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In the present paper, the exact modeling and frequency analysis of the mass sensor 

nanobeam are investigated based on a higher-order elasticity theory with taking into 

account the longitudinal discontinuity. The energy equations of the beam are expressed 

considering discontinuity, and finally, the vibration equations and boundary conditions of 

the non-uniform nanobeam are derived using Hamilton’s principle. By the implementation 

of an analytical solution, the number of shape functions equal to longitudinal 

discontinuities is assumed. Then, by expressing the compatibility and boundary conditions, 

the frequency equation of the discontinuous nanobeam is obtained and solved. Effects of 

different parameters such as sensed mass and size effects on the frequency behavior of the 

nanobeam are investigated at various vibrational modes. The results show that accurate 

modeling of discontinuous nanobeam is important. Also, Changing the position of the 

sensed mass to the free end of the nanotube increases the sensing feature of the beam, and 

the size effect reduces it.  The size effect reduces the frequency and increases the amplitude 

of the mode shape, especially at higher vibrational modes. The results also show that the 

sensing feature of the mass sensor nanobeam is more prominent at higher modes of 

vibration, and therefore the use of mass sensor nanobeam at higher vibrational modes is 

recommended. 

1. Introduction 

Recent advances in manufacturing 
technologies have made it possible to develop 
small-scale systems at micron/submicron scales. 
In recent decades, nanostructure technologies 
have enabled the development and application 
of advanced micro/nanosystems, such as atomic 
force microscopes (AFMs), nanoactutors, 
nanosensors, etc. [1-3]. In fact, the nano-scale 
beams possess prominent features such as small 
dimensions, easy manufacturing, and high-
frequency performance which make them the 
main components of nanosystems.  

Furthermore, most of the nanobeams operate 
in vibrational or dynamic modes. Therefore, the 
dynamic analysis of nanobeams has attracted 
the attention of many researchers in the field of 
nanotechnology. 

Taheri [4] studied sensitivity analysis of 
dimensional parameters on dynamic behavior of 
carbon nanotubes. Also, Korayem et al. [5] 

studied dynamic modeling of an atomic force 
nanomechanical beam adjacent to a surface 
considering tip-sample interaction forces. They 
introduced the critical force and time as 
important parameters of the performance of 
atomic force microscopes nanobeam and carried 
out the sensitivity analysis of dimensions of the 
nanobeam such as length, thickness, and height 
on its dynamic behavior. However, they modeled 
the system as a lumped mass, which cannot be 
approved as an accurate model for a continuous 
beam, especially in the nano-scale.  

In the previous studies, the classic elasticity 
theory has been used to derive the dynamic 
equations of nanobeams, although the ability of 
this theory to dynamically describe the 
micro/nanosystems is strongly doubted through 
conducting experimental tests and molecular 
simulations [6-7]. Indeed, the mechanical 
properties and behavior of micro/nanobeams 
depend on their dimensions at small scales, 
which the classical theory of elasticity is unable 
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to consider. Besides, performing experimental 
tests at micro/nano-scales is challenging and 
costly. Thus, in the past few decades, size-
dependent theories of elasticity have been 
presented for the dynamic analysis of small-
scale systems and have attracted many 
researchers in the field of nanoscience. Jiang and 
Yan [8] employed the surface elasticity theory 
for the mechanical analysis of nanobeams, which 
is known as a higher-order elasticity theory. 
They derived the governing vibration equation 
of the nanobeam by employing the surface 
elasticity theory. Also, in [9], vibration analysis 
of carbon nanobeams was performed for virus 
detection with consideration of the surface 
elasticity theory. Jalali et al. [10] investigated the 
size-dependent vibration of a functionally 
graded micro-resonator based on the modified 
couple stress theory. They employed the 
Rayleigh-Ritz method to obtain the size-
dependent natural frequencies of the beam for 
different boundary conditions. Khorshidi and 
Fallah [11] presented size-dependent vibration 
of a functionally graded nanostructure 
considering modified couple stress theory. Also, 
they [12] investigated temperature distribution 
and size effects on vibration behavior of such 
nanostructures undergoing prescribed overall 
motion. They developed vibration equations of 
the nanostructure-based on modified couple 
stress theory and exponential shear deformation 
theory. Recently, Assadi and Nazemizadeh [13] 
studied effect of longitudinal discontinuity of the 
nanobeam on its size-dependent stability and 
self-instability with considering the surface 
elasticity theory. They modeled the nanobeam as 
a step-wise beam and they derived its governing 
equation considering compatibility and different 
boundary conditions. 

