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In this paper, a solution procedure is presented for free vibration of combined cylindrical-

conical composite shells including the shear deformation effect of the shell. The solution 

presented in this study is obtained directly from the governing equations for five 

displacement components according to Hamilton’s principle. This solution is in the form of 

a power series in terms of a particularly convenient coordinate system. In this study, the 

effects of geometry and material parameters on the natural frequencies are investigated. 

Also, to illustrate the validity of the present solution procedure, analytical results are 

verified with many studies and compared with those of the present numerical ABAQUS 

analysis. The outcomes showed a good agreement between the obtained results. The 

novelty of the present study is incorporating the transverse shear deformation in 

calculating the natural frequencies of the joined cylindrical-conical shells. In previous 

literature, this topic has not been studied in such a wide scope. 

1. Introduction

Cylindrical and conical shells have
widespread usage in the industry owing to their 
good mechanical and physical properties. 
Conical shells have not been as widely reported 
in the literature compared to cylindrical shells. 
This is due to the increased mathematical 
complexity associated with the effect of the 
variation of the radius along the length of the 
cone on the elastic waves. The approximate 
methods of calculating the natural frequencies 
for conical shells have been found by several 
authors [1], [2]. Many researchers, such as Love, 
Donnell-Mushtari, Timoshenko, Reissner, 
Flügge, and Sanders have presented various 
theories of shells with different assumptions and 
approximations for the sake of simplification. 
Many of them, such as Donnell-Mushtari, 
Timoshenko, Reissner, and Flügge have solved 
various shell problems based on Love’s 
postulates [3]. He et al. studied a unified power 
series method for vibration analysis of 
composite laminate conical, a cylindrical shell, 

and an annular plate. They investigated the 
effect of the geometric parameters and material 
constants (e.g., elastic restrained spring stiffness 
constants, the angle between the shell surface 
and axis, length to the radius ratios, and 
modulus ratios) on the free vibration 
characteristics of the composite laminated 
structure [4] Kouchakzadeh and Shakouri 
studied the vibrational behavior of the two 
joined cross-ply laminated conical shells. They 
reviewed the natural frequency and effects of 
semi-vertex angles, meridional lengths, and shell 
thicknesses by solving the problem using 
Donnell theory and Hamilton’s principle [5] 
Caresta and Kessissoglou offered a new 
recommendation based on Donnell-Mushtari 
and Flugge’s equations to describe the free 
vibration characteristics of coupled isotropic 
cylindrical-conical shells. They also investigated 
the effects of the junction between the coupled 
shells and the boundary conditions  [6]. 
Xianglong et al. studied the effects of the semi-
vertex angle of the cone and the elastic restraint 
parameters on the free vibration behavior of the 
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shell according to Reissner's thin shell theory 
[7]. Bagheri et al. evaluated the free vibration of 
joined conical-conical shells with higher-order 
shear deformation theory in various types of 
boundary conditions for the shell ends. The 
produced system of equations was discretized 
using the semi-analytical generalized differential 
quadrature (GDQ) method [8]. 
Mohammadrezazadeh and Jafari studied the 
nonlinear vibration analysis of laminated 
composite angle-ply cylindrical and conical 
shells. Also, they investigated the effects of 
several parameters including the layers’ angle, 
the number of the layers, semi-vertex angle, 
length, and radius, as well as each layer's 
thickness on nonlinear frequency ratio, 
fundamental linear frequency [9]. Qin et al. 
studied a unified Fourier series solution for 
vibration analysis of FG-CNTRC cylindrical, 
conical shells, and annular plates with arbitrary 
boundary conditions. They used a micro-
mechanical model based on the developed rule 
of mixtures [10]. Previously, no study has been 
conducted on the composite joined conical-
cylindrical structures using first-order shear 
deformation theory (FSDT). In this research, the 
free vibration of joined conical-cylindrical 
composite shells is investigated based on higher-
order shear deformation theory. After 
calculating the natural frequencies and 
verification of the results, the effect of geometric 
parameters material and lay-up is studied. The 
novelty of the present study is incorporating the 
transverse shear deformation in calculating the 
natural frequencies of the joined cylindrical-
conical shells. In previous literature, this topic 
has not been studied in this wide scope. 

2. Governing Equations for Joined 
Conical-Cylindrical Shells 

Consider a joined conical-cylindrical shell 
made of a composite material of a uniform 
thickness of h, small radius of 𝑅1, large 
(intersection) radius of 𝑅2, slanted length of 𝐿𝑐, 
cylinder length of 𝐿𝑠, and vertex half angle of 𝛼 . 
Meridional, circumferential, and normal 
directions of the conical and cylindrical shell are 

denoted by −
𝐿𝑐

2
 ≤  𝑥 𝑐 ≤

𝐿𝑐

2
 , −

𝐿𝑠

2
 ≤  𝑥 𝑠 ≤

𝐿𝑠

2
, 0 ≤ 

θ ≤ 2π, and − 
ℎ 

2
≤  𝑧 ≤  +

ℎ

2
 , respectively. The 

adopted coordinates system (𝑥𝑐 ,𝜃𝑐 ,𝑧𝑐 , 𝑥𝑠,𝜃𝑠,𝑧𝑠), 
geometric characteristics, and sign convention of 
the joined shell are depicted in Fig. 1. Also, 
displacement components for the cone and 
cylinder in coordinate system directions are 
(𝑢𝑐,𝑣𝑐,𝑤𝑐) and (𝑢𝑠,𝑣𝑠,𝑤𝑠), respectively. 

 

 

Fig. 1. Schematic of a thin joined cylindrical-conical shell 

To capture the thickness shear deformations 
and rotary inertia effects of the conical-
cylindrical shell, FSDT was used to formulate the 
governing equations of the shell. Based on FSDT, 
components of the displacement on a generic 
point are represented according to the mid-
surface characteristics as follows: 

For conical shell: 

𝑢𝑐(𝑥, 𝜃, 𝑧, 𝑡) = 𝑢0𝑐(𝑥, 𝜃, 𝑡) + 𝑧∅𝑥𝑐(𝑥, 𝜃, 𝑡) (1) 

𝑣𝑐(𝑥, 𝜃, 𝑧, 𝑡) = 𝑣0𝑐(𝑥, 𝜃, 𝑡) + 𝑧∅𝜃𝑐(𝑥, 𝜃, 𝑡) (2) 

𝑤𝑐(𝑥, 𝜃, 𝑧, 𝑡) = 𝑤0𝑐(𝑥, 𝜃, 𝑡) (3) 

For cylindrical shell: 

𝑢𝑠(𝑥, 𝜃, 𝑧, 𝑡) = 𝑢0𝑠(𝑥, 𝜃, 𝑡) + 𝑧∅𝑥𝑠(𝑥, 𝜃, 𝑡) (4) 

𝑣𝑠(𝑥, 𝜃, 𝑧, 𝑡) = 𝑣0𝑠(𝑥, 𝜃, 𝑡) + 𝑧∅𝜃𝑠(𝑥, 𝜃, 𝑡) (5) 

𝑤𝑠(𝑥, 𝜃, 𝑧, 𝑡) = 𝑤0𝑠(𝑥, 𝜃, 𝑡) (6) 

In the above equations, 𝑢𝑐, 𝑣𝑐, and 𝑤𝑐 are the 
meridional, circumferential, and normal 
displacements of the conical shell, respectively. 
Also, 𝑢𝑠, 𝑣𝑠, and 𝑤𝑠 are the radial, 
circumferential, and normal displacements of 
the cylindrical shell, respectively 

A subscript 0 denotes the characteristics of 
the mid-surface. Besides, ∅𝑥𝑐 , ∅𝜃𝑐 , ∅𝑥𝑠, and ∅𝜃𝑠 
are the transverse normal rotations about the x 
and θ axes for conical and cylindrical shells, 
respectively. According to FSDT, the components 
of the strain field on an arbitrary point of the 
conical and cylindrical are be obtained in terms 
of strains and curvatures of the mid-surface of 
the shell as follows: 

For conical shell: 

[
 
 
 
 
𝜀𝑥𝑥,𝑐

𝜀𝜃𝜃,𝑐

𝛾𝑥𝜃,𝑐

𝛾𝑥𝑧,𝑐

𝛾𝜃𝑧,𝑐]
 
 
 
 

=  

[
 
 
 
 
 
𝜀�̇�𝑥,𝑐

𝜀�̇�𝜃,𝑐

�̇�𝑥𝜃,𝑐

�̇�𝑥𝑧,𝑐

�̇�𝜃𝑧,𝑐]
 
 
 
 
 

+ 𝑧

[
 
 
 
