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In this paper, a solution procedure is presented for free vibration of combined cylindrical-
conical composite shells including the shear deformation effect of the shell. The solution
presented in this study is obtained directly from the governing equations for five
displacement components according to Hamilton’s principle. This solution is in the form of
a power series in terms of a particularly convenient coordinate system. In this study, the

effects of geometry and material parameters on the natural frequencies are investigated.
Also, to illustrate the validity of the present solution procedure, analytical results are
verified with many studies and compared with those of the present numerical ABAQUS
analysis. The outcomes showed a good agreement between the obtained results. The
novelty of the present study is incorporating the transverse shear deformation in
calculating the natural frequencies of the joined cylindrical-conical shells. In previous
literature, this topic has not been studied in such a wide scope.

1. Introduction

Cylindrical and conical shells have
widespread usage in the industry owing to their
good mechanical and physical properties.
Conical shells have not been as widely reported
in the literature compared to cylindrical shells.
This is due to the increased mathematical
complexity associated with the effect of the
variation of the radius along the length of the
cone on the elastic waves. The approximate
methods of calculating the natural frequencies
for conical shells have been found by several
authors [1], [2]. Many researchers, such as Love,
Donnell-Mushtari, Timoshenko, Reissner,
Fliigge, and Sanders have presented various
theories of shells with different assumptions and
approximations for the sake of simplification.
Many of them, such as Donnell-Mushtari,
Timoshenko, Reissner, and Fliigge have solved
various shell problems based on Love's
postulates [3]. He et al. studied a unified power
series method for vibration analysis of
composite laminate conical, a cylindrical shell,
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and an annular plate. They investigated the
effect of the geometric parameters and material
constants (e.g., elastic restrained spring stiffness
constants, the angle between the shell surface
and axis, length to the radius ratios, and
modulus ratios) on the free vibration
characteristics of the composite laminated
structure [4] Kouchakzadeh and Shakouri
studied the vibrational behavior of the two
joined cross-ply laminated conical shells. They
reviewed the natural frequency and effects of
semi-vertex angles, meridional lengths, and shell
thicknesses by solving the problem using
Donnell theory and Hamilton’s principle [5]
Caresta and Kessissoglou offered a new
recommendation based on Donnell-Mushtari
and Flugge's equations to describe the free
vibration characteristics of coupled isotropic
cylindrical-conical shells. They also investigated
the effects of the junction between the coupled
shells and the boundary conditions [6].
Xianglong et al. studied the effects of the semi-
vertex angle of the cone and the elastic restraint
parameters on the free vibration behavior of the
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shell according to Reissner's thin shell theory
[7]. Bagheri et al. evaluated the free vibration of
joined conical-conical shells with higher-order
shear deformation theory in various types of
boundary conditions for the shell ends. The
produced system of equations was discretized
using the semi-analytical generalized differential
quadrature (GDQ) method [8].
Mohammadrezazadeh and Jafari studied the
nonlinear vibration analysis of laminated
composite angle-ply cylindrical and conical
shells. Also, they investigated the effects of
several parameters including the layers’ angle,
the number of the layers, semi-vertex angle,
length, and radius, as well as each layer's
thickness on nonlinear frequency ratio,
fundamental linear frequency [9]. Qin et al.
studied a unified Fourier series solution for
vibration analysis of FG-CNTRC cylindrical,
conical shells, and annular plates with arbitrary
boundary conditions. They used a micro-
mechanical model based on the developed rule
of mixtures [10]. Previously, no study has been
conducted on the composite joined conical-
cylindrical structures using first-order shear
deformation theory (FSDT). In this research, the
free vibration of joined conical-cylindrical
composite shells is investigated based on higher-
order shear deformation theory. After
calculating the natural frequencies and
verification of the results, the effect of geometric
parameters material and lay-up is studied. The
novelty of the present study is incorporating the
transverse shear deformation in calculating the
natural frequencies of the joined cylindrical-
conical shells. In previous literature, this topic
has not been studied in this wide scope.

2. Governing Equations for Joined
Conical-Cylindrical Shells

Consider a joined conical-cylindrical shell
made of a composite material of a uniform
thickness of h, small radius of R;, large
(intersection) radius of R,, slanted length of L.,
cylinder length of L;, and vertex half angle of .