On the other hand, the nonlocal size-
dependent elasticity theory has been presented 
in the past two decades and has received the 
attention of many nanotechnology researchers. 
This theory was first introduced by Eringen [14], 
and the first application of this theory in 
modeling nano-scale systems was carried out by 
Pedison et al. [15]. They modeled a nonlocal 
nanobeam and indicated that the theory plays an 
important role in micro/nanotechnology 
applications. Zhang et al. [16] studied the 
buckling of a weakened nanobeam subjected to 
an axial force based on the nonlocal elasticity 
theory. They considered the effects of weakened 
joints and size effects on the buckling load of the 
nanobeam. Nazemizadeh and Bakhtiari-Nejad 
[17] studied free vibrations of 
micro/nanobeams including piezoelectric layers. 
They investigated the size effects on vibrational 
behavior of nonlocal beams and showed that the 
nonlocal parameter had a prominent effect on 

the dynamic behavior of the nanobeam. They 
also proposed [18] a general formulation for 
calculating the quality factor of vibrating 
nanobeams in air environments. Thai et al. [19] 
presented a formulation for bending and 
vibration of nanobeams regarding to shear 
deformation and size effects and considering the 
nonlocal elasticity theory. They used an 
analytical method to solve the governing 
equations. They investigated the size effects on 
the mechanical behavior of nanobeam. In [20], a 
perturbation method was employed to solve 
nonlinear size-dependent vibration of nonlocal 
two-layered piezo laminated nanobeam. 
Mawphlang [21] analyzed buckling of non-
uniform nanobeams taking into account the 
nonlocal elastic theory. They derived governing 
differential equation for nonuniform nanobeam 
subjected to the axial compressive load and 
solved the problem numerically by employing 
the differential transformation method. In [22], 
nonlocal effects were studied on nonlinear 
vibration of nanobeams at higher modes of 
vibration. Recently, Hossein and Lellep [23] 
investigated natural frequency of stepped 
nanobeam considering the nonlocal effects and 
rotary inertia. They used Homotopy 
perturbation method to solve the governing 
equations for two steps nanobeam. However, the 
solution procedure and detail mathematical 
formulation were ignored. 

In this article, the vibration analysis of mass 
sensor nanobeams is presented with 
consideration of the longitudinal discontinuity 
and the nonlocal elasticity theory. The non-
uniform and discontinuous model of nanobeams 
has been inspired by the fact that most 
micro/nanobeams are designed and fabricated 
at the narrower end section. Therefore, a 
discontinuous nanobeam model is considered, 
which senses the absorbed mass at a desired 
longitudinal point for mass sensor applications. 
In order to derive the vibrational equations 
governing, energy equations of the beam are 
developed with regard to the discontinuity, and 
finally, the vibrational equations and boundary 
conditions of the nonlocal nanobeam are derived 
according to Hamilton’s principle. Then, for the 
number of longitudinal discontinuities, the same 
number of responses of mode shapes along the 
nanobeam is considered by using the analytical 
solution. Finally, the frequency equation of 
discontinuous mass sensor nanobeam is 
obtained as an algebraic relation by applying the 
compatibility conditions and nonlocal boundary 
conditions. The natural frequencies in various 
modes of nanobeam are calculated by solving 
the frequency response. The effects of different 
parameters, such as the length of discontinuity, 
sensed mass, and nonlocal parameters on the 
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frequency behavior of the nanobeam are 
investigated. Also, the effects of sensed mass and 
size effects on the shape functions of nanobeam 
are simulated. These effects are investigated 
more precisely at higher modes to study the 
application and efficiency of the mass sensor at 
higher modes of vibration. 

