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A B S T R A C T 
 

This paper presents the thermal post-buckling analysis of functionally graded annular sector 
plates subjected to uniform temperature rise for the first time. The plate is consisting of a 
composed ceramic- metal material which the volume fraction of the component materials is 
assumed to change continuously through the thickness via a simple power law distribution.3D 
elasticity theory and non-linear Green strain tensor are used to derive the governing equations 
which are extended based on the principle of virtual work and solved via the graded finite 
element method. The non-linear equilibrium equations are solved by applying the Newtonɀ
Raphson procedure. The influences of material gradient exponent, various sector angles, 
thickness ratio, aspect ratio on the thermal post-buckling response of FGM annular sector plates 
subjected to uniform temperature rise are presented. Results indicate that the thermal post-
buckling response of FGM annular sector plates can be considered as a bifurcation point 
following a stable post-buckling path. 

 
 

 
1. INTRODUCTION1 
 
     In recent years, functionally graded materials 
(FGMs) as a kind of thermal barrier materials have 
used for structural components subjected to 
exceedingly high-temperature environments 
including nuclear reactors and high-speed spacecraft 
industries. In such conditions, high-temperature 
which is induced compressive stresses will be 
developed in the constrained plates; therefore, it will 
lead to buckling. Annular sector plates are often used 
as structural components in many engineering 
applications and are subjected to different thermal 
loading conditions. Hence, the thermal buckling and 
post-buckling response of FGM annular sector plates 
are of incited interest for engineering design. Gas 
turbine rotating blades made of FGMs can be 
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considered as one of applications of FGM annular 
sector plates subjected to high thermal loadings. 

     Although many researches have been conducted 
on the thermal buckling [1-6] and post-buckling [7-
17] analysis of rectangular FG plates and beams, 
among the plate-type structures, there have been 
less research attention on thermal buckling [18-25] 
and post-buckling analysis [26-32] of FGM circular 
and annular plate. There are a few studies related to 
buckling and post-buckling of FGM annular sector 
plates under mechanical load. For instance, based on 
classical plate theory, Hosseini-Hashemi et al. [33] 
performed DQ analysis for buckling behavior of 
radially FG circular and annular sector plates witch 
located on the Pasternak elastic foundation. Based 
on FSDT theory, Naderi and Saidi [34-36] employed 
an analytical solution to investigate the buckling 
behavior of relatively thick FG annular and sector 
plates witch located on Winkler elastic foundation. 
Asemi et al. applied 3D elasticity and finite element 
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method to study biaxial [37] and shear [38] buckling 
analysis of FGM annular sector plates resting on 
Winkler elastic foundation with fully or partially 
supported boundary conditions. Also, limited 
investigation focused on the thermal buckling of 
FGM annular sector plate, for example, Saidi and 
Baferani [39] investigated thermal buckling analysis 
of relatively thick FG annular sector plates. The 
equilibrium and stability equations are obtained 
based on FSDT. Finally, an analytical method was 
applied to solve it. In another study, Jabbarrzadeh et 
al [40] utilized FSDT ÁÎÄ 6ÏÎ +ÁÒÍÁÎȭÓ ÁÓÓÕÍÐÔÉÏÎÓ 
to study the thermal buckling of FG annular sector 
plate. Differential quadrature method was applied to 
solve the equilibrium and stability equations. Based 
on FSDT, Shaterzadeh and his co-athours 
investigated thermal buckling analysis of symmetric 
and anti-symmetric laminated composite plates with 
a cut-out [41] , and thermo-mechanical buckling 
analysis of FGM plates with an elliptic cutout [42]. In 
addition, Shaterzadeh et al [43] applied FSDT and 
finite element method to study the thermal buckling 
analysis of perforated FGM plates. 3D 
thermomechanical buckling analysis of perforated 
annular sector plates with multiaxial material 
heterogeneities based on curved B-spline elements 
was presented by Shariyat et al [44]. Based on 3D 
ÅÌÁÓÔÉÃÉÔÙ ÁÎÄ 'ÒÅÅÎȭÓ ÎÏÎÌÉÎÅÁÒ ÓÔÒÁÉÎ ÁÓÓÕÍÐÔÉÏÎÓ, 
Behzad et al [45] carried out the investigation about 
the thermal buckling analysis of FG perforated 
annular sector plates. Shaterzadeh et al [46] studied 
the stability analysis of FG annular sector plate 
under thermomechanical loading via 3D elasticity 
theory and using finite element method. 
     From the above literature review, it can be seen 
ÔÈÁÔ ÔÈÅ ÎÏÎÌÉÎÅÁÒ 6ÏÎ +ÁÒÍÁÎȭÓ ÁÓÓÕÍÐÔÉÏÎÓ ÁÎÄ 
plate theories have  been mostly applied to 
investigate post-buckling analysis of functionally 
graded material plates.  In this paper, 3D elasticity 
ÔÈÅÏÒÙ ÁÎÄ 'ÒÅÅÎȭÓ ÁÓÓÕÍÐÔÉÏÎÓ are employed. 3D 
elasticity leads to more realistic and accurate results 
than the other plate theories. Furthermore, the 
complete Green strain tensor is more acceptable for 
analyzing the geometrically non-linear behavior of 
the plates. 
     In this work, a numerical method is carried out by 
using the nonlinear Green strain tensor and, FEM 
based on 3D-elasticity theory to study the thermal 
post-buckling of FGM annular sector plates subjected 
to uniform temperature rise. The plate is consisting 
of a composed ceramic- metal material which the 
volume fraction of the component materials is 
assumed to change continuously through the 
thickness via a simple power law distribution. Three 
various boundary conditions have been considered 