Meridional, circumferentia, and normal

directions of the conical and cylindrical shell are
L L L L

denotedby — = < x <=, -2 < x,<30<
2 ¢ 2 2 S 2

0 < 2m, and — %S z < +% , respectively. The
adopted coordinates system (x.,0.,z., Xs,05,25),
geometric characteristics, and sign convention of
the joined shell are depicted in Fig. 1. Also,
displacement components for the cone and
cylinder in coordinate system directions are
(ueve,w,) and (ug,vg,wy), respectively.
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Fig. 1. Schematic of a thin joined cylindrical-conical shell

To capture the thickness shear deformations
and rotary inertia effects of the conical-
cylindrical shell, FSDT was used to formulate the
governing equations of the shell. Based on FSDT,
components of the displacement on a generic
point are represented according to the mid-
surface characteristics as follows:

For conical shell:

uc(x,0,z,t) = up(x,0,t) + z0,.(x,0,t) (D
v.(x,0,2,t) = vy.(x,0,t) + z04.(x,6,t) (2)
we(x,0,2,t) = wy.(x,0,t) (3)
For cylindrical shell:
ug(x, 0,2, t) = ugs(x, 6,t) + z0,,(x, 0,t) (4)
vs(x,0,2,t) = vos(x,0,t) + z0g4(x, 0, t) (5)
we(x,0,z,t) = wys(x, 6,t) (6)
In the above equations, u., v, and w, are the
meridional, circumferential, and normal
displacements of the conical shell, respectively.
Also, wu,, v, and w; are the radial,

circumferential, and normal displacements of
the cylindrical shell, respectively

A subscript 0 denotes the characteristics of
the mid-surface. Besides, @, , @g. , Dys, and Bgg
are the transverse normal rotations about the x
and 6 axes for conical and cylindrical shells,
respectively. According to FSDT, the components
of the strain field on an arbitrary point of the
conical and cylindrical are be obtained in terms
of strains and curvatures of the mid-surface of
the shell as follows:

For conical shell:

Exx,c éxx,c Kxx,c
[fee,c] £90,c [Kee,c]
Vx6,c| = [Vxo.c|+ Z|Kx6,c (7)
Yxz,c {]’/xz,cj Kyxz,c
Yozc sz,c Koz,
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For cylindrical shell:
Exx,s [Sxx,s ] Kxx,s
€06,s €66,s Koo,s
VYx0,s| = ny,s + z| Kx6,s

Vxz,s Y. Kxz,s (8)
Tl I L I o
6z,s

According to Love’s theory, the kinematic
relations between the displacement components
and strain and curvatures are [13]:

_ Ouy

€xx = 5 9
o = — (6v0+_ na + ) 10
oo = 3 o\ 38 uysina + wycosa (10)
1 9y 1 . dv, (11)
Y =Rt 06 R(x) T T ox
aw,
Vaz = a_xo + @, (12)
.1 ow, 4 vecosa (13)
Yoz =Rt 90 © "° " R(x)
a9
o = axx (14)
1 00¢
=— [ — 15
kgg R(X) (Q)xsma + 30 ) ( )
1 00, 00 1 .
=— - 16
k0 =R a0 Tax  RGo Lo (16)

In the above equations, « is the angle of the
semi-vertex of the conical shell. In the case of a
cylindrical shell, a is equal to 0 and (x) = R, .

In Egs. (9) to (16), in case of a conical shell,
Dy = Oxc » Do = Doc » U = Uoc » Vo = Vo , and
Wy = Wy.. Also, in the case of a cylindrical shell,
Q)x = st ’ Q)G = o@s » Ug = Ups , Vo = Vys, and
Wo = Wos.

The dynamic version of the principle of
virtual work (Hamilton’s principle) is expressed
as follows [10]:

T
f (6k; —6U)dt=0 i=c,s (17
0

where §U; denotes the virtual strain energy,
6V; is the virtual potential energy due to the
applied loads, and &k; shows the virtual kinetic
energy.
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ki = fffvi pi(u,0u; + v,67; +

h
widw,)dV; = ffAi J2ullo,i (20,61, +
2
1:7o,i51'70,i + Wo,i&{Vo,i) +'11,i(u0,i6¢x,i +
®x,i§uo,i * 1'70,1'5@9,1' + Q)e,i(wo,i) +
Ly, i(05,:60y; + 0604, )}R; (x)dx;d6;

(18)

U = ffAi(Nll,i5é11,i + Ny i6€22, +
Nypi6€15; + Noyi0€5q; + Myqi6ky; +
My, ;6ky; + Mypi0kyy; +

M21,i5kxy,i + Qx,i5é13,i +
Qp,i0€23,)R; (x)dx;d6;

(19)

where [11]

L= |pzidz i=123 (20)

|
NS —— >

where p is the density of shell material.