 
𝜅𝑥𝑥,𝑐

𝜅𝜃𝜃,𝑐

𝜅𝑥𝜃,𝑐

𝜅𝑥𝑧,𝑐

𝜅𝜃𝑧,𝑐]
 
 
 
 

 (7) 
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For cylindrical shell: 

[
 
 
 
 
𝜀𝑥𝑥,𝑠

𝜀𝜃𝜃,𝑠

𝛾𝑥𝜃,𝑠

𝛾𝑥𝑧,𝑠

𝛾𝜃𝑧,𝑠]
 
 
 
 

=  

[
 
 
 
 
 
𝜀�̇�𝑥,𝑠

𝜀�̇�𝜃,𝑠

�̇�𝑥𝜃,𝑠

�̇�𝑥𝑧,𝑠

�̇�𝜃𝑧,𝑠]
 
 
 
 
 

+ 𝑧

[
 
 
 
 
𝜅𝑥𝑥,𝑠

𝜅𝜃𝜃,𝑠

𝜅𝑥𝜃,𝑠

𝜅𝑥𝑧,𝑠

𝜅𝜃𝑧,𝑠]
 
 
 
 

 

 

(8) 

According to Love’s theory, the kinematic 
relations between the displacement components 
and strain and curvatures are [13]: 

𝜀�̇�𝑥 =
𝜕𝑢0

𝜕𝑥
 (9) 

𝜀�̇�𝜃 =
1

𝑅(𝑥)
(
𝜕𝑣0

𝜕𝜃
+ 𝑢0𝑠𝑖𝑛𝛼 + 𝑤0𝑐𝑜𝑠𝛼) (10) 

�̇�𝑥𝜃 =
1

𝑅(𝑥)

𝜕𝑢0

𝜕𝜃
−

1

𝑅(𝑥)
𝑣0𝑠𝑖𝑛𝛼 +

𝜕𝑣0

𝜕𝑥
 (11) 

�̇�𝑥𝑧 =
𝜕𝑤0

𝜕𝑥
+ ∅𝑥 (12) 

�̇�𝜃𝑧 =
1

𝑅(𝑥)

𝜕𝑤0

𝜕𝜃
+ ∅𝜃 −

𝑣0𝑐𝑜𝑠𝛼

𝑅(𝑥)
 (13) 

𝑘𝑥𝑥 =
𝜕∅𝑥

𝜕𝑥
 (14) 

𝑘𝜃𝜃 =
1

𝑅(𝑥)
(∅𝑥𝑠𝑖𝑛𝛼 +

𝜕∅𝜃

𝜕𝜃
) (15) 

𝑘𝑥𝜃 =
1

𝑅(𝑥)

𝜕∅𝑥

𝜕𝜃
+

𝜕∅𝜃

𝜕𝑥
−

1

𝑅(𝑥)
∅𝜃𝑠𝑖𝑛𝛼 (16) 

In the above equations,  𝛼 is the angle of the 
semi-vertex of the conical shell. In the case of a 
cylindrical shell, 𝛼 is equal to 0 and (𝑥) = 𝑅2 . 

In Eqs. (9) to (16), in case of a conical shell,  
∅𝑥 = ∅𝑥𝑐 , ∅𝜃 = ∅𝜃𝑐 , 𝑢0 = 𝑢0𝑐 , 𝑣0 = 𝑣0𝑐 , and 
𝑤0 = 𝑤0𝑐 . Also, in the case of a cylindrical shell, 
∅𝑥 = ∅𝑥𝑠 , ∅𝜃 = ∅𝜃𝑠 , 𝑢0 = 𝑢0𝑠 , 𝑣0 = 𝑣0𝑠, and  
𝑤0 = 𝑤0𝑠. 

The dynamic version of the principle of 
virtual work (Hamilton’s principle) is expressed 
as follows [10]: 

∫ (𝛿𝑘𝑖 − 𝛿𝑈𝑖)𝑑𝑡 = 0
𝑇

0

     𝑖 = 𝑐, 𝑠 (17) 

where 𝛿𝑈𝑖 denotes the virtual strain energy, 
𝛿𝑉𝑖 is the virtual potential energy due to the 
applied loads, and 𝛿𝑘𝑖 shows the virtual kinetic 
energy. 

𝑘𝑖 = ∭ 𝜌𝑖(𝑢𝑖̇ 𝛿�̇�𝑖 + 𝑣�̇�𝛿�̇�𝑖 +
𝑉𝑖

�̇�𝑖𝛿𝑤𝑖̇ )𝑑𝑉𝑖 = ∬ ∫ {𝐼0,𝑖(�̇�0,𝑖𝛿�̇�0,𝑖 +
ℎ

2

−
ℎ

2
𝐴𝑖

�̇�0,𝑖𝛿�̇�0,𝑖 + �̇�0,𝑖𝛿�̇�0,𝑖) + 𝐼1,𝑖(�̇�0,𝑖𝛿∅̇𝑥,𝑖 +

∅̇𝑥,𝑖𝛿�̇�0,𝑖 + �̇�0,𝑖𝛿∅̇𝜃,𝑖 + ∅̇𝜃,𝑖𝛿�̇�0,𝑖) +

𝐼2,𝑖(∅̇𝑥,𝑖𝛿∅̇𝑥,𝑖 + ∅̇𝜃,𝑖𝛿∅̇𝜃,𝑖)}𝑅𝑖(𝑥)𝑑𝑥𝑖𝑑𝜃𝑖  

(18) 

𝑈𝑖 = ∬ (
𝐴𝑖

𝑁11,𝑖𝛿𝜀1̇1,𝑖 + 𝑁22,𝑖𝛿𝜀2̇2,𝑖 +

𝑁12,𝑖𝛿𝜀1̇2,𝑖 + 𝑁21,𝑖𝛿𝜀2̇1,𝑖 + 𝑀11,𝑖𝛿𝑘𝑥,𝑖 +

𝑀22,𝑖𝛿𝑘𝑦,𝑖 + 𝑀12,𝑖𝛿𝑘𝑥𝑦,𝑖 +

𝑀21,𝑖𝛿𝑘𝑥𝑦,𝑖 + 𝑄𝑥,𝑖𝛿𝜀1̇3,𝑖 +

𝑄𝜃,𝑖𝛿𝜀2̇3,𝑖)𝑅𝑖(𝑥)𝑑𝑥𝑖𝑑𝜃𝑖  

(19) 

where [11] 

𝐼𝑖 = ∫ 𝜌

ℎ
2

−
ℎ
2

𝑧𝑖𝑑𝑧   𝑖 = 1,2,3 (20) 

where ρ is the density of shell material. 
The relation between the stress resultants 

and stress fields is: 
For the conical shell: 
 

[
 
 
 
 
 
 
 
 
𝑁11,𝑐

𝑁22,𝑐

𝑁12,𝑐

𝑁21,𝑐

𝑀11,𝑐

𝑀22,𝑐

𝑀12,𝑐

𝑀21,𝑐]
 
 
 
 
 
 
 
 

= ∫

[
 
 
 
 
 
 
 
𝜎11,𝑐

𝜎22,𝑐

𝜎12,𝑐

𝜎21,𝑐

𝑧𝜎11,𝑐

𝑧𝜎22,𝑐

𝑧𝜎12,𝑐

𝑧𝜎21,𝑐]
 
 
 
 
 
 
 

ℎ
2

−
ℎ
2

𝑑𝑧 

(21) 

[
𝑄1,𝑐

𝑄2,𝑐
] = ∫ [

𝜎13,𝑐

𝜎23,𝑐
] 𝑑𝑧

ℎ
2

−
ℎ
2

 
(22) 

For the cylindrical shell: 

[
 
 
 
 
 
 
 
 
𝑁11,𝑠

𝑁22,𝑠

𝑁12,𝑠

𝑁21,𝑠

𝑀11,𝑠

𝑀22,𝑠

𝑀12,𝑠

𝑀21,𝑠]
 
 
 
 
 
 
 
 

= ∫

[
 
 
 
 
 
 
 
𝜎11,𝑠

𝜎22,𝑠

𝜎12,𝑠

𝜎21,𝑠

𝑧𝜎11,𝑠

𝑧𝜎22,𝑠

𝑧𝜎12,𝑠

𝑧𝜎21,𝑠]
 
 
 
 
 
 
 

ℎ
2

−
ℎ
2

𝑑𝑧 

(23) 

[
𝑄1,𝑠

𝑄2,𝑠
] = ∫ [

𝜎13,𝑠

𝜎23,𝑠
] 𝑑𝑧

ℎ
2

−
ℎ
2

 
(24) 

where (𝑁11, 𝑁22, 𝑁12) and (𝑀11, 𝑀22, 𝑀12) are 
stress and moment resultants per unit length, 
respectively. Moreover, 𝜎𝑖𝑗 shows the elements 

of the stress vector, defined in [11]. 
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3. Equilibrium Equations 