such as: 1- Immovable simply supported edges. 2- 
Immovable simply supported radial edges and free 
circumferential edges. 3- Immovable simply 
supported circumferential edges and free radial 
edges. The principle of virtual work is utilized to 
derive the governing equations and the iterative 
NewtonɀRaphson procedure is applied to solve the 
non-linear equilibrium equations. The impact of 
material gradient index, sector angle, aspect ratio 
and thickness ratio on the thermal post-buckling 
behavior of FGM annular sector plates have been 
examined. The novel point of this paper is the 
investigation of thermal post-buckling behaviour of 
FGM annular sector plate with considering various 
boundary conditions for the first time. 

  
2. MATERIALS PROPERTIES AND GEOMETRY 
 
     A cermet FGM annular sector plate is considered. 
h, a, b and ɼ are thickness, inner and outer radius  of  
sector, respectively. The geometry of problem 

ὥ ὶ ὦȢ  — Ȣ  π ᾀ Ὤ are shown in 

Fig 1. 
     The material properties of FGM annular sector 
plate across the thickness are defined as following: 

( - )( )n

m c m

z
Q Q Q Q

h
= +

 
(1)  

     In which Q indicates material property including 
modulus of elasticity and coefficient of thermal 
expansion ‌, and subscripts m and c related to  the 
metal and ceramic component , respectively. 
0ÏÉÓÓÏÎȭÓ ÒÁÔÉÏ ÉÓ ÃÏÎÓÉÄÅÒÅÄ ÔÏ ÂÅ ÃÏÎÓÔÁÎÔ ÁÌÏÎÇ ÔÈÅ   
thickness.  

 
3. 3D ELASTICITY THEORY 
 

HookÅȭs law for this structure is considered as: 

( )Th=s e-eD
 

(2) 

where: 
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     where ‐  is the thermal strain components 

and „  and ‐ ὭȢὮ ὶȢ—Ȣᾀ are the stress and strain 

tensor components in cylindrical coordinates, 
respectively, and the elasticity matrix D is as: 

(4) 
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     It is assumed that the elasticity modulus E varies 
ÁÌÏÎÇ ÔÈÅ ÔÈÉÃËÎÅÓÓ ÄÉÒÅÃÔÉÏÎ ×ÈÅÒÅÁÓ 0ÏÉÓÓÏÎȭÓ ÒÁÔÉÏ 
ʉ ÉÓ ÁÓÓÕÍÅÄ ÔÏ ÂÅ ÃÏÎÓÔÁÎÔȢ 4ÈÅÒÅÆÏÒÅ  -ÁÔÒÉØ  ה is 
constant. 