The relation between the stress resultants
and stress fields is:

For the conical shell:

V.
11,c _ 0-11,C _
N22,c 022 ¢
h ,
Nip 7| O12,¢
Nt 021,¢ dz
M. A Z011,c
_hlzo
Mzz,c > Zazz,c
12,c
Mipe| |22 (21)
L 21,c
»MZI,C
h
2
Ql,c] _ [013,c] dz
Q2 023, (22)
_h
2
For the cylindrical shell:
_N -
11,s _ 0'11’5 _
N22,s 0226
h ,
Nip s 2| O12,s
Nais| 021,s dz
Mg A Z011,s
_hlzo
M22,s > Zazz,s
12,5
M12,s 70 (23)
L 21,5
»M21,s
h
2
le] _ f[013s]d
- o
Qus 23,5
h (24)

where (N;q, N5, Ni3) and (My,, M,,, M;,;) are
stress and moment resultants per unit length,
respectively. Moreover, o;; shows the elements
of the stress vector, defined in [11].
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3. Equilibrium Equations

After substituting the above relations in Eq.
(17), and partial integration and collecting
similar terms, governing equations for the
equilibrium of the conical shell are obtained as
follows:

ON;, sina dN,,
ox + (Nyq _sz)m‘F R()30 q
o)
R(x)002
= lyity + 1,0, (25)
N,, sina 0N, Q,cosa
R(x)06 +2(Ni2) R(x) = ox R(x)
0%v
~de P (R(x)692>
= I,V + 1,0, (26)
Ny,,cosa 0Q,; Q;sina a0,
" R(x) ' ax ' R(kx)  R(x)d0
0%w
—at P(R(x)692>
62
+ N, 92 Iywy 27)
oM, sina  0M,,
pp + (M3, — Mzz)m +'R(x)69 -0 28)
= L, + 1,0,
oM, sina  0M;,
R(x)96 + 2(M12)m + ax Q2
= Ly + 0, (29)

In the above equations, P is internal pressure
and N, is axial force. For cylindrical shells,
R(x) = R, and a is set to be equal to 0.

4. Constitutive Equations

The constitutive relations for the laminated

conical-cylindrical shell are expressed as
follows:
[Nu] [An A, Ae Bin By 316][5:11]
Ny, Ayr Az Aze B By Bagl|€22
N12 A61 A62 A66 B61 B62 B66 Ié12|
My |~ [Biy Biz Big Dix Dip Digf| ko |
My| (B Ba Bas Du Daz Dag kZJ
M, Bs1 Bgz Bge Ds1 Dez  Degllky,
(30)
[ 2] —k [A44 A45] [8'23]
Q1 S1Ass  Assl €13 (31

where kg is the shear correction factor and is
considered to be equal to 72/12 according to

Mindlin's assumptions [11]. Also, 4;; , B;;, and
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D;j are composite stiffness matrices defined in
[12].

5. Boundary Conditions

All types of boundary conditions can be used
at both ends of the cone or the cylinder. The
simply supported boundary conditions at x, =
—L./2 andxg = +L;/2 are expressed as
follows:

(32)

6. Continuity Conditions

The continuity conditions at the joint of the
two shells can be represented as follows:

atx,=L./2 &xg=—L/2:

U COSA — W SIina = Ug (33)
U, Sina +w,cosa = wg (34)
v, = Vs (35)
Dic = Pis (36)
Boc = Do (37)
Nyccosa — Qyesina = Ny (38)
Ny sina + Qe cos @ = Qys (39)
Nxg. = Nyo (40)
Mo = Mys (41)
Miygc = Mygs (42)

For solving the above equations, solutions of
the following form are assumed such that they
exactly satisfy both the boundary and the
continuity conditions:

For the conical shell:

Ug(x,0,t) = U.(x) cosnf e/t (39)
Voc(x,0,8) = V.(x) sinnd e/t (40)
W (x,0,t) = W,(x) cosng e/t (41)
Brc(x,0,t) = D (x) cosnb eIt (42)
Do (x,0,t) = By (x) sinnf e~ /ot (43)
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For the cylindrical shell:

ugs(x,0,t) = Us(x) cosnd e /@t (44)
vos(x,0,t) = Vy(x) sinnf e~ /et (45)
wos(x,0,t) = Wy(x) cosnf e /@t (46)
By s(x,0,t) = D 5(x) cosnf eIt (47)
Bos(x,0,t) = Py s(x) sinnd eIt (48)
where
U;(x) = Z amix;"i=c¢,s (49)
ngo=0
W) = ) bpa™i=cs (50)
me
W;(x) = Z Cmixi™ i =¢,5 (51)
"
D, :(x) = Z dmixi™i=c,s (52)
m;o
i) = ) fiti™ 1= 5 (53)
m=0

After substituting the above functions in the
governing Eqgs. (25) to (29), the following
recurrence relations are obtained:

Atz = T110me1 + T2 + Ti3@m
+T140m—2 + Tisbymiq + Tiebm
+T17¢m+1 + TrgCm + T1,9Cm—1
T 100m+1 + Toa1dm + To12dm—1 (54)
+T1,13dm—2 + T1,14fm+1 + T1,15fm
bz = To10me1 + T22am + Tozbimyy
+T24bm + Tosbpm_1 + Toebm—s
+T27¢m + T28Cm-1 + T20dme1
+T2,10dm+T2,11fm+1+T2,12fm (55)
+T2,13fm—1+T2,14fm—2

Cms2 = T31me1 + T32am + T33bsy
+T34Cme1 + T35Cm + T36Cm-1
+T37Cm-2 + Tsgdmer + T39dm (56)
+T310dm-1 + T311fm + T312fm-1

Atz = Ta1Qmer + Ta20m + Tuz@ipy
+Taa0m—2 + Tasbmyr + Tagbm
+Ta7Cma1 + TagCm + TaoCm—1
+T410dme1 + Tan1dm + Ta12dm—q (57)
+Ta130m—2 + Ty1afme1 + Tasfm
fm+z = Ts1@me1 + Ts20im + Tszbmeq
+Ts4bim + Tssbm—1 + Tsebm—2
+T57¢m + TsgCm-1 + T59dme1
+Ts510dm + Ts11fm+1 + Ts12fm (58)
+T513fm-1 + Ts14fm—2

where T;; parameters are introduced in the
Appendix.

After applying the continuity and boundary
conditions and global assembling, a general
relation is obtained as follows:

KX — [Myw? + Myw* + - ]X = [0] (59)

where M is the generalized mass matrix, K is the
generalized stiffness matrix, and X is the
unknown displacement vector (mode shape).
The natural frequencies of the structure are
obtained by solving the above equation using
numerical techniques within a MATLAB code.

7. Numerical Results and Discussion

Finite element modeling (FEM) was
performed in ABAQUS 13.6 software. The
geometric model made in the software is a
shell model. A total of 13,460 S4R shell
elements were used for meshing. The
procedure described in the previous
sections is used herein to study the free
vibration of joined conical-cylindrical shell
system made of composite material. In this
section, first, some comparison studies are
conducted. Next, parametric studies are
performed to examine the influences of
involved parameters. Numerical
calculations show that including 50 terms
(m=50) in the series solution provides
satisfactorily converged results for the
natural frequencies. The element type is
quadratic 8-node shell element (S8R). The
number of elements increases from 4500 up
to 520000 elements. When the number of
elements reaches 94,000, the results started
to converge (Fig. 2).

Before presenting the results, the non-
dimensional frequency parameter is introduced
as follows:

h
W, = P wR, (60)
Aqq

o5 lyg—a—u = B ——

——n=1

b =2
=3
——=4
——1=5
=6

n=7

S—s —

—d =5
0 n=9
4500 104500 204500 304500 404500 504500

Number of Element

Linear (n=0)

Fig. 2. The convergence of the frequency parameter
w, for a simply supported - simply supported joined
isotropic conical-cylindrical shell based on element number
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8. Comparison Studies

The first comparison study calculates the
first six frequencies of a joined cylindrical-
conical shell for each circumferential mode
number n. The numerical results of this study
are compared with those reported in several
references as shown in Table 1.