After substituting the above relations in Eq. 
(17), and partial integration and collecting 
similar terms, governing equations for the 
equilibrium of the conical shell are obtained as 
follows: 
𝜕𝑁11

𝜕𝑥
+ (𝑁11 − 𝑁22)

𝑠𝑖𝑛 𝛼

𝑅(𝑥)
+

𝜕𝑁12

𝑅(𝑥)𝜕𝜃
− 𝑞𝑙

+ 𝑃 (
𝜕2𝑢

𝑅(𝑥)𝜕𝜃2
)

= 𝐼0�̈�0 + 𝐼1∅̈1 (25) 

𝜕𝑁22

𝑅(𝑥)𝜕𝜃
+ 2(𝑁12)

𝑠𝑖𝑛 𝛼

𝑅(𝑥)
+

𝜕𝑁12

𝜕𝑥
+

𝑄2 𝑐𝑜𝑠 𝛼

𝑅(𝑥)

− 𝑞𝜃 + 𝑃 (
𝜕2𝑣

𝑅(𝑥)𝜕𝜃2
)

= 𝐼0�̈�0 + 𝐼1∅̈2 (26) 

−
𝑁22 𝑐𝑜𝑠 𝛼

𝑅(𝑥)
+

𝜕𝑄1

𝜕𝑥
+

𝑄1 𝑠𝑖𝑛 𝛼

𝑅(𝑥)
+

𝜕𝑄2

𝑅(𝑥)𝜕𝜃

− 𝑞𝑟 + 𝑃 (
𝜕2𝑤

𝑅(𝑥)𝜕𝜃2
)

+ 𝑁𝑎

𝜕2𝑤

𝜕𝑥2
= 𝐼0�̈�0 (27) 

𝜕𝑀11

𝜕𝑥
+ (𝑀11 − 𝑀22)

𝑠𝑖𝑛 𝛼

𝑅(𝑥)
+

𝜕𝑀12

𝑅(𝑥)𝜕𝜃
− 𝑄1

= 𝐼1�̈�0 + 𝐼2∅̈1 
(28) 

𝜕𝑀22

𝑅(𝑥)𝜕𝜃
+ 2(𝑀12)

𝑠𝑖𝑛 𝛼

𝑅(𝑥)
+

𝜕𝑀12

𝜕𝑥
− 𝑄2

= 𝐼1�̈�0 + 𝐼2∅̈2 
(29) 

 
In the above equations, P is internal pressure 

and  𝑁𝑎 is axial force. For cylindrical shells, 
𝑅(𝑥) = 𝑅2 and 𝛼  is set to be equal to 0. 

 

4. Constitutive Equations 

The constitutive relations for the laminated 
conical-cylindrical shell are expressed as 
follows: 

 

[
 
 
 
 
 
𝑁11

𝑁22

𝑁12

𝑀11

𝑀22

𝑀12]
 
 
 
 
 

=

[
 
 
 
 
 
𝐴11

𝐴21

𝐴61

𝐵11

𝐵21

𝐵61

𝐴12

𝐴22

𝐴62

𝐵12

𝐵22

𝐵62

𝐴16

𝐴26

𝐴66

𝐵16

𝐵26

𝐵66

𝐵11

𝐵21

𝐵61

𝐷11

𝐷21

𝐷61

𝐵12

𝐵22

𝐵62

𝐷12

𝐷22

𝐷62

𝐵16

𝐵26

𝐵66

𝐷16

𝐷26

𝐷66]
 
 
 
 
 

[
 
 
 
 
 
𝜀1̇1

𝜀2̇2

𝜀1̇2

𝑘1

𝑘2

𝑘12]
 
 
 
 
 

 

(30) 

[
𝑄2

𝑄1
] = 𝑘𝑠 [

𝐴44 𝐴45

𝐴54 𝐴55
] [

𝜀2̇3

𝜀1̇3
] 

(31) 

where 𝑘𝑠 is the shear correction factor and is 
considered to be equal to  𝜋2 12⁄  according to 
Mindlin's assumptions [11]. Also, 𝐴𝑖𝑗 , 𝐵𝑖𝑗, and 

𝐷𝑖𝑗 are composite stiffness matrices defined in 

[12]. 

 

5. Boundary Conditions 

All types of boundary conditions can be used 
at both ends of the cone or the cylinder. The 
simply supported boundary conditions at 𝑥𝑐 =
−𝐿𝑐 2⁄   and 𝑥𝑠 = +𝐿𝑠 2⁄  are expressed as 
follows: 

(32)     𝑣 = 𝑤 = ∅2 = 𝑁𝑥 = 𝑀𝑥 = 0 

6. Continuity Conditions 

The continuity conditions at the joint of the 
two shells can be represented as follows: 

 
𝑎𝑡 𝑥𝑐 = 𝐿𝑐 2⁄   & 𝑥𝑠 = −𝐿𝑠 2⁄ ∶ 

(33) 
 𝑢𝑐 𝑐𝑜𝑠 𝛼 − 𝑤𝑐 𝑠𝑖𝑛 𝛼 = 𝑢𝑠 

(34) 
𝑢𝑐 𝑠𝑖𝑛 𝛼 + 𝑤𝑐 𝑐𝑜𝑠 𝛼 = 𝑤𝑠 

(35) 
𝑣𝑐 = 𝑣𝑠 

(36) 
∅1𝑐 = ∅1𝑠 

(37) 
∅2𝑐 = ∅2𝑠 

(38) 𝑁𝑥𝑐 𝑐𝑜𝑠 𝛼 − 𝑄𝑥𝑐 𝑠𝑖𝑛 𝛼 = 𝑁𝑥𝑠 

(39) 𝑁𝑥𝑐 𝑠𝑖𝑛 𝛼 + 𝑄𝑥𝑐 𝑐𝑜𝑠 𝛼 = 𝑄𝑥𝑠 

(40) 𝑁𝑥𝜃𝑐
= 𝑁𝑥𝜃𝑠

 

(41) 𝑀𝑥𝑐 = 𝑀𝑥𝑠 

(42) 𝑀𝑥𝜃𝑐 = 𝑀𝑥𝜃𝑠 

For solving the above equations, solutions of 
the following form are assumed such that they 
exactly satisfy both the boundary and the 
continuity conditions: 

For the conical shell: 

(39) 𝑢0,𝑐(𝑥, 𝜃, 𝑡) = 𝑈𝑐(𝑥) 𝑐𝑜𝑠 𝑛𝜃 𝑒−𝑗𝜔𝑡 

(40) 𝑣0,𝑐(𝑥, 𝜃, 𝑡) = 𝑉𝑐(𝑥) 𝑠𝑖𝑛 𝑛𝜃 𝑒−𝑗𝜔𝑡 

(41) 𝑤0,𝑐(𝑥, 𝜃, 𝑡) = 𝑊𝑐(𝑥) 𝑐𝑜𝑠 𝑛𝜃 𝑒−𝑗𝜔𝑡 

(42) ∅𝑥,𝑐(𝑥, 𝜃, 𝑡) = 𝛷𝑥,𝑐(𝑥) 𝑐𝑜𝑠 𝑛𝜃 𝑒−𝑗𝜔𝑡 

(43) ∅𝜃,𝑐(𝑥, 𝜃, 𝑡) = 𝛷𝜃,𝑐(𝑥) 𝑠𝑖𝑛 𝑛𝜃 𝑒−𝑗𝜔𝑡 
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For the cylindrical shell: 

(44) 𝑢0,𝑠(𝑥, 𝜃, 𝑡) = 𝑈𝑠(𝑥) 𝑐𝑜𝑠 𝑛𝜃 𝑒−𝑗𝜔𝑡 

(45) 𝑣0,𝑠(𝑥, 𝜃, 𝑡) = 𝑉𝑠(𝑥) 𝑠𝑖𝑛 𝑛𝜃 𝑒−𝑗𝜔𝑡 

(46) 𝑤0,𝑠(𝑥, 𝜃, 𝑡) = 𝑊𝑠(𝑥) 𝑐𝑜𝑠 𝑛𝜃 𝑒−𝑗𝜔𝑡 

(47) ∅𝑥,𝑠(𝑥, 𝜃, 𝑡) = 𝛷𝑥,𝑠(𝑥) 𝑐𝑜𝑠 𝑛𝜃 𝑒−𝑗𝜔𝑡 

(48) ∅𝜃,𝑠(𝑥, 𝜃, 𝑡) = 𝛷𝜃,𝑠(𝑥) 𝑠𝑖𝑛 𝑛𝜃 𝑒−𝑗𝜔𝑡 

where 

(49) 𝑈𝑖(𝑥) = ∑ 𝑎𝑚,𝑖𝑥𝑖
𝑚

∞

𝑚=0

 𝑖 = 𝑐, 𝑠 

(50) 𝑉𝑖(𝑥) = ∑ 𝑏𝑚,𝑖𝑥𝑖
𝑚 𝑖 = 𝑐, 𝑠

∞

𝑚=0

 