2. Problem Formulation  

In this section, firstly, a mass sensor 
cantilever nanobeam is considered with the 
ability to sense mass at a desired distance from 
the clamped end, and then the governing 
vibrational equation is obtained by using 
Hamilton’s principle.  It should be noted that a 
non-uniform cantilever nanobeam is modeled 
and stepwise varying properties across the 
length of the beam is considered in dynamic 
modeling of the system. This discontinued 
modeling is originated based on the fact that the 
mass sensor nanobeams are fabricated wider in 
the first section, while the end section is 
designed narrower due to enhance end 
deflection measurement. 

 Figure 1 shows a discontinuous cantilever 

nanobeam . 
The characteristics of the nanobeam are as 

the following: length of the initial section 𝑙1, the 
distance of the location of discontinuity from the 
location of sensor mass 𝑙2, the distance of the 
location of the sensed mass from the free end of 
the beam 𝑙3, the total length of nanobeam 𝑙, 
width 𝑡𝑖, thickness ℎ𝑖, and location of the sensed 

mass 𝑙𝑀𝑝. 
Considering the transverse vibrations of the 

nanobeam along the z-axis, the displacement of 
any desired point of the nanobeam cross-section 
in the distance z from the neutral axis is 𝑟 =
[𝑢(𝑥, 𝑦, 𝑧), 𝑣(𝑥, 𝑦, 𝑧), 𝑤(𝑥, 𝑦, 𝑧)]T and is equal to 

the following equation : 

𝑢(𝑥, 𝑦, 𝑧) = −𝑧
𝜕𝑤̄̄

𝜕𝑥
 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤̄(𝑥, 𝑡) 
𝑣(𝑥, 𝑦, 𝑧) = 0 
 

(1) 

 
Fig. 1. Nonlocal mass sensor cantilever nanobeam 

where 𝑢(𝑥, 𝑦, 𝑧), 𝑣(𝑥, 𝑦, 𝑧), 𝑤(𝑥, 𝑦, 𝑧) and  𝑤̅(𝑥, 𝑡) 
are the displacement of the desired point of the 
nanobeam cross-section in the x-direction, y-
direction, z-direction, and the transverse 
displacement of the neutral axis of nanobeam, 
respectively.  

In order to obtain the governing equations of 
the system, Hamilton’s principle is considered as 

follows : 

∫ (𝛿𝑇 − 𝛿𝑈 + 𝛿𝑊𝑛.𝑐)
𝑡

𝑡0
= 0 (2) 

where, T is the kinetic energy, 𝑈 and 𝑊𝑛.𝑐 are the 
potential energy and work of the external force 
of the system, respectively. The kinetic energy of 

the system can also be calculated as : 

𝑇 =
1

2
∭ 𝜌̄𝑏𝑖

(
𝜕𝑤̄

𝜕𝑡
)2𝑑𝑉̄𝑏𝑖𝑉̄𝑏

+
1

2
𝑀̄𝑝 (

𝜕𝑤̄(𝑙𝑀𝑝,𝑡)

𝜕𝑡
)

2

 (3) 

where, ̅
𝑏𝑖

 and 𝑉̅𝑏𝑖
 are mass density and the 

cross-section of nanobeam, respectively, and 𝑀̅𝑝 

is the absorbed mass on the nanobeam. Then, 
the kinetic energy can be rewritten by using the 

Heaviside function : 

𝑇 =
1

2
∫ {

𝜌̄𝑏1
𝐴̄𝑏1

[𝐻(𝑥) − 𝐻(𝑥 − 𝑙1)]

+𝜌̄𝑏2
𝐴̄𝑏2

[𝐻(𝑥 − 𝑙1) − 𝐻(𝑥 − 𝑙2)]
} 𝑑𝑥 +

𝐿̄

0

1

2
𝑀̄𝑝 (

𝜕𝑤̄(𝑙𝑀𝑝,𝑡)

𝜕𝑡
)

2

 

(4) 

where the Heaviside function 𝐻(𝑥) is a non-
continuous function whose value is zero for 
negative input and one for positive input. 