For an isotropic combined conical-cylindrical
shell, the material and geometric parameters
are:

E =211GPa, v=03,p = 7800
m

z—‘:= 0.5 ,h =0.01R; ,R, = 0.4226R; ,a = 30°
where w and w, are referred to as the frequency
and its parameter of the combined shell.

The frequency parameters were compared
for a combined shell with the above materials,
geometric parameters, and simply-supported
boundary conditions at both ends with ABAQUS.
The model is shown in Fig. 3.

The results are shown in Table 2.

(b)

Fig. 3. Finite element model in ABAQUS: a) Elements mesh
pattern and b) Lowest asymmetric shape (n=5)

Table 1. Comparison of dimensionless frequency parameter w_c for a free-clamped joined isotropic conical-

cylindrical shell

W,

n Present Kouchakzadeh and
Shakouri [5]

Caresta and
Kessissoglou [6]

Efraim and .
. Irie et al. [4]
Eisenberger [11]

0 0.5035 0.5038 0.5038 0.5038 0.5047
1 0.2928 0.2929 0.2929 0.2929 0.2930
2 0.1103 0.1000 0.1020 0.1000 0.1010
3 0.0952 0.0876 0.09377 0.0876 0.9076
4 0.1512 0.1446 0.1506 0.1446 0.1477
5 0.1986 0.1995 0.2039 0.1995 0.2021

Table 2. Comparison of the dimensionless frequency
parameter w, for a simply supported joined isotropic
conical-cylindrical shell

n W,
Present Present Error Percents
(Analytical) (ABAQUS)

0 0.0651 0.067 291%
1 0.4925 0.4898 0.27%
2 0.3509 0.3512 0.03%
3 0.2597 0.2609 0.12%
4 0.2117 0.2121 0.04%
5 0.2121 0.2102 0.19%
6 0.2448 0.2458 0.1%
7 0.2944 0.2963 0.19%
8 0.3512 0.3580 0.68%
9 0.4136 0.4150 0.14%
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According to Table 2, the fundamental
frequency occurs at n=4 (for analytical method)
and n=5 (for the ABAQUS method), indicating a
close agreement.

9. Parametric Studies

After validating the proposed solution
method, we analyzed the results of the natural
frequencies for the free vibration of a shear
deformable conical-cylindrical shell system
made of a linearly elastic composite material. In
this section, the composite cylindrical-conical
shell with E-glass epoxy properties (Table 3)
and geometrical properties (Table 4) is
investigated. The considered lay-up is [0/90].
Unless stated otherwise, the properties
mentioned in Tables 3 and 4 were applied. The
boundary condition is simply supported at two
ends.
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10. Effect of the Cone Semi-vertex
Angle

The effect of the semi-vertex angle of the
composite cylindrical-conical shell on the
natural frequencies is investigated in Figs. 4 to 6.

Table 3. Properties of the material of composite shell [14],

[15]
P E E G
. 1 2 12
Material (k_gs) (GPa)  (GPa) (GPa) 12
m
E-Glass/Epoxy 2100  39.2 8.6 3.7 0.28

Table 4. Geometric parameters of the conical shell

L =1 Composite
€T Rs;(mm) R.(mm) h(mm) lay-up
(mm)

angles

200 I 0.4226R;  0.01R; [0/90]

o

w

=

-

=

I

<<

a

>

O

=

-

-,

& 10 30 50 70

o

o

SEMI-VERTEX ANGLE OF CONE
n=0-Analytical <~ n=0- Abaqus

n=1-Analytical n=1- Abaqus

Fig. 4. Natural frequency parameter versus semi-vertex
angle of the cone for circumferential wave numbers (n=0,1)

z 05 e

g 04 o Q 2

S 03 o 00
% 02 L N
§ 0185 g”

go »

W 10 30 50 70

Semi-vertex angle of cone

@ n=2-Analytikal —@— ns2- Abaqus
@ n=3-Analytical - @ n=3- Abaqus
@ n=4-Analytical n=d- Abaqus
@ ns5-Analytical @ ns5- Abagus

Fig. 5. Natural frequency parameter versus semi-vertex
angle of the cone for circumferential wave numbers (n=2:5)
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e - g [+ 8
5 \ -~ &—8
$ 0230\ g— ——
B LR
€ gasy /
o o
I S
g 0139 g
e
0.08 Q Semi-vertex angle of cone
10 30 50 70
®— n=6-Analytical @ n=6- Abaqus
@ nu7-Analytical @®— nu7- Abaqus
@ n=8-Analytical @ n=8- Abaqus
n=9-Analytical @ n=9 Abaqus