(51) 𝑊𝑖(𝑥) = ∑ 𝑐𝑚,𝑖𝑥𝑖
𝑚

∞

𝑚=0

 𝑖 = 𝑐, 𝑠 

(52) 𝛷𝑥,𝑖(𝑥) = ∑ 𝑑𝑚,𝑖𝑥𝑖
𝑚 𝑖 = 𝑐, 𝑠

∞

𝑚=0

 

(53) 𝛷𝜃,𝑖(𝑥) = ∑ 𝑓𝑚,𝑖𝑥𝑖
𝑚

∞

𝑚=0

 𝑖 = 𝑐, 𝑠 

After substituting the above functions in the 
governing Eqs. (25) to (29), the following 
recurrence relations are obtained: 

(54) 

𝑎𝑚+2 = 𝑇11𝑎𝑚+1 + 𝑇12𝑎𝑚 + 𝑇13𝑎𝑚−1 
+𝑇14𝑎𝑚−2 + 𝑇15𝑏𝑚+1 + 𝑇16𝑏𝑚 
+𝑇17𝑐𝑚+1 + 𝑇1,8𝑐𝑚 + 𝑇1,9𝑐𝑚−1 
+𝑇1,10𝑑𝑚+1 + 𝑇1,11𝑑𝑚 + 𝑇1,12𝑑𝑚−1 
+𝑇1,13𝑑𝑚−2 + 𝑇1,14𝑓𝑚+1 + 𝑇1,15𝑓𝑚 

(55) 

𝑏𝑚+2 = 𝑇21𝑎𝑚+1 + 𝑇22𝑎𝑚 + 𝑇23𝑏𝑚+1 
+𝑇24𝑏𝑚 + 𝑇25𝑏𝑚−1 + 𝑇26𝑏𝑚−2 
+𝑇2,7𝑐𝑚 + 𝑇2,8𝑐𝑚−1 + 𝑇2,9𝑑𝑚+1 
+𝑇2,10𝑑𝑚+𝑇2,11𝑓𝑚+1+𝑇2,12𝑓𝑚 
+𝑇2,13𝑓𝑚−1+𝑇2,14𝑓𝑚−2  

(56) 

𝑐𝑚+2 = 𝑇31𝑎𝑚+1 + 𝑇32𝑎𝑚 + 𝑇33𝑏𝑚 
+𝑇34𝑐𝑚+1 + 𝑇3,5𝑐𝑚 + 𝑇3,6𝑐𝑚−1 
+𝑇3,7𝑐𝑚−2 + 𝑇3,8𝑑𝑚+1 + 𝑇3,9𝑑𝑚 
+𝑇3,10𝑑𝑚−1 + 𝑇3,11𝑓𝑚 + 𝑇3,12𝑓𝑚−1  

(57) 

𝑑𝑚+2 = 𝑇41𝑎𝑚+1 + 𝑇42𝑎𝑚 + 𝑇43𝑎𝑚−1 
+𝑇44𝑎𝑚−2 + 𝑇45𝑏𝑚+1 + 𝑇46𝑏𝑚 
+𝑇47𝑐𝑚+1 + 𝑇4,8𝑐𝑚 + 𝑇4,9𝑐𝑚−1 
+𝑇4,10𝑑𝑚+1 + 𝑇4,11𝑑𝑚 + 𝑇4,12𝑑𝑚−1 
+𝑇4,13𝑑𝑚−2 + 𝑇4,14𝑓𝑚+1 + 𝑇4,15𝑓𝑚 

(58) 

𝑓𝑚+2 = 𝑇51𝑎𝑚+1 + 𝑇52𝑎𝑚 + 𝑇53𝑏𝑚+1 
+𝑇54𝑏𝑚 + 𝑇55𝑏𝑚−1 + 𝑇56𝑏𝑚−2 
+𝑇5,7𝑐𝑚 + 𝑇5,8𝑐𝑚−1 + 𝑇5,9𝑑𝑚+1 
+𝑇5,10𝑑𝑚 + 𝑇5,11𝑓𝑚+1 + 𝑇5,12𝑓𝑚 
+𝑇5,13𝑓𝑚−1 + 𝑇5,14𝑓𝑚−2  

where 𝑇𝑖𝑗  parameters are introduced in the 

Appendix. 

After applying the continuity and boundary 
conditions and global assembling, a general 
relation is obtained as follows: 

𝐾𝑋 − [𝑀1𝜔
2 + 𝑀2𝜔

4 + ⋯]𝑋 = [0] (59) 

where M is the generalized mass matrix, K is the 
generalized stiffness matrix, and X is the 
unknown displacement vector (mode shape). 
The natural frequencies of the structure are 
obtained by solving the above equation using 
numerical techniques within a MATLAB code. 

7. Numerical Results and Discussion 

Finite element modeling (FEM) was 

performed in ABAQUS 13.6 software. The 

geometric model made in the software is a 

shell model. A total of 13,460 S4R shell 

elements were used for meshing. The 

procedure described in the previous 

sections is used herein to study the free 

vibration of joined conical-cylindrical shell 

system made of composite material. In this 

section, first, some comparison studies are 

conducted. Next, parametric studies are 

performed to examine the influences of 

involved parameters. Numerical 

calculations show that including 50 terms 

(m=50) in the series solution provides 

satisfactorily converged results for the 

natural frequencies. The element type is 

quadratic 8-node shell element (S8R). The 

number of elements increases from 4500 up 

to 520000 elements. When the number of 

elements reaches 94,000, the results started 

to converge (Fig. 2). 

Before presenting the results, the non-
dimensional frequency parameter is introduced 
as follows: 

𝜔𝑐 = √
𝜌ℎ

𝐴11
𝜔𝑅2 (60) 

 
Fig. 2. The convergence of the frequency parameter  
𝜔𝑐 for a simply supported - simply supported joined 

isotropic conical–cylindrical shell based on element number 
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8. Comparison Studies 
The first comparison study calculates the 

first six frequencies of a joined cylindrical-
conical shell for each circumferential mode 
number n. The numerical results of this study 
are compared with those reported in several 
references as shown in Table 1. 

For an isotropic combined conical-cylindrical 
shell, the material and geometric parameters 
are: 

𝐸 = 211 𝐺𝑃𝑎 ,   𝜈 = 0.3 , 𝜌 = 7800
𝑘𝑔

𝑚3 
𝐿𝑠

𝑅𝑠
= 0.5  , ℎ = 0.01𝑅𝑠  , 𝑅𝑐 = 0.4226𝑅𝑠  , 𝛼 = 30° 

where 𝜔  and 𝜔𝑐 are referred to as the frequency 
and its parameter of the combined shell.  

The frequency parameters were compared 
for a combined shell with the above materials, 
geometric parameters, and simply-supported 
boundary conditions at both ends with ABAQUS. 
The model is shown in Fig. 3.  

The results are shown in Table 2. 

 

 
(a) 

 

 

(b) 

Fig. 3. Finite element model in ABAQUS: a) Elements mesh 
pattern and b) Lowest asymmetric shape (n=5) 

Table 1. Comparison of dimensionless frequency parameter ω_c for a free-clamped joined isotropic conical-

cylindrical shell 

𝝎𝒄 

n 
Irie et al. [4] 

Efraim and 

Eisenberger [11] 

Caresta and 

Kessissoglou  [6] 

Kouchakzadeh and 

Shakouri [5] 
Present 

      

0.5047 0.5038 0.5038 0.5038 0.5035 0 

0.2930 0.2929 0.2929 0.2929 0.2928 1 

0.1010 0.1000 0.1020 0.1000 0.1103 2 

0.9076 0.0876 0.09377 0.0876 0.0952 3 

0.1477 0.1446 0.1506 0.1446 0.1512 4 

0.2021 0.1995 0.2039 0.1995 0.1986 5 

 

Table 2. Comparison of the dimensionless frequency 
parameter 𝜔𝑐 for a simply supported joined isotropic 

conical-cylindrical shell 

𝝎𝒄 n 

Error Percents Present 

(ABAQUS) 

Present 

(Analytical) 

 

2.91% 0.067 0.0651 0 

0.27% 0.4898 0.4925 1 

0.03% 0.3512 0.3509 2 

0.12% 0.2609 0.2597 3 

0.04% 0.2121 0.2117 4 

0.19% 0.2102 0.2121 5 

0.1% 0.2458 0.2448 6 

0.19% 0.2963 0.2944 7 

0.68% 0.3580 0.3512 8 

0.14% 0.4150 0.4136 9 

 
According to Table 2, the fundamental 

frequency occurs at n=4 (for analytical method) 
and n=5 (for the ABAQUS method), indicating a 
close agreement. 