The potential energy is also calculated as the 
following equation: 

𝑈 =
1

2
∭ 𝜎̄𝑥𝑥,𝑏𝜀𝑥𝑥𝑉𝑏

𝑑𝑉̄𝑏 (5) 

where, ̅𝑥𝑥,𝑏 is the nonlocal stress along the x-

axis. Also, the non-zero term of the nanobeam 
strain is equal to: 

𝜀𝑥𝑥 = −𝑧
𝜕2𝑤̄(𝑥,𝑡)

𝜕𝑥2  (6) 

Moreover, the main point of nonlocal 
continuum mechanics is that the nonlocal stress 
tensor at the reference point 𝑟  depends not only 
on the strain tensor of the same coordinates but 
also on all points of the body [14]. The basic 
equation proposed by Eringen in integral form is 
as the following: 

𝜎̄𝑖𝑗(𝑟) = ∫ 𝛼(|𝑟 − 𝑟′|)𝜎𝑖𝑗(𝑟′)𝑑𝑉̄(𝑟′)
𝑉

 (7) 

where ̅𝑖𝑗 is the nonlocal stress tensor, (|𝑟|) 

indicates to the nonlocal kernel, 𝑟   is the 
coordinate of the reference point, and 𝑟′ is 
referred to the coordinate of each point of the 
body. In addition, 𝑖𝑗 is a local stress tensor that 

for a homogeneous isotropic object is stated as: 

https://simple.wikipedia.org/wiki/Function_(mathematics)
https://simple.wikipedia.org/wiki/0_(number)
https://simple.wikipedia.org/wiki/1_(number)
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𝜎𝑖𝑗 = 𝐸̄𝑖𝑗𝑘𝑙𝜀𝑘𝑙 (8) 

where, 𝐸̅𝑖𝑗𝑘𝑙 is the elastic stiffness tensor, and 𝑘𝑙 

is the strain tensor. Moreover, Eringen showed 
that a differential form of the nonlocal 
formulation could be used instead of the integral 
form (7) as follows [14]: 

(1 − 𝜇2𝛻2)𝜎̄𝑖𝑗 = 𝜎𝑖𝑗 (9) 

where,  2 is the Laplace operator, and  is 
defined as the scaling coefficient, which includes 
the size-dependent small-scale coefficients. In 
addition, the nonlocal stress tensor for 
nanobeam is presented as the following integral 
equation: 

𝜎̄𝑖𝑗(𝑟) = ∫ 𝛼(|𝑟 − 𝑟′|)
𝑉̄

(𝐸̄𝑖𝑗𝑘𝑙𝜀𝑘𝑙(𝑟′)) 𝑑𝑉̄ (10) 

The equation (10) can be converted into the 
following differential form: 

(1 − 𝜇2𝛻2)𝜎̄𝑖𝑗 = 𝐸̄𝑖𝑗𝑘𝑙𝜀𝑘𝑙 (11) 

And, the one-dimensional form of the 
differential nonlocal equation can be rewritten 
as: 

(1 − 𝜇2 𝜕2

𝜕𝑥2) 𝜎̄𝑥𝑥,𝑏 = 𝐸̄𝑏𝜀𝑥𝑥 (12) 

where, 𝐸̅𝑏 is Young's modulus of the nanobeam. 
By placing Eq. 6. in Eq. 5, the following 

equation is obtained: 

𝑈 =
1

2
∭ −𝑧𝜎̄𝑥𝑥,𝑏𝑉𝑏

𝜕2𝑤̄(𝑥,𝑡)

𝜕𝑥2 𝑑𝑉𝑏 (13) 

Also, Eq. 13 can be summarized as follows: 