Fig. 6. Natural frequency parameter versus semi vertex angle
of the cone for circumferential wave numbers (n=6:9)

As can be seen from Figs. 4 to 6, by increasing
the semi-vertex angle of the cone, for higher
values of the circumferential wave number
(n=6:9), the natural frequency is converged to an
almost constant value. Also, the minimum
natural frequency for the values of n greater
than 1 occurs at « = 20° while the maximum
natural frequency occurs at ¢ = 20° for n=0 and
n=1. For n=0, by increasing the semi-vertex
angle, the natural frequency is first increased
and then decreased. However, for other values of
n, no special trend exists. Just for higher values
on n (n=6:9), the natural frequency is converged
to a special value for higher values of.

11. Effect of Thickness

The effect of the thickness of the shell on the
natural frequency is represented in Table 5

As can be seen in Table 5, by increasing the
value of h/R, from 0.01 to 0.03, the
fundamental mode number (n) is decreased.
However, it is unchanged by increasing the value
of h/R, from 0.03 to 0.05 (n=3).

12. Effect of Length of Shell

The effect of the length ratio of the combined
shell on the natural frequency is studied in Fig.
7. The radius of the cylindrical shell is assumed

o L
to be constant. Also, for a specific value of the R—S
S

ratio, the ratio of % is changed by changing the
value of L. . The lay-up of the composite shell is
considered to be [0 / 90],.

Table 5. Effect of thickness of the shell on the frequency
parameter of a conical-cylindrical composite shell

n
h/R,
0 1 2 3 4 5

0.01 0.663 0.534 0.371 0.261 0.220  0.191*
0.02 0.715 0.562 0.399 0.310 0.270*  0.295
0.03 0.756 0.584 0.410 0.321* 0.333 0.368
0.04 0.772 0.606 0.424 0.359* 0.391 0.436
0.05 0.781 0.611 0.421 0.378* 0.438 0.491

*: Lowest (fundamental) mode number
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Fig. 7. Effect of length ratio of shell on natural frequency for
n=5a) 2= =0.5b)=1 0 =2,andd) =3
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L
As can be seen, regardless of the value of R—S
S

ratio, the natural frequency is increased by

. . L
increasing the value of L—S .
Cc

13. Effect of the Orthotropic Ratio

Fig. 8 presents the variation of the frequency
parameter versus the orthotropic ratio (E;/E,)
studied for different lay-ups.

Based on the obtained results, the natural
frequency of the shell is decreased by increasing
the ratio of E;/E,. For higher ratios of E;/E,,
the rate of decreasing natural frequency is
decreased. Moreover, it is observed that the lay-
ups [0/90 /0 /90] and [0/45 / 0 / 45] have the
greatest and smallest natural frequencies,
respectively.

14. Effect of Number of Layers

In this section, the effect of the number of
layers (N;) on the natural frequency is
investigated. Figs. 9 to 12 show the effect of
changing the number of layers for a constant
thickness and lay-up [0/90], and its effect on
the natural frequency.
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Fig. 8. Effect of elasticity modulus on the natural frequency
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lay-up [0/90],, on the natural frequency at circumferential
wave numbers n=0 to n=3
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As can be seen in these figures, the natural
frequency of the shell is increased by increasing
the number of layers in a constant thickness. The
rate of increase is very much greater at lower
values of the number of layers. The maximum
percentage discrepancy between the numerical
and analytical results is 4%, which occurs in Fig.
9at N, = 20 and n=1.

15. Effect of Internal pressure

The effect of internal pressure on the natural
frequency is studied as shown in Table 6.
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Table 6. Effect of internal pressure on the frequency
parameter of a conical-cylindrical composite shell

P(Pa) W,

0 0.1910

1 0.1910
10 0.1910
102 0.1910
103 0.1912
104 0.1930
10° 0.2125
106 0.3381
107 0.9265
108 2.2111

As shown in Table 6, by increasing the
internal pressure, the natural frequency is
increased as well. Although the natural
frequency is not affected considerably by lower
values of P, for higher values of P, it increases
dramatically.

16. Effect Axial Compressive Force

The effect of axial compressive force on
natural frequency is studied in Table 7.