 

Fig 1. Geometry of annular sector plate 
 

     The Green strain displacement relations in 
cylindrical coordinates are assumed as following. 

L NLe e e= +
 

(5)  
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     The cylindrical and natural coordinates are 
defined by 

( ) ( )( ) ( )

( ) ( ) ( ) ( )

2 2(2 )
, ,
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e e e e
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q q
x h z
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- -- -
= = =

- (7) 
 
     Where ρ ‚Ȣ  –Ȣ‒ ρ  are through r, ʃ and z 
coordinate axes, respectively. ὥ Ȣὦ Ȣ‍  ὥὲὨ Ὤ  
are the inner radius, outer radius, sector angle and 
thickness of each annular sector element. 
     Hence, the linear part of strain-displacement 
relations (6) can be considered in matrix form  in 
terms of cylindrical coordinate system as: 

‐ Ὠᴗ (8) 

     where the linear part of strain-displacement 
relations based on natural coordinates can be 
expressed as: 

‐ ɜᴗ (9) 
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(10) 

     Consider the three-dimensional 8-node linear 
brick element (Fig 2-b). In comparison to the 
conventional brick elements, material properties are 
among the nodal degrees of freedom. The 
displacement field vector ᴗ of an optional point of 
the element may be related to the nodal 

displacement vectors of the element 
( )eD through the 

shape function matrix N , as: 

ᴗ ╝ɝ  (11) 

where: 

{ }1 1 1

(

8 8 8

) . . .e U V U VW WD =
T

                     (12)  

 
(13)      
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     matrix N based on the natural coordinates can be 
expressed as [47]: 
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Fig 2. Schematic of an annular sector 
element. 

  
     Replacing (11) into (8), the linear part of strain-
displacement can be expressed as: 
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     Moreover, by substituting (11) into (9), the linear 
part of strain-displacement relations in terms of 
natural coordinate system can be expressed as: 
() ( ) ( )e e e

LLe =G D= DN
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where ὄ  ȢὮ ρȢςȣȢψ   are: 
  

(18)    

( )(1) (2) (3) (4) (5) (6) (7) (8)

L L L L L L L L L=
 

 

( )( )

( )

( )( )( )

( )
( )( )

( )
( )( )

(1, :)

(2, :)

(3, :)

(4,

1 1
0 0

( ) ( )4

1 1 1 1 1
0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )4 2

1 1
0 0

( )4

1
:)

L

L

L

L

i i i

e eb a

i i i i i i

e e e e e e e e eb a a b b a a b

i i i

i

i

i

i

eh

i

x h h z z

x x h h z z h x x z z

x b x

z x x h h

h x

å õ
æ ö+ +
=æ ö
æ ö-
ç ÷

å õ
æ ö+ + + + +
æ ö=
å õ å õæ ö- + + - + +æ ö æ öæ ö
ç ÷ ç ÷ç ÷

å õ+ +
æ ö=
æ ö
ç ÷

+
=

( )( )

( )
( )( )

( )
( )( )( )

( )

( )( ) ( )( )

( )

1 1 1 1 1 1
0

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )42 4

1 1 1 1
0

( ) ( ) (
(5, :

) ( ) ( ) ( )4 2

)L

L

i i i i i i i i

e ee e e e e e e e eb ab a a b b a a b

i i i i i i
e e e e e eh

i

b a a b

x z z x h h z z x x h h z z

b x x

z x x h h h x x z z

b x

å õ
æ ö+ + + + + +
æ ö-

å õ å õæ ö-- + + - + +æ ö æ öæ ö
ç ÷ ç ÷ç ÷

å õ
æ ö+ + + +
æ ö=

å õæ ö- + +æ öæ ö
ç ÷ç ÷

( )( ) ( )( )

( )
1 1 1 1

0
( )

(6
( ) ( )4

)