𝑈 =
1

2
∫ (𝑀̄𝑒𝑞

𝜕2𝑤̄(𝑥,𝑡)

𝜕𝑥2 ) 𝑑𝑥
𝑙

0
 (14) 

where, 𝑀̅𝑒𝑞 is considered as: 

𝑀̄𝑒𝑞 = −[𝐻(𝑥) − 𝐻(𝑥 − 𝑙1)] ∬ 𝜎̄𝑥𝑥,𝑏𝑧𝑑𝐴̄𝑏1𝐴̄𝑏1
−

[𝐻(𝑥 − 𝑙1) − 𝐻(𝑥 − 𝑙)] ∬ 𝜎̄𝑥𝑥,𝑏𝑧𝑑𝐴̄𝑏2𝐴̄𝑏2
 

(15) 

Moreover, the work of the external force is 
also calculated as follows: 

𝑊𝑛.𝑐 =
1

2
∫ 𝑓̄𝑤̄(𝑥, 𝑡)𝑑𝑥

𝑙

0
 (16) 

where, 𝑓̅ is the external force applied to the 
nanobeam. 

Now by submitting Eqs. (3), (12), and (14) in 
the Hamilton principle (2), the equations of 
motion and boundary conditions can be 
obtained as the following relations: 

𝜌̄𝑒𝑞𝐴̄𝑒𝑞
𝜕2𝑤̄(𝑥,𝑡)

𝜕𝑡2 + 𝑓̄ =
𝜕2𝑀̄𝑒𝑞

𝜕𝑥2  (17) 

𝑥 = 0: 

𝑤̄(0, 𝑡) = 0   𝑎𝑛𝑑   
𝜕𝑤̄(0, 𝑡)

𝜕𝑥
= 0 

𝑥 = 𝑙: 

𝑀𝑒𝑞 = 0   𝑎𝑛𝑑   
𝜕𝑀𝑒𝑞

𝜕𝑥
= 0 

(18) 

where the equivalent mass of the system is 
expressed as follows: 

𝜌̄𝑒𝑞𝐴̄𝑒𝑞 = 𝜌̄𝑏1
𝐴̄𝑏1

[𝐻(𝑥) − 𝐻(𝑥 − 𝑙1)] +

𝜌𝑏2
𝐴̄𝑏2

[𝐻(𝑥 − 𝑙1) − 𝐻(𝑥 − 𝑙)] +

𝑀̄𝑝(𝑥 − 𝑙𝑀𝑝) 

 

(19) 

Besides, the following equation will be 
obtained by integrating the Eqs. (12) over the 
cross-section of the nanobeam: 

𝑀𝑒𝑞 − 𝜇2 𝜕2𝑀𝑒𝑞

𝜕𝑥2 = −𝐸̄𝑒𝑞𝐼𝑒𝑞
𝜕2𝑤̄

𝜕𝑥2  (20) 

where the following relations are considered: 

𝐸̄𝑒𝑞𝐼𝑒𝑞 = 𝐸̄𝑏1
𝐼𝑏1

[𝐻(𝑥) − 𝐻(𝑥 − 𝑙1)] 

+𝐸𝑏2
𝐼𝑏2

[𝐻(𝑥 − 𝑙1) − 𝐻(𝑥 − 𝐿̄)] 
(21) 

{𝐼𝑏1, 𝐼𝑏2} = ∬ 𝑧2{𝑑𝐴̄𝑏1, 𝑑𝐴̄𝑏2}
{𝐴̄𝑏1,𝐴̄𝑏2}

 (22) 

By submitting Eq. 16. in Eq. 19. the following 
equation will be obtained: 

𝑀𝑒𝑞 = −𝐸̄𝑒𝑞𝐼𝑒𝑞
𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2
+ 𝜇2 [𝜌̄𝑒𝑞𝐴̄𝑒𝑞

𝜕2𝑤̄(𝑥,𝑡)

𝜕𝑡2
+ 𝑓] (23) 