Based on the obtained results, by increasing
the axial compressive force, the natural
frequency is decreased and reaches 0 at a
specific load (buckling load).

17. Effect of Fiber Angle

To study the effect of fiber angle on the
natural frequencies, a composite shell with lay-
up [£@] was considered. The results are shown
in Fig. 13.

Table 7. Effect of axial compressive force on the frequency
parameter of a conical-cylindrical composite shell

Na*2*pi*R(N) ,
0 0.1910
10 0.1908
100 0.1898
1000 0.1789
2000 0.1623
3000 0.1426
4000 0.1013
5000 0
. 03 (=]
‘é 0.7 » i %
g 0.6 o ®
g g: =0 o @ o
€0z & ey I
* 02 . ®
o] 10 20 30 40 50 60 70 80 20
Angle of Fiber (degree)
@ n=O-Analytical —@— n=0-Abaqus
@ n=1-Analysis n=1-Abaqus
@ — n=2-Analytical —@— n=2-Abaqus

Fig. 13. Effect of fiber angle of the composite shell with lay-
up [10] on the natural frequency



Authors / Mechanics of Advanced Composite Structures Vol (year) first page-last page

As can be seen, in each circumferential wave
number (n), the behavior of natural frequency is
changed by changing the fiber angle.

In axisymmetric mode (n=0), by increasing
the angle of the fiber, the natural frequency is
increased up to the fiber angle @ = 45°. Beyond
@ = 45°, the natural frequency is decreased. The
minimum frequency occurs at @ = 0°. For n=1,
by increasing the angle of the fiber, the natural
frequency is increased up to the fiber angle of
?@=30°. Beyond @=30°, the natural frequency is
decreased. Naturally, the slope of decreasing
frequency is increased for fiber angles between
@ = 60° and @ = 90°. The minimum frequency
occursat @ = 0°and @ = 90°.

At n=2, by increasing the angle of the fiber,
the natural frequency is decreased strongly
between @ = 0° and @ = 10°. From ©=10° to
@=20°, the natural frequency is increased and
then decreased. The minimum frequency occurs
at @ = 10° and the maximum value of it occurs
at@ = 30°.

18. Effect of Orthotropic Ratio

In this section, the effect of orthotropic ratio
and fiber angle on the natural frequency of the
single-layer composite is studied. Fig. 13
presents the variation of the natural frequency
correspondent to the axisymmetric mode (n=0)
versus fiber angle for a single-layered composite
combined shell for different orthotropic ratios.

As shown in Fig. 14, for lower orthotropic
ratios, the change in the natural frequency
caused by varying the angle of the fiber is
negligible. For E;/E, = 1, the natural frequency
is first increased up to 45° at which the
maximum occurs. For E;/E, = 2, the maximum
occurs at 60°. For orthotropic ratios equal to
3:10, this maximum occurs at a fiber angle of
70°. As the orthotropic ratio increases, the
natural frequency is decreased. Regardless of the
value of the orthotropic ratio, by increasing the
fiber angle, the natural frequency is first
increased and then decreased.

8o

0.9 8__3,_,8 ;—3; 0\_2

0.8 e
. s _o— S e

> o .

E 7 = o/ifc P St
b s & : ,,.;,\“
& 06 ’_,." o—J
£ T
g =
Zos ;f.__,,—. — e

04 e

,c" @
0.3
-10 10 30 50 70 90

Angle of Fiber(degree)
—o— E1/E2v1-Analtical —o— E1/E2% 1-Abaqus

C1/€2=2-Abaqus

E1/E2=3-Abaqus

—o— C1/€2=2-Analtical —a—

—o— E1/E2=3-Anal/tical -

o E1/E2= 4 Analytical E1/E2=&-Abaqus
o E1/E2=S-Analtical o E1/E2=5 Abaqus
—o— E1/E2%10-Analytical —e— E1/E2%10-Abaqus

Fig. 14. The natural frequency of combined shell with single
layer versus angle of fiber for various orthotropic ratios (n=0)
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19. Conclusion