9. Parametric Studies 

After validating the proposed solution 
method, we analyzed the results of the natural 
frequencies for the free vibration of a shear 
deformable conical-cylindrical shell system 
made of a linearly elastic composite material. In 
this section, the composite cylindrical-conical 
shell with E-glass epoxy properties (Table 3) 
and geometrical properties (Table 4) is 
investigated. The considered lay-up is [0/90]. 
Unless stated otherwise, the properties 
mentioned in Tables 3 and 4 were applied. The 
boundary condition is simply supported at two 
ends. 
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10. Effect of the Cone Semi-vertex 
Angle 

The effect of the semi-vertex angle of the 
composite cylindrical-conical shell on the 
natural frequencies is investigated in Figs. 4 to 6. 

Table 3. Properties of the material of composite shell [14], 
[15] 

𝜐12 
𝐺12 

(𝐺𝑃𝑎) 

𝐸2 

(𝐺𝑃𝑎) 

𝐸1 

(𝐺𝑃𝑎) 

𝜌 

(
𝑘𝑔

𝑚3
) 

Material 

0.28 3.7 8.6 39.2 2100 E-Glass/Epoxy 

 

Table 4. Geometric parameters of the conical shell 

Composite 

lay-up 

angles 

ℎ(𝑚𝑚) 𝑅𝑐(𝑚𝑚) 𝑅𝑠(𝑚𝑚) 
𝐿𝑐 = 𝐿𝑠 

(𝑚𝑚) 

[0 ∕ 90] 0.01𝑅𝑠 0.4226𝑅𝑠 𝑙𝑠 200 

 
Fig. 4. Natural frequency parameter versus semi-vertex 

angle of the cone for circumferential wave numbers (n=0,1) 

 
Fig. 5. Natural frequency parameter versus semi-vertex 

angle of the cone for circumferential wave numbers (n=2:5)  

 
Fig. 6. Natural frequency parameter versus semi vertex angle 

of the cone for circumferential wave numbers (n=6:9)  

As can be seen from Figs. 4 to 6, by increasing 
the semi-vertex angle of the cone, for higher 
values of the circumferential wave number 
(n=6:9), the natural frequency is converged to an 
almost constant value. Also, the minimum 
natural frequency for the values of n greater 
than 1 occurs at 𝛼 = 20°  while the maximum 
natural frequency occurs at  𝛼 = 20° for n=0 and 
n=1. For n=0, by increasing the semi-vertex 
angle, the natural frequency is first increased 
and then decreased. However, for other values of 
n, no special trend exists. Just for higher values 
on n (n=6:9), the natural frequency is converged 
to a special value for higher values of. 

11. Effect of Thickness 

The effect of the thickness of the shell on the 
natural frequency is represented in Table 5 

As can be seen in Table 5, by increasing the 
value of  ℎ 𝑅2⁄  from 0.01 to 0.03, the 
fundamental mode number (n) is decreased. 
However, it is unchanged by increasing the value 
of  ℎ 𝑅2⁄  from 0.03 to 0.05 (n=3).  

12. Effect of Length of Shell 

The effect of the length ratio of the combined 
shell on the natural frequency is studied in Fig. 
7. The radius of the cylindrical shell is assumed 

to be constant. Also, for a specific value of the  
𝐿𝑠

𝑅𝑠
 

ratio, the ratio of  
𝐿𝑠

𝐿𝑐
 is changed by changing the 

value of  𝐿𝑐 . The lay-up of the composite shell is 
considered to be [0 ∕ 90]2. 

Table 5. Effect of thickness of the shell on the frequency 
parameter of a conical-cylindrical composite shell 

𝒉/𝑹𝟐 
n 

0 1 2 3 4 5 

0.01 0.663 0.534 0.371 0.261 0.220 0.191* 

0.02 0.715 0.562 0.399 0.310 0.270* 0.295 

0.03 0.756 0.584 0.410 0.321* 0.333 0.368 

0.04 0.772 0.606 0.424 0.359* 0.391 0.436 

0.05 0.781 0.611 0.421 0.378* 0.438 0.491 

*: Lowest (fundamental) mode number 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 7. Effect of length ratio of shell on natural frequency for 

n=5, a) 
𝑳𝒔

𝑹𝒔
= 𝟎. 𝟓,  b) 

𝑳𝒔

𝑹𝒔
= 𝟏,  c) 

𝑳𝒔

𝑹𝒔
= 𝟐 , and d) 

𝑳𝒔

𝑹𝒔
= 𝟑  

As can be seen, regardless of the value of  
Ls

Rs
  

ratio, the natural frequency is increased by 

increasing the value of  
𝐿𝑠

𝐿𝑐
 . 

13. Effect of the Orthotropic Ratio 

Fig. 8 presents the variation of the frequency 
parameter versus the orthotropic ratio (𝐸1 𝐸2⁄ ) 
studied for different lay-ups. 

Based on the obtained results, the natural 
frequency of the shell is decreased by increasing 
the ratio of  𝐸1 𝐸2⁄ . For higher ratios of  𝐸1 𝐸2⁄ , 
the rate of decreasing natural frequency is 
decreased. Moreover, it is observed that the lay-
ups [0 90⁄ ∕ 0 ∕ 90] and [0 45⁄ ∕ 0 ∕ 45] have the 
greatest and smallest natural frequencies, 
respectively. 

14. Effect of Number of Layers  

In this section, the effect of the number of 
layers (𝑁𝐿) on the natural frequency is 
investigated. Figs. 9 to 12 show the effect of 
changing the number of layers for a constant 
thickness and lay-up [0/90]𝑛 and its effect on 
the natural frequency. 

 
Fig. 8. Effect of elasticity modulus on the natural frequency 

(n=5) 

 
Fig. 9. Effect of number of layers for a constant thickness and 
lay-up [𝟎/𝟗𝟎]𝒏  on the natural frequency at circumferential 

wave numbers n=0 to n=3 
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Fig. 10. Effect of number of layers for a constant thickness 
and lay-up [𝟎/𝟗𝟎]𝒏 on the natural frequency at n = 4 to 5 

 

Fig. 11. Effect of number of layers for a constant thickness 
and lay-up [𝟎/𝟗𝟎]𝒏 on the natural frequency at n = 6 

 

Fig. 12. Effect of number of layers for a constant thickness 
and lay-up [𝟎/𝟗𝟎]𝒏 on the natural frequency at n=7 

As can be seen in these figures, the natural 
frequency of the shell is increased by increasing 
the number of layers in a constant thickness. The 
rate of increase is very much greater at lower 
values of the number of layers. The maximum 
percentage discrepancy between the numerical 
and analytical results is 4%, which occurs in Fig. 
9 at 𝑁𝐿 = 20 and n=1. 

15. Effect of Internal pressure  

The effect of internal pressure on the natural 
frequency is studied as shown in Table 6. 

 

Table 6. Effect of internal pressure on the frequency 
parameter of a conical-cylindrical composite shell  

𝝎𝒄 P(Pa) 

0.1910 0 

0.1910 1 

0.1910 10 

0.1910 102 

0.1912 103 

0.1930 104 

0.2125 105 

0.3381 106 

0.9265 107 

2.2111 108 

As shown in Table 6, by increasing the 
internal pressure, the natural frequency is 
increased as well. Although the natural 
frequency is not affected considerably by lower 
values of P, for higher values of P, it increases 
dramatically. 

16. Effect Axial Compressive Force 

The effect of axial compressive force on 
natural frequency is studied in Table 7. 

Based on the obtained results, by increasing 
the axial compressive force, the natural 
frequency is decreased and reaches 0 at a 
specific load (buckling load). 

17. Effect of Fiber Angle 

To study the effect of fiber angle on the 
natural frequencies, a composite shell with lay-
up [±∅] was considered. The results are shown 
in Fig. 13. 

Table 7. Effect of axial compressive force on the frequency 
parameter of a conical-cylindrical composite shell 

𝝎𝒄 Na*2*pi*R(N) 

0.1910 0 

0.1908 10 

0.1898 100 

0.1789 1000 

0.1623 2000 

0.1426 3000 

0.1013 4000 

0 5000 

 

 
Fig. 13. Effect of fiber angle of the composite shell with lay-

up [±∅] on the natural frequency 
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As can be seen, in each circumferential wave 
number (n), the behavior of natural frequency is 
changed by changing the fiber angle. 

In axisymmetric mode (n=0), by increasing 
the angle of the fiber, the natural frequency is 
increased up to the fiber angle ∅ = 45°. Beyond 
∅ = 45°, the natural frequency is decreased. The 
minimum frequency occurs at ∅ = 0°. For n=1, 
by increasing the angle of the fiber, the natural 
frequency is increased up to the fiber angle of 
∅=30°. Beyond ∅=30°, the natural frequency is 
decreased. Naturally, the slope of decreasing 
frequency is increased for fiber angles between 
∅ = 60°  and  ∅ = 90°. The minimum frequency 
occurs at  ∅ = 0° and  ∅ = 90°. 

At n=2, by increasing the angle of the fiber, 
the natural frequency is decreased strongly 
between ∅ = 0° and ∅ = 10°. From ∅=10° to 
∅=20°, the natural frequency is increased and 
then decreased. The minimum frequency occurs 
at  ∅ = 10°  and the maximum value of it occurs 
at ∅ = 30°.  

18. Effect of Orthotropic Ratio 

In this section, the effect of orthotropic ratio 
and fiber angle on the natural frequency of the 
single-layer composite is studied. Fig. 13 
presents the variation of the natural frequency 
correspondent to the axisymmetric mode (n=0) 
versus fiber angle for a single-layered composite 
combined shell for different orthotropic ratios.  

 As shown in Fig. 14, for lower orthotropic 
ratios, the change in the natural frequency 
caused by varying the angle of the fiber is 
negligible. For 𝐸1 𝐸2 = 1⁄ , the natural frequency 
is first increased up to 45° at which the 
maximum occurs. For  𝐸1 𝐸2 = 2⁄ , the maximum 
occurs at 60°. For orthotropic ratios equal to 
3:10, this maximum occurs at a fiber angle of 
70°. As the orthotropic ratio increases, the 
natural frequency is decreased. Regardless of the 
value of the orthotropic ratio, by increasing the 
fiber angle, the natural frequency is first 
increased and then decreased.  

 
Fig. 14. The natural frequency of combined shell with single 
layer versus angle of fiber for various orthotropic ratios (n=0) 

19. Conclusion 

In the present study, a new approach is 
introduced to obtain the free vibrational 
characteristics of combined composite 
cylindrical-conical shells. In the previous studies, 
the present problem was solved using classical 
shell theories but the effect of shear deformation 
was not taken into account. This approach 
contains the effect of first-order shear 
deformation in the shell theory. Moreover, the 
effect of geometric and material parameters on 
the natural frequency is investigated and the 
effect of pre-load of internal pressure and an 
axial compressive force is studied. The results 
showed that the fiber angle and orthotropic ratio 
affect the frequency behavior of joined conical-
cylindrical shells. It shows that for lower 
orthotropic ratios, the change ub the natural 
frequency by varying the angle of the fiber is 
negligible. Furthermore, the natural frequency of 
the shell is increased by increasing the number 
of layers in a constant thickness. The natural 
frequency of the shell is decreased by increasing 
the ratio of  𝐸1 𝐸2⁄ . For higher ratios of  𝐸1 𝐸2⁄ , 
the rate of decreasing natural frequency is 
decreased. Finally, by increasing the semi-vertex 
angle of the cone, the natural frequency is 
converged to an almost constant value for higher 
values of the circumferential wave number.   
Results are verified by making a comparison 
with the literature and the results obtain using 
ABAQUS. Good agreement is observed. 
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Appendix 

A-1 𝑇11 = 𝑘3𝐺11 − 𝑘2𝐺41  

A-2 𝑇12 = 𝑘3𝐺12 − 𝑘2𝐺42 

A-3 𝑇13 = 𝑘3𝐺13 − 𝑘2𝐺43 

A-4 𝑇14 = 𝑘3𝐺14 − 𝑘2𝐺44 

A-5 𝑇15 = 𝑘3𝐺15 − 𝑘2𝐺45 

A-6 𝑇16 = 𝑘3𝐺16 − 𝑘2𝐺46 

A-7 𝑇17 = 𝑘3𝐺17 − 𝑘2𝐺47 

A-8 𝑇18 = 𝑘3𝐺18 − 𝑘2𝐺48 

A-9 𝑇19 = 𝑘3𝐺19 − 𝑘2𝐺49 

A-10 𝑇1,10 = 𝑘3𝐺1,10 − 𝑘2𝐺4,10 

A-11 𝑇1,11 = 𝑘3𝐺1,11 − 𝑘2𝐺4,11 

A-12 𝑇1,12 = 𝑘3𝐺1,12 − 𝑘2𝐺4,12 

A-13 𝑇1,13 = 𝑘3𝐺1,13 − 𝑘2𝐺4,13 

A-14 𝑇1,14 = 𝑘3𝐺1,14 − 𝑘2𝐺4,14 

A-15 𝑇1,15 = 𝑘3𝐺1,15 − 𝑘2𝐺4,15 

A-16 𝑇21 = 𝜆3𝐺21 − 𝜆2𝐺51 

A-17 𝑇22 = 𝜆3𝐺22 − 𝜆2𝐺52 

A-18 𝑇23 = 𝜆3𝐺23 − 𝜆2𝐺53 

A-19 𝑇24 = 𝜆3𝐺24 − 𝜆2𝐺54 

A-20 𝑇25 = 𝜆3𝐺25 − 𝜆2𝐺55 

A-21 𝑇26 = 𝜆3𝐺26 − 𝜆2𝐺56 

A-22 𝑇27 = 𝜆3𝐺27 − 𝜆2𝐺57 

A-23 𝑇28 = 𝜆3𝐺28 − 𝜆2𝐺58 

A-24 𝑇29 = 𝜆3𝐺29 − 𝜆2𝐺59 

A-25 𝑇2,10 = 𝜆3𝐺2,10 − 𝜆2𝐺5,10 

A-26 𝑇2,11 = 𝜆3𝐺2,11 − 𝜆2𝐺5,11 

A-27 𝑇2,12 = 𝜆3𝐺2,12 − 𝜆2𝐺5,12 

A-28 𝑇2,13 = 𝜆3𝐺2,13 − 𝜆2𝐺5,13 

A-29 𝑇2,14 = 𝜆3𝐺2,14 − 𝜆2𝐺5,14 

A-30 
𝑇3,𝑖 =

𝐺3,𝑖

(𝐴55 + 𝑁𝑎)
  (𝑖

= 1,2,3, …… . ,21,22) 
A-31 𝑇41 = −𝑘2𝐺11 + 𝑘1𝐺41 

A-32 𝑇42 = −𝑘2𝐺12 + 𝑘1𝐺42 

A-33 𝑇43 = −𝑘2𝐺13 + 𝑘1𝐺43 

A-34 𝑇44 = −𝑘2𝐺14 + 𝑘1𝐺44 

A-35 𝑇45 = −𝑘2𝐺15 + 𝑘1𝐺45 

A-36 𝑇46 = −𝑘2𝐺16 + 𝑘1𝐺46 

A-37 𝑇47 = −𝑘2𝐺17 + 𝑘1𝐺47 

A-38 𝑇48 = −𝑘2𝐺18 + 𝑘1𝐺48 

A-39 𝑇49 = −𝑘2𝐺19 + 𝑘1𝐺49 

A-40 𝑇4,10 = −𝑘2𝐺1,10 + 𝑘1𝐺4,10 

A-41 𝑇4,11 = −𝑘2𝐺1,11 + 𝑘1𝐺4,11 

A-42 𝑇4,12 = −𝑘2𝐺1,12 + 𝑘1𝐺4,12 

A-43 𝑇4,13 = −𝑘2𝐺1,13 + 𝑘1𝐺4,13 

A-44 𝑇4,14 = −𝑘2𝐺1,14 + 𝑘1𝐺4,14 

A-45 𝑇4,15 = −𝑘2𝐺1,15 + 𝑘1𝐺4,15 

A-46 𝑇51 = −𝜆2𝐺21 + 𝜆1𝐺51 

A-47 𝑇52 = −𝜆2𝐺22 + 𝜆1𝐺52 

A-48 𝑇53 = −𝜆2𝐺23 + 𝜆1𝐺53 
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A-49 𝑇54 = −𝜆2𝐺24 + 𝜆1𝐺54 

A-50 𝑇55 = −𝜆2𝐺25 + 𝜆1𝐺55 

A-51 𝑇56 = −𝜆2𝐺26 + 𝜆1𝐺56 

A-52 𝑇57 = −𝜆2𝐺27 + 𝜆1𝐺57 

A-53 𝑇58 = −𝜆2𝐺28 + 𝜆1𝐺58 

A-54 𝑇59 = −𝜆2𝐺29 + 𝜆1𝐺59 

A-55 𝑇5,10 = −𝜆2𝐺2,10 + 𝜆1𝐺5,10 

A-56 𝑇5,11 = −𝜆2𝐺2,11 + 𝜆1𝐺5,11 

A-57 𝑇5,12 = −𝜆2𝐺2,12 + 𝜆1𝐺5,12 

A-58 𝑇5,13 = −𝜆2𝐺2,13 + 𝜆1𝐺5,13 

A-59 𝑇5,14 = −𝜆2𝐺2,14 + 𝜆1𝐺5,14 

where:   
A-60 𝑘0 = 𝐴11𝐷11 − 𝐵11

2  

A-61 
𝑘1 =

𝐴11

𝑘0
 

A-62 
𝑘2 =

𝐵11

𝑘0
 

A-63 
𝑘3 =

𝐷11

𝑘0
 

A-64 𝜆0 = 𝐴66𝐷66 − 𝐵66
2  

A-65 
𝜆1 =

𝐴66

𝜆0
 

A-66 
𝜆2 =

𝐵66

𝜆0
 

A-67 
𝜆3 =

𝐷66

𝜆0
 

A-68 
𝐺11 = −

𝐴11(2𝑚 + 1)𝑠𝑖𝑛 𝛼

𝑅0(𝑚 + 2)
 

A-69 𝐺12

= −
(𝑚2𝐴11 − 𝐴22)𝑠𝑖𝑛

2𝛼 − 𝑛2𝐴66

𝑅0
2(𝑚 + 2)(𝑚 + 1)

−
𝐼0𝜔

2

(𝑚 + 2)(𝑚 + 1)
 

A-70 
𝐺13 = −

2𝐼0𝜔
2𝑠𝑖𝑛𝛼

𝑅0(𝑚 + 2)(𝑚 + 1)
 

A-71 
𝐺14 = −

𝐼0𝜔
2𝑠𝑖𝑛2𝛼

𝑅0
2(𝑚 + 2)(𝑚 + 1)

 

A-72 
𝐺15 = −

𝐴126𝑛

𝑅0(𝑚 + 2)
 

A-73 
𝐺16 =

(−𝑚𝐴126 + 𝐴226)𝑛𝑠𝑖𝑛𝛼

𝑅0
2(𝑚 + 2)(𝑚 + 1)

 

A-74 
𝐺17 = −

𝐴12𝑐𝑜𝑠 𝛼

𝑅0(𝑚 + 2)
 

A-75 
𝐺18 =

(−𝑚𝐴12 + 𝐴22) 𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼

𝑅0
2(𝑚 + 2)(𝑚 + 1)

 

A-76 𝐺19 = 0 

A-77 
𝐺1,10 = −

𝐵11(2𝑚 + 1)𝑠𝑖𝑛 𝛼

𝑅0(𝑚 + 2)
 

A-78 
𝐺1,11 = −

(𝑚2𝐵11 − 𝐵22)𝑠𝑖𝑛
2𝛼

𝑅0
2(𝑚 + 2)(𝑚 + 1)

 

A-79 𝐺1,12 = 0 

A-80 𝐺1,13 = 0 

A-81 
𝐺1,14 = −

𝐵126𝑛

𝑅0(𝑚 + 2)
 

A-82 
𝐺1,15 =

(−𝑚𝐵126 + 𝐵226)𝑛𝑠𝑖𝑛𝛼

𝑅0
2(𝑚 + 2)(𝑚 + 1)

 

A-83 
𝐺21 =

𝐴126𝑛

𝑅0(𝑚 + 2)
 

A-84 
𝐺22 =

(𝑚𝐴126 + 𝐴226)𝑛𝑠𝑖𝑛𝛼

𝑅0
2(𝑚 + 2)(𝑚 + 1)

 

A-85 
𝐺23 = −

𝐴66(2𝑚 + 1)𝑠𝑖𝑛 𝛼

𝑅0(𝑚 + 2)
 

A-86 𝐺24 = − 
𝐴66(𝑚

2 − 1)𝑠𝑖𝑛2𝛼 − 𝑛2𝐴22 − 𝐴44𝑐𝑜𝑠2𝛼

𝑅0
2(𝑚 + 2)(𝑚 + 1)

−
𝐼0𝜔

2

(𝑚 + 2)(𝑚 + 1)
 

A-87 
𝐺25 = −

2𝐼0𝜔
2𝑠𝑖𝑛𝛼

𝑅0(𝑚 + 2)(𝑚 + 1)
 

A-88 
𝐺26 = −

𝐼0𝜔
2𝑠𝑖𝑛2𝛼

𝑅0
2(𝑚 + 2)(𝑚 + 1)

 

A-89 
𝐺27 =

(𝐴22 + 𝐴44)𝑛 𝑐𝑜𝑠𝛼

𝑅0
2(𝑚 + 2)(𝑚 + 1)

 

A-90 𝐺28 = 0 

A-91 
𝐺29 =

𝐵126𝑛

𝑅0(𝑚 + 2)
 

A-92 
𝐺2,10 =

(𝑚𝐵126 + 𝐵226)𝑛𝑠𝑖𝑛𝛼

𝑅0
2(𝑚 + 2)(𝑚 + 1)

 

A-93 
𝐺2,11 = −

𝐵66(2𝑚 + 1)𝑠𝑖𝑛 𝛼

𝑅0(𝑚 + 2)
 

A-94 𝐺2,12 = − 
𝐵66(𝑚

2 − 1)𝑠𝑖𝑛2𝛼 − 𝑛2𝐵22 − 𝐴44𝑐𝑜𝑠2𝛼

𝑅0
2(𝑚 + 2)(𝑚 + 1)

 

A-95 
𝐺2,13 =

𝐴44𝑐𝑜𝑠𝛼

𝐴66𝑅0
2(𝑚 + 2)(𝑚 + 1)

 

A-96 𝐺2,14 = 0 

A-97 
𝐺31 =

𝐴12𝑐𝑜𝑠 𝛼

𝑅0(𝑚 + 2)
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A-98 
𝐺32 =

(𝑚𝐴12 + 𝐴22) 𝑠𝑖𝑛𝛼 𝑐𝑜𝑠 𝛼

𝑅0
2(𝑚 + 2)(𝑚 + 1)

 

A-99 
𝐺33 =

(𝐴22 + 𝐴44)𝑛 𝑐𝑜𝑠𝛼

𝑅0
2(𝑚 + 2)(𝑚 + 1)

 

A-100 
𝐺34 = −

𝐴55(2𝑚 + 1)𝑠𝑖𝑛 𝛼

𝑅0(𝑚 + 2)
 

A-101 𝐺35 = − 
𝐴55𝑚

2𝑠𝑖𝑛2𝛼 − 𝑛2𝐴44 − 𝐴22𝑐𝑜𝑠2𝛼

𝑅0
2(𝑚 + 2)(𝑚 + 1)

−
𝐼0𝜔

2

(𝑚 + 2)(𝑚 + 1)
 

A-102 
𝐺3,6 = −

2𝐼0𝜔
2𝑠𝑖𝑛𝛼

𝑅0(𝑚 + 2)(𝑚 + 1)
 

A-103 
𝐺3,7 = −

𝐼0𝜔
2𝑠𝑖𝑛2𝛼

𝑅0(𝑚 + 2)(𝑚 + 1)
 

A-104 
𝐺3,8 = −

𝐵12 𝑐𝑜𝑠 𝛼 − 𝐴55𝑅0

𝑅0(𝑚 + 2)
 

A-105 𝐺3,9 = − 
𝐴55𝑅0(1 + 2𝑚) 𝑠𝑖𝑛 𝛼 − (𝐵12𝑚 + 𝐵22) 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼

𝑅0
2(𝑚 + 2)(𝑚 + 1)

 

A-106 
𝐺3,10 = −

𝐴55𝑚 𝑠𝑖𝑛2𝛼

𝑅0
2(𝑚 + 2)(𝑚 + 1)

 

A-107 
𝐺3,11 =

(𝐵22 𝑐𝑜𝑠 𝛼 − 𝐴44𝑅0)𝑛

𝑅0
2(𝑚 + 2)(𝑚 + 1)

 

A-108 
𝐺3,12 = −

𝐴44 𝑛 𝑠𝑖𝑛 𝛼

𝑅0
2(𝑚 + 2)(𝑚 + 1)

 

A-109 
𝐺41 = −

𝐵11(2𝑚 + 1)𝑠𝑖𝑛 𝛼

𝑅0(𝑚 + 2)
 

A-110 𝐺42 = − 
(𝑚2𝐵11 − 𝐵22)𝑠𝑖𝑛

2𝛼 − 𝑛2𝐵66

𝑅0
2(𝑚 + 2)(𝑚 + 1)

 

A-111 𝐺4,3 = 0 

A-112 𝐺4,4 = 0 

A-113 
𝐺45 = −

𝐵126𝑛 

𝑅0 (𝑚 + 2)
 

