger value in point C, 
however generally the maximum value of this 
stress is larger in point A. 

 

 

 
Fig. 13. Time histories of σxx, σyy, and σv stress 

components at B (0.8, 0.4). 
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Fig. 14. Time histories of σxx, σyy and σv stress component 

at C (0.2, 0.1) 

 

 

 
Fig. 15. Time histories of σxx, σyy, and σv stress 

components at D (0.8, 0.1). 

The time histories of stress components σxx, 
σyy, and σv at point D for five states were plotted 
in Fig. 15. 
In this figure, components of stress at point D, the 
last point assumed in the FG media, are plotted. 
In this research, points B and D are located on a 
radius. By comparing Fig. 12 with Fig. 14 it can be 
seen that the stress wave initially reaches point D 
and is reached to point B with a time delay, the 
reason for this is that point D is closer than point 

B to the loading. Like previous steps in the σxx, σyy, 
and σv diagram, the stress wave was initially 
reached to point D in state 5. In Fig. 15. The 
maximum value of stress is related to σv. 

In this study, it was observed that when the 
numerical value ny is greater than nx (ny > nx), the 
volume fraction of metal will be higher than 
ceramic. Due to the fact that metal has a higher 
ability to withstand mechanical stresses than 
ceramic, therefore, according to the type of 
distribution and application of external force on 
the body, the volume fraction of the metal should 
be more dominant in the direction in which the 
external force is applied and if the material is 
exposed to heat, the volume fraction of the 
ceramic should be considered in order to 
increase the temperature. According to the values 
and figures of stress obtained, out of 5 states that 
were analyzed, In state 4, the power of the 
volume fraction in the y-direction (ny) is more 
than in the x-direction (nx), so we will have the 
highest volume fraction of the metal in this case, 
and according to the analysis, it has shown the 
highest resistance to the applied force. In state 5, 
because (ny < nx), so the highest volume fraction 
of the ceramic is assigned to this case and the 
most stress on the body is recorded in this state. 
Also, it was observed that in state 5, the wave has 
reached the end of the material earlier and the 
slowest case of wave motion is related to state 4. 

4. Conclusions 

This paper investigates 2D functionally 
graded media composed of Ti6A14V, Al 1100, SiC, 
and Al2O3 Stress wave propagation in 2 
directions. The results show when the 
composition of the material is ceramic-rich or 
metal-rich, the changes in stress and 
displacement distribution are quite noticeable. 
Moreover, the effects of Al 1100 and Al2O3 
richness are more than Ti-6A1-4V and SiC 
respectively. Accordingly, the maximum values of 
displacements and minimum values of stresses in 
different investigated points correspond to the 
fourth state namely 𝑉𝑚2 > 𝑉𝑚1 > 𝑉𝐶2 > 𝑉𝐶1. On the 
other hand, It was observed that as the material 
composition is changed from metal-rich to 
ceramic-rich namely 𝑉𝑚2 < 𝑉𝑚1 < 𝑉𝐶2 < 𝑉𝐶1, the 
𝜎𝑥𝑥, 𝜎𝑦𝑦, and 𝜎𝑣𝑜𝑛  increase in wave propagation 

direction whereas the displacement levels 
decrease. In summary, impedance changes and 
material composition variation had noticeable 
effects on wave propagation of the functionally 
graded media.  
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