4

, :
i i i i i i i

e e eh b a

z x x h h x h h z z
å õ
æ ö+ + + +
=æ ö
æ ö-
ç ÷

 
 

(19)    

  
     The non-linear part of strain-displacement 
relations in terms of cylindrical coordinate system 
can be considered as: 

() ( )e e

NNL Le D=B
 

(20) 

where: 
(21)    
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(22)   

 
Also, the non-linear part of strain-displacement 
relations in terms of natural coordinates is as: 

() ( )e e
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(23) 

where: 
(24)    

( )(1) (2) (3) (4) (5) (6) (7) (8)
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where ὄ  ȢὮ ρȢςȣȢψ is given in Ref [48]. 
The displacement field, as well as the non-
homogeneity of the mechanical properties of the 
FGM plate can be determined based on their nodal 
values. Therefore, the graded finite element method 
can be applied to achieve to effectively trace smooth 
variations of the material properties at the element 

level. Thus, the shape functions analogous to those of 
the displacement field can be expressed: 
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In which Ὁ  is the modulus of elasticity for node i. ᴓ 

and ɂ are vectors of shape functions and modulus of 
elasticity of each element, respectively. 
Hence, Equation (4) can be rewritten as: 

╓ ɮᴓɧ (26) 

The principle of virtual work could be used to 
achieve governing equations, which is defined as: 
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To extend the variation of strain energy, the 
definition of Green strain tensor and its variation are 
experssed as: 
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where B and ║ in term of cylindrical  and natural 
coordinates are as follow,  respectively: 

L NL

L NL

= +

= +

B B B

B B B
 

(30) 

 

L NL

L NL

= +

= +

B

B
 

(31) 

where: 
(32)    

( )(1) (2) (3) (4) (5) (6) (7) (8)
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where ὄ  ȢὭ ρȢςȣȢψ   and ὄ   based on  natural 

coordinates  are  noted  in reference [48]. Therefore, 
Equation (27) can be written in a compact form as: 
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e e

T
e T

V V
K = + + = +ñ ñ  

() () ()L NL NL L NL NLɂ ū dV ɂ ū dV ɂ ū dV
e e e

T TT

V V V
+ +ñ ñ ñ  

()
() ( )   

L NLɂ ū dV
e

T
Th e Th

V
F e= +ñ         (35) 
 
And 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )

( ( ) )
16

e e e e
e e e eh b a

dV b a da d db
b

xx h z
-

= - + +
 

(36)    
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The first term of expanded form of stiffness matrix is 
linear and is related to ὑ, the second and third ones 
are nonlinear which are linearly dependent to the 
unknown variables and their summation is defines 
by ╚ . The fourth one is nonlinear which is the 
quadratic function of the unknown variables and is 
defines  by ╚ . 
By assembling the element matrices, the governing 
finite element equations of the FGM annular sector 
plate are: 

( )1 2L NL NL

D

= + +

=K F,

K K K K  
(37) 

     The post-buckling behavior could be obtained 
with the gradually rising in used thermal load. There 
are the non-linear terms in stiffness matrix, so an 
iterative technique must be applied. Newtonɀ
Raphson iterative procedure is employed to solve 
non-linear equilibrium equations [47].  The process 
at the n+1th iteration as follows: 

1n n nd+=D + DD
 

(38) 

where  

( )
1
( )d

-
D + D-= GK K F K

 
(39) 

where ὑ  can be computed as: 

╚╖░▒
‬ὑ

‬Ў
Ў  (40) 

     The sum of stiffness and geometric stiffness 
matrix  (ὑ ὑ  is tangent stiffness matrix and can 
be expressed as follows: 
 

tan

1 22 3L NL NL= + +K K K K
 

(41) 

     Stages of the numerical solution of the problem 
may be summarized as follows;  
1-  The  non-linear stiffness matrices (Eq. (34)) of the 
elements are determined based on the nodal 
displacements achieved at the previous loading 
increment. At the beginning of the solution 
procedure, these  components are zero.  
2-  The overall stiffness and force matrices of the 
plate are constructed through assemblage of the 
stiffness and force matrices of the individual 
elements.  
3-  The boundary conditions are imposed.  
4-  The tangential stiffness matrix is established 
using Eq (41).  
5-  Eq. (39) is solved for determination of the 
required increments in the nodal displacements to 
reach the solution.  
6-  If the following convergence criterion is not met, 
the iterative solution has to be continued from step 
1,  

1

1

n n

n

l+

+

D -D
@

D
 (42) 

where  lis a sufficiently small number, e.g., 0.0001.  

7-  In case of convergence occurrence, the results 
have to be saved (e.g., the load values and the 
resulting lateral deflections), the load is incremented 
and the solution process is continued from step 1.  
8-  Steps 1 to 7 are repeated till the assigned final 
values of the loads are reached.   
In present investigation, three various types of 
displacement boundary conditions are assumed as 
follow:  
a) For annular sector plates with immovable simply 
supported edges: 

, : , , 0,

/ 2, / 2 : , , 0

r a b u v w

u v wq b b

= =

=- = 
(43) 

b) For annular sector plates with immovable simply 
supported radial edges and free circumferential 
edges: 

/ 2, / 2 : , , 0,u v wq b b=- = (44) 

c) For annular sector plates with immovable simply 
supported circumferential edges and free radial 
edges: 

, : , , 0,r a b u v w= =
 (45) 

     For simply supported edges condition, only the 
value of displacements at the mid-surface of the 
plate are equal to zero. 
 
4.RESULTS AND DISCUSSIONS 
 
4. 1. Validation         
     In this part, a comparison study is carried out to 
show the effectiveness and accuracy of the present 
method. Thermal post-buckling of annular sector 
plates is not studied so far. Hence, post-buckling of 
an FGM square plate subjected to uniform 
temperature rise is re-considered [12]  for 
verification purposes. Na and Kim [12]  studied 
thermal post-buckling of all edges immovable simply 
supported FG plates subjected to uniform 
temperature rise using the three dimensional 18 
node element. To convert annular sector plate of 
present study to square plate, the sector angle is 
assumed as a small value ‍ πϽππρ rad and inner 
and outer radiuses of plate are chosen as large 
values: a=200 m, b=200.2 m and h=0.02. These 
geometric dimensions lead to nearly a square plates 
with length-to-thickness ratio of a/h=100. 
Furethermore, the material properties are assumed  
as Ὁ σωσ ὋὖὥȢ ‌ ψȢψz ρπ ρȾᴈ, Ὁ ρωωϽ
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υ Ὃὖὥ, ɻ ρσȢσz ρπ ρȾᴈ and 0.3u= [12]  .The 
post-buckling path of center point of plate for n=1 is 
achieved and compared with Ref [12] . Fig 3. 
indicates the variations of temperature versus non-
dimensional central displacement w/h. It can be 
seen that the present results are in an acceptable 
agreement with those reported in the literature. 
 

 

 
4. 2. Thermal Post -buckling Of FGM Annular 
Sector Plate       
     In this section, the post-buckling analysis of all 
edges immovable simply supported FGM annular 
sector plates for different values of volume fraction 
index, sector angles, aspect ratio and thickness ratio 
is presented. For this purpose, an FGM annular 
sector plate made of Al2O3-Ni with the following 
geometric and material properties characteristics is 
assumed: 
a= 0.25, 0.5m, b=1m, h=0.025, 0.0125 m, 

60 ,120 ,240b= .  

393 GPa,cE = 68.8*10 1  /ca
-=

, 
199.5 GPamE =

,
6

mŬ 13.3*10 1 /u-=  , = 0.3 . 

     Post-buckling paths are presented according to the 

non-dimensional transverse displacement . . It 

should be noted that all the fgures and contours are 
plotted by Matlab software. First, an immovable 
simply supported FGM annular sector plate is 
considered (a=0.5m, b=1m, h=0.025 m). The 
influence of power law exponents on the post-
buckling paths of plate subjected to uniform 
temperature rise is shown in Fig 4. This result 
corresponds to annular sector plate with ‍ φ0Ј and 
transverse displacement of center point of the plate. 
Fig 4. indicates that there is a suddenly change in the 
load-deflection curve and the response of the plate 
can be introduced as a primaryɀsecondary 
equilibrium path. Fig 4. shows that for the 
homogeneous plate, the response of the plate is the 
bifurcation-type buckling, and plate remains flat in 
the pre-buckling regions. Although, a non-linear 
stable equilibrium path is in post-buckling area. FGM 
plates start to deflect immediately after the thermal 
load is applied. However, there is a sudden change in 
load-deflection curve. The asymmetric distribution of 
the material properties in the thickness direction 
causes this behavior. The coupling between thermal 
forces and bending moments is created due to the 
asymmetric distribution of the material properties. In 
this case, the remained force passes through the mid- 
plane, not neutral surface of the plate. Hence, an extra 
bending moment influences on the plate, and the 

simply supported edges can not tolerate the 
additional moments, and plate start to transverse 
displacement by initiation of applying the thermal 
load. For the cases that the movable simply 
supported FGM plates were subjected to in-plane 
normal loads [48]  , there is not any sudden change in 
the load-deflection curve. Also, the response of the 
plate could not be considered as a primaryɀ
secondary equilibrium path, and FGM plates show 
non-linear bending behavior with unique and stable 
equilibrium paths.  
     A comparison between [48]  and present results 
denotes that in the present study when all edges of 
plate are immovable (u=v=w=0), the behavior of FGM 
plate subjected to thermal loads considered as a 
primaryɀsecondary equilibrium path. Also, results 
show that  by increasing the power law exponent, the 
volume fraction of ceramic constituent causes 
decreases, and hence, the plate becomes softer and 
experiences more transverse displacement. 
Moreover, by increasing the power law exponent, the 
strength of plate decreases at the post-buckling 
region. Figs 5 a-c show the deflection of plate for 
different temperatures and for n=1, z=h/2. 
 

 
Fig 3. A comparison between post- buckling 
equilibrium curves obtained by present 3D elasticity 
procedure and Ref [12]  for immovable simply 
supported FGM square plate subjected to uniform 

temperature rise (ὶ Ȣ— πȢ z=h/2).  
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Fig 4. Influence of  different power law exponent on 
post-buckling curves of  annular sector plate made of 
FGM   with immovable simply supported edges 
(h=0.025 m and ‍ φ0Ј)  

 

 
Fig 5. The post- buckling deformation type  of  
annular sector plate made of FGM with immovable 
simply supported edges  for   (n=1, z=h/2), (h=0.025 
m and ‍ φ0Ј) a) T=520ᴈ, b)T=600 ᴈ, c)T=1000ᴈ 
 
     The influence of thickness ratio on post-buckling 
paths of all-edge-immovable simply supported FGM 
annular sector plate subjected to uniform 
temperature rise is also studied . Therefore , the 
thickness of plate is considered to be h=0.0125 m.  
Fig 6 indicates post-buckling paths of center point of 
plate with ‍ φ0Ј  for various  power law exponent. 
A comparison between Figs 4. and 6. demonstrates 
that by decreasing the thickness of plate, the 
strength of plate at buckling and post-buckling 
region is decreased and the plate experiences more 

lateral deflection. Figs 7 a-c shows the deflection of 
plate for different temperatures and for n=1, z=h/2. 
 

 
Fig 6. Influence  of  different power law exponent on 
post-buckling curves of annular sector plate made of 
FGM with immovable simply supported edges 
(h=0.0125 m and ‍ φ0Ј) 

 

 
Fig 7. The post- buckling deformation type  of  annular 
sector plate made of FGM with immovable simply 
supported edges  for  (n=1, z=h/2), (h=0.0125 m 
and ‍ φ0Ј), a) T=120ᴈ, b)T=180 ᴈ, c)T=1000ᴈ 
 
     In order  to study  the influence of sector angle on 
thermal post-buckling behavior of plate, an 
immovable simply supported FGM annular sector 
plate with ‍ ρςπЈ, ςτπЈ is considered. Influence of 
power law exponents on center point deflection of 
plate with ‍ ρςπЈ, ςτπЈ  is shown in Figs 8. and 9., 
respectively. A comparison between results of ‍
ρςπЈ, ςτπЈ and ‍ φ0Јindicate that by increasing 
the sector angle, the strength of plate at buckling and 
post-buckling areas is decreased and the plate 
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experiences more lateral deflection. Figs 10 a-c and 
Figs 11 a-c show the deflection of plate for different 
temperatures with ‍ ρςπЈ, ςτπЈ  , respectively 
(n=1, z=h/2).  These results indicate that by 
increasing the temperature in the deep post-buckling 
regime, higher mode shapes are appeared. Also, 
these Figs denote that, by increasing the sector angle, 
number of buckling waves is increased.  

 

 

 
Fig 8. Influence of  different power law exponent on 
post-buckling curves of annular sector plate made of 
FGM with immovable simply supported edges  (h=0.025 
m and ‍ ρςπЈ) 
 

 
 
Fig 9. Influence  of  different power law exponent on 
Post-buckling curves of   annular sector plate made of 
FGM with immovable simply supported edges  (h=0.025 
m and ‍ ςτπЈ) 

 

 
 

 
Fig 10. The post- buckling deformation type  of  annular 
sector plate made of FGM with immovable simply 
supported edges for (n=1, z=h/2), (h=0.025 m and ‍
ρςπЈ)), a) T=480ᴈ, b)T=580 ᴈ, c)T=1000ᴈ 
 

 
 

 
Fig 11. The post- buckling deformation type  of  annular 
sector plate made of FGM with immovable simply 
supported edges for  (n=1, z=h/2), (h=0.025 m and ‍
ςτπЈ)), a) T=510ᴈ, b)T=610 ᴈ, c)T=1000ᴈ 
 
     The influence  of aspect ratio on post-buckling 
paths of all-edge-immovable simply supported FGM 
annular sector plate subjected to uniform 
temperature rise is also studied .Therefore , the 
inner radius of plate is supposed  to be a=0.25 m 
(b=1 m, h=0.025 m, ‍ φπЈ)).  Fig 12. indicates post-
buckling paths of center point of plate with different 
power law exponent. A comparison between Figs 4 
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and 12 demonstrates that by decreasing the inner 
radius of plate, the strength of plate at buckling and 
post-buckling areas is decreased. Figs 13. a-c shows 
the deflection of plate for different temperatures 
through the post-buckling path and for n=1, z=h/2.  
     Now, the influences of various boundary 
conditions on thermal post-buckling of FGM annular 
sector plate subjected to uniform temperature rise 
have been investigated (a=0.5 m, b=1 m, h=0.025 
m, ‍ φπЈ).The influence of power law exponents 
on the center point deflection of FG annular sector 
plate with immovable simply supported radial edges 
and free circumfrential edges is shown in Fig 14.  It 
can be seen that the post-buckling response of FGM 
plate can be considered as primary- secondary 
equilibrium path with a stable post-buckling regime. 
By applying free edges condition, the strength of 
plate at post-buckling is noticeably decreased. Figs 
15. a-c shows deflection of plate for different 
temperatures through the equilibrium path for n=1, 
z=h/2. 
     Post-buckling paths of FGM plate with immovable 
circumferential edges and free radial edges with 
various power law exponent are shown in Fig 16. 
The influence of power law exponent on post-
buckling paths is similar to the other boundary 
conditions. But by comparing the results of various 
boundary conditions, it is shown that in this case, the 
buckling and post-buckling of plate is increased. Figs 
17. a-c  shows deflection of plate for different 
temperatures  through the equilibrium path for n=1, 
z=h/2. Finally For giving a clear sense of the 
benchmark results, the critical temperature values of 
the presented curves extracted from post-buckling 
paths are reported in Table 1. 
 

 
Fig 12. Influence  of  different power law exponent 
on Post-buckling curves of   annular sector plate 

made of FGM with immovable simply supported 
edges (a=0.25, h=0.025 m and ‍ φπЈ) 
 

 

 
Fig 13. : The post- buckling deformation type  of  
annular sector plate made of FGM with immovable 
simply supported edges for (n=1, z=h/2), (a=0.25, 
h=0.025 m and ‍ φπЈ), a) T=360ᴈ, b)T=410 ᴈ, 
c)T=1000ᴈ 
 

 
Fig 14. Influence of  different power law exponent on 
Post-buckling curves of annular sector plate made of 
FGM with immovable simply supported edges at  —

Ȣ for different power law exponent (a=0.5 m, 

h=0.025 m and ‍ φπЈ) 
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Fig 15. The post- buckling deformation type  of  
annular sector plate made of FGM with immovable 

simply supported edges at  — Ȣ  for  (n=1, 

z=h/2), ( h=0.025 m and ‍ φπЈ), a) T=310ᴈ, 
b)T=410 ᴈ, c)T=1000ᴈ 

 
Fig 16. Influence of  different power law exponent on 
post-buckling curves of   annular sector plate made 
of FGM with immovable circumferential edges and 
free radial edges (a=0.5 m, h=0.025 m and ‍ φπЈ) 
 

 

 
Fig 17. The post- buckling deformation type  of  
annular sector plate made of FGM with immovable 
simply supported edges at r=a, b   for  (n=1, z=h/2), ( 
h=0.025 m and ‍ φπЈ), a) T=560ᴈ, b)T=700 ᴈ, 
c)T=1000ᴈ 

Table 1: The Influence of different power law 

exponent on critical temperature of immovable 

simply supported FGM annular sector plates  

N 

a=0.5m, 

b=1m 

h=0.025 m 
60b= ¯ 

 

a=0.5m, 

b=1m 

h=0.0125 m 
60b= ¯ 

 

a=0.5m, 

b=1m 

h=0.025 m 
120b= ¯ 

 

a=0.25, 

b=1m 

h=0.025 m 
60b= ¯ 

 

n=0 714.54 186.703 689.923 503.226 

n=1 538.412 136.084 507.203 369.194 

n=3 535.814 133.0929 505.518 366.82 

n=10 533.221 130.0932 501.139 362.977 

 
5. CONCLUSIONS 
 
     In this study, 3D elasticity approach is used to 
investigate the thermal post-buckling analysis of 
functionally graded annular sector plates. The Green-
Lagrange nonlinear strain-displacement relation is 
assumed for large deflections. The governing 
equations are extended via the principle of virtual 
work and solved based on a GFEM. Finally, Newtonɀ
Raphson procedure is applied to solve the non-linear 
equilibrium equations. The influences of material 
gradient exponent, various sector angles, thickness 
ratio, aspect ratio and three various boundary 
conditions on the thermal post-buckling response of 
FGM annular sector plates have been carried out. 
 
Some of the innovations in the present study are: 

- Analyzing post-buckling of FGM annular 
sector plates subjected to uniform 
temperature rise for the first time.  

- Using 3D elasticity theory instead of the 
approximate plate theories that shows the 
behavior of the plate more real.  

- The Green-Lagrange nonlinear strain-
displacement relation is taken into account 
for large deflections. 

- The coupling between thermal load and 
bending moments of FGM is studied. 
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- The influences of three various boundary 
conditions on post-bucking response of 
plate have been presented. 

 
Furthermore, the following conclusions are obtained 
from results: 

 
- The post-buckling behavior of FGM annular 

sector plate for different boundary condition 
can be noticed as primary- secondary 
equilibrium path.  

- While the power law exponent increases, 
the post-buckling resistance of the plate is 
decreased.  

- By increasing the sector angle, post-buckling 
strength of the plate decreases and higher 
mode shapes appears in the deep post-
buckling regime.  

- While the thickness of plate decreases, post-
buckling strength of the plate is noticeably 
decreased.  

- Post-buckling strength of plate with 
immovable circumferential edges is much 
more than the other boundary conditions. 
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