In the present study, a new approach is
introduced to obtain the free vibrational
characteristics of combined composite
cylindrical-conical shells. In the previous studies,
the present problem was solved using classical
shell theories but the effect of shear deformation
was not taken into account. This approach
contains the effect of first-order shear
deformation in the shell theory. Moreover, the
effect of geometric and material parameters on
the natural frequency is investigated and the
effect of pre-load of internal pressure and an
axial compressive force is studied. The results
showed that the fiber angle and orthotropic ratio
affect the frequency behavior of joined conical-
cylindrical shells. It shows that for lower
orthotropic ratios, the change ub the natural
frequency by varying the angle of the fiber is
negligible. Furthermore, the natural frequency of
the shell is increased by increasing the number
of layers in a constant thickness. The natural
frequency of the shell is decreased by increasing
the ratio of E,/E,. For higher ratios of E,/E,,
the rate of decreasing natural frequency is
decreased. Finally, by increasing the semi-vertex
angle of the cone, the natural frequency is
converged to an almost constant value for higher
values of the circumferential wave number.
Results are verified by making a comparison
with the literature and the results obtain using
ABAQUS. Good agreement is observed.
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Appendix
Ty = k3Gyy — kyGay A-1
Tip = k3Gyp — kyGyp A-2
T3 = k3Gy3 — kyGy3 A-3
Tig = k3G1q — kyGyy A-4
Tis = k3Gys — kyGys A-5
Tie = k3Gig — kyGag A-6
Tyy = k3Giy — kyGyy A7
Tig = k3Gyg — kyGag A-8
Tio = k3Gig — kyGag A-9
T110 = k3Gi10 = k2Gaa0 A-10
Ti11 = k3Gia1 — kaGyas A-11
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Ti1p = k3Gy1p — k3Ga 1z
Ti13 = k3Gy13 — K36y 13
Ti14 = k3Gy1q — koG g
Ty 15 = k3G 15 — kyGa s
T21 = 23621 — 42651
Ty = A3Gayy — A5Gs;
T3 = A3Gay3 — A5Gs3
To4 = A3Gyy — A3Gsy
Ta5 = A3Gz5 — A,Gss
Ty6 = A3Gy6 — A5Gs6
Ty7 = A3Gy7 — A,Gsy
T = A3G2g — A2Gsg
T29 = 43G9 — A2Gsg
T210 = A3G210 — 226510
T211 = A3G211 — A2G5 14
T212 = A3G212 — A2G5 12
T213 = 236213 — 426513
Ty14 = A3Gz14 — A3G514

Ty = B (g
7 (Ass + Ny)

=123, .......,21,22)

Ty = —kyG1q + k1Gay

Ty = —k3Gip + k1 Gy
Tz = —kyGi3 + k1 Gy3
Tag = —kyGry + k1 Gyy
Tys = —kyGys + k1 Gys
Tye = —kyG16 + k1Gae
Ty7 = —kyG17 + k1Gyy
Tyg = —kyG1g + k1Gyg
Ty = —k3Gig + k1Gyo
Ty10 = —kaGy 10 + k1Gyno
Ty11 = —kaGy11 +kiGys
Tano = —kaGy12 + k1Gyn
Tyn3 = —kaGy13 + k1Gyq3
Tana = —kaGi14 + k1Gya
Tyns = —kyGy15 + k1G5
Tsy = —A2Gy1 + 4G5y
Tsy = —A2Gy, + 4G5,
Ts3 = —A2Gy3 + A1Gs3

A-12
A-13
A-14
A-15
A-16
A-17
A-18
A-19
A-20
A-21
A-22
A-23
A-24
A-25
A-26
A-27
A-28
A-29
A-30

A-31
A-32
A-33
A-34
A-35
A-36
A-37
A-38
A-39
A-40
A-41
A-42
A-43
A-44
A-45
A-46
A-47
A-48



Authors / Mechanics of Advanced Composite Structures Vol (year) first page-last page

Tsy = —22G24 + A4Gsy
Tss = =365 + A1Gss
Tse = =266 + A1Gs6
Ts7 = =A2Gy7 + 441Gsy
Tsg = =268 + A1 Gsg
Ts9 = —A2Ga9 + A1 Gsg
Ts10 = =242G2,10 + 1G5 10
Ts11 = —2A2G311 + 4G5 1
Ts12 = —A2Gy10 + 4416512
Ts13 = —A2Gy13 + 416543
Ts14 = —A2G314 + 216514
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where:
Aj26 = A1z + Ags A-138
Agze = Agp + Age A-139
D126 = D13 + Deg A-140
Dyy6 = Dyy + Dgg A-141
Bi2¢ = Bz + Bgg A-142
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