A-114 
𝐺46 =

(−𝑚𝐵126 + 𝐵226)𝑛𝑠𝑖𝑛𝛼

𝑅0
2(𝑚 + 2)(𝑚 + 1)

 

A-115 
𝐺47 = −

𝐵12𝑐𝑜𝑠 𝛼 − 𝐴55𝑅0

𝑅0(𝑚 + 2)
 

A-116 

𝐺48 = −

(𝑚𝐵12 − 𝐵22)𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛼
−2𝐴55𝑅0𝑚𝑠𝑖𝑛𝛼

𝑅0
2(𝑚 + 2)(𝑚 + 1)

 

A-117 
𝐺49 =

𝐴55(𝑚 − 1) 𝑠𝑖𝑛2 𝛼

𝑅0
2 (𝑚 + 2)(𝑚 + 1)

 

A-118 
𝐺4,10 = −

𝐷11(2𝑚 + 1)𝑠𝑖𝑛 𝛼

𝑅0(𝑚 + 2)
 

A-119 𝐺4,11 = − 
(𝑚2𝐷11 − 𝐷22)𝑠𝑖𝑛

2𝛼 − 𝑛2𝐷66

−𝐴55𝑅0
2

𝑅0
2(𝑚 + 2)(𝑚 + 1)

−
𝐼2𝜔

2

(𝑚 + 2)(𝑚 + 1)
 

A-120 
𝐺4,12 =

2(𝐴55 − 𝐼2𝜔
2)𝑠𝑖𝑛 𝛼

𝑅0(𝑚 + 2)(𝑚 + 1)
 

A-121 
𝐺4,13 =

(𝐴55 − 𝐼2𝜔
2)𝑠𝑖𝑛2 𝛼

𝑅0
2(𝑚 + 2)(𝑚 + 1)

 

A-122 
𝐺4,14 = −

𝐷126𝑛 

𝑅0 (𝑚 + 2)
 

A-123 
𝐺4,15 =

(−𝑚𝐷126 + 𝐷226)𝑛𝑠𝑖𝑛𝛼

𝑅0
2(𝑚 + 2)(𝑚 + 1)

 

A-124 
𝐺51 =

𝐵126𝑛 

𝑅0 (𝑚 + 2)
 

A-125 
𝐺52 =

(𝑚𝐵126 + 𝐵226)𝑛𝑠𝑖𝑛𝛼

𝑅0
2(𝑚 + 2)(𝑚 + 1)

 

A-126 
𝐺53 = −

𝐵66(2𝑚 + 1)𝑠𝑖𝑛 𝛼

𝑅0(𝑚 + 2)
 

A-127 𝐺54 = − 
𝐵66(𝑚

2 − 1)𝑠𝑖𝑛2𝛼 − 𝑛2𝐵22 +
𝐴44 𝑅0𝑐𝑜𝑠 𝛼

𝑅0
2(𝑚 + 2)(𝑚 + 1)

 

A-128 
𝐺55 = −

𝐴44 𝑠𝑖𝑛𝛼 𝑐𝑜𝑠 𝛼

𝑅0
2(𝑚 + 2)(𝑚 + 1)

 

A-129 𝐺56 = 0 

A-130 
𝐺57 =

(𝐵22𝑐𝑜𝑠𝛼 − 𝑅0𝐴44)𝑛

𝑅0
2(𝑚 + 2)(𝑚 + 1)

 

A-131 
𝐺58 = −

𝑛𝐴44 𝑠𝑖𝑛𝛼 

𝑅0
2(𝑚 + 2)(𝑚 + 1)

 

A-132 
𝐺59 =

𝐷126𝑛 

𝑅0 (𝑚 + 2)
 

A-133 
𝐺5,10 =

(𝑚𝐷126 + 𝐷226)𝑛𝑠𝑖𝑛𝛼

𝑅0
2(𝑚 + 2)(𝑚 + 1)

 

A-134 
𝐺5,11 = −

𝐷66(2𝑚 + 1)𝑠𝑖𝑛 𝛼

𝑅0(𝑚 + 2)
 

A-135 𝐺5,12 = − 
𝐷66(𝑚

2 − 1)𝑠𝑖𝑛2𝛼 − 𝑛2𝐷22 − 𝐴44𝑅0
2

𝑅0
2(𝑚 + 2)(𝑚 + 1)

−
𝐼2𝜔

2

(𝑚 + 2)(𝑚 + 1)
 

A-136 
𝐺5,13 =

2(𝐴44 − 𝐼2𝜔
2)𝑠𝑖𝑛 𝛼

𝑅0(𝑚 + 2)(𝑚 + 1)
 

A-137 
𝐺5,14 =

(𝐴44 − 𝐼2𝜔
2)𝑠𝑖𝑛2 𝛼

𝑅0
2(𝑚 + 2)(𝑚 + 1)
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where: 

A-138 
𝐴126 = 𝐴12 + 𝐴66 

A-139 
𝐴226 = 𝐴22 + 𝐴66 

A-140 
𝐷126 = 𝐷12 + 𝐷66 

A-141 
𝐷226 = 𝐷22 + 𝐷66 

A-142 
𝐵126 = 𝐵12 + 𝐵66 

A-143 

A-144 

𝐵226 = 𝐵22 + 𝐵66 

𝑎𝑚+2 = 𝑇11𝑎𝑚+1 + 𝑇12𝑎𝑚 + 𝑇13𝑎𝑚−1 + 𝑇14𝑎𝑚−2

+ 𝑇15𝑏𝑚+1 + 𝑇16𝑏𝑚 + 𝑇17𝑐𝑚+1

+ 𝑇1,8𝑐𝑚 + 𝑇1,9𝑐𝑚−1 + 𝑇1,10𝑑𝑚+1

+ 𝑇1,11𝑑𝑚 + 𝑇1,12𝑑𝑚−1

+ 𝑇1,13𝑑𝑚−2 + 𝑇1,14𝑓𝑚+1

+ 𝑇1,15𝑓𝑚 

A-145     
𝑏𝑚+2

= 𝑇21𝑎𝑚+1 + 𝑇22𝑎𝑚 + 𝑇23𝑏𝑚+1 + 𝑇24𝑏𝑚

+ 𝑇25𝑏𝑚−1 + 𝑇26𝑏𝑚−2 + 𝑇2,7𝑐𝑚 + 𝑇2,8𝑐𝑚−1

+ 𝑇2,9𝑑𝑚+1+𝑇2,10𝑑𝑚+𝑇2,11𝑓𝑚+1+𝑇2,12𝑓𝑚+𝑇2,13𝑓𝑚−1 

+𝑇2,14𝑓𝑚−2 

 
A-146     

𝑐𝑚+2 = 𝑇31𝑎𝑚+1 + 𝑇32𝑎𝑚 + 𝑇33𝑏𝑚 + 𝑇34𝑐𝑚+1

+ 𝑇3,5𝑐𝑚 + 𝑇3,6𝑐𝑚−1 + 𝑇3,7𝑐𝑚−2

+ 𝑇3,8𝑑𝑚+1 + 𝑇3,9𝑑𝑚

+ 𝑇3,10𝑑𝑚−1 + 𝑇3,11𝑓𝑚
+ 𝑇3,12𝑓𝑚−1 

 
A-147     

𝑑𝑚+2 = 𝑇41𝑎𝑚+1 + 𝑇42𝑎𝑚 + 𝑇43𝑎𝑚−1 + 𝑇44𝑎𝑚−2

+ 𝑇45𝑏𝑚+1 + 𝑇46𝑏𝑚 + 𝑇47𝑐𝑚+1

+ 𝑇4,8𝑐𝑚 + 𝑇4,9𝑐𝑚−1 + 𝑇4,10𝑑𝑚+1

+ 𝑇4,11𝑑𝑚 + 𝑇4,12𝑑𝑚−1

+ 𝑇4,13𝑑𝑚−2 + 𝑇4,14𝑓𝑚+1

+ 𝑇4,15𝑓𝑚 

 
A-148     

𝑓𝑚+2 = 𝑇51𝑎𝑚+1 + 𝑇52𝑎𝑚 + 𝑇53𝑏𝑚+1 + 𝑇54𝑏𝑚

+ 𝑇55𝑏𝑚−1 + 𝑇56𝑏𝑚−2 + 𝑇5,7𝑐𝑚

+ 𝑇5,8𝑐𝑚−1 + 𝑇5,9𝑑𝑚+1

+ 𝑇5,10𝑑𝑚 + 𝑇5,11𝑓𝑚+1 + 𝑇5,12𝑓𝑚
+ 𝑇5,13𝑓𝑚−1 + 𝑇5,14𝑓𝑚−2 

 
 

 