Furthermore, the governing equation and 
boundary conditions of the nanobeam can be 
presented as follows by using Eqs. 18, 19, and 23 

(1 − 𝜇2
𝜕2

𝜕𝑥2
) (𝜌̄𝑒𝑞𝐴̄𝑒𝑞

𝜕2𝑤̄(𝑥, 𝑡)

𝜕𝑡2
)

+
𝜕2

𝜕𝑥2
(𝐸̄𝑒𝑞𝐼𝑒𝑞

𝜕2𝑤̄(𝑥, 𝑡)

𝜕𝑥2
)

+ 𝑓̄ (1 − 𝜇2
𝜕3𝑤̄(𝑥, 𝑡)

𝜕𝑥2𝜕𝑡
)

= 0 
 

(24) 

𝑥 = 0: 

𝑤̄(0, 𝑡) = 0   𝑎𝑛𝑑   
𝜕𝑤̄(0, 𝑡)

𝜕𝑥
= 0 

𝑥 = 𝑙: 

𝐸̄𝑒𝑞𝐼𝑒𝑞

𝜕2𝑤̄

𝜕𝑥2
− 𝜇2𝜌̄𝑒𝑞𝐴̄𝑒𝑞

𝜕2𝑤̄

𝜕𝑡2
= 0 

𝜕

𝜕𝑥
[𝐸̄𝑒𝑞𝐼𝑒𝑞

𝜕2𝑤̄

𝜕𝑥2 − 𝜇2𝜌̄𝑒𝑞𝐴̄𝑒𝑞
𝜕2𝑤̄

𝜕𝑡2 ] = 0 

(25) 

The boundary conditions presented in Eq. 25. 
are related to zero displacement and zero slope 
at 𝑥 = 0, as well as to zero nonlocal torque and 
zero transverse shear force of at x = l. 
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3. Analytical Solution 

In the previous section, the governing 
equations and boundary conditions of the 
nanobeam were obtained. In order to 
analytically solve the vibration equation of the 
nanobeam with the sensed mass at the desired 
distance, the beam is divided into three sections: 
1) from the fixed end to the location of cross-
section discontinuity, 2) from the location of 
cross-section discontinuity to the sensed mass, 
3) from the absorbed mass to the free end of the 
beam. Therefore, Eq. 24 is rewritten as the 
following: 

0 < 𝑥 < 𝑙1: 

𝜌̄𝑒𝑞,1𝐸̄𝑒𝑞,1 (1 − 𝜇2
𝜕2

𝜕𝑥2
) (

𝜕2𝑤̄1(𝑥, 𝑡)

𝜕𝑡2
) 

+𝐸̄𝑒𝑞,1𝐼𝑒𝑞,1

𝜕4𝑤̄1(𝑥, 𝑡)

𝜕𝑡4
= 0 

𝑙1 < 𝑥 < 𝑙𝑀𝑝: 

𝜌̄𝑒𝑞,2𝐸̄𝑒𝑞,2 (1 − 𝜇2
𝜕2

𝜕𝑥2
) (

𝜕2𝑤̄2(𝑥, 𝑡)

𝜕𝑡2
) 

+𝐸̄𝑒𝑞,2𝐼𝑒𝑞,2

𝜕4𝑤̄2(𝑥, 𝑡)

𝜕𝑡4
= 0 

𝑙𝑀𝑝
< 𝑥 < 𝑙: 

𝜌̄𝑒𝑞,3𝐸̄𝑒𝑞,3 (1 − 𝜇2
𝜕2

𝜕𝑥2
) (

𝜕2𝑤̄3(𝑥, 𝑡)

𝜕𝑡2
) 

+𝐸̄𝑒𝑞,3𝐼𝑒𝑞,3
𝜕4𝑤̄3(𝑥,𝑡)

𝜕𝑡4 = 0 

(26) 

Furthermore, the boundary conditions at 
both ends of the nanobeam and the 
compatibility conditions at the location of the 
cross-section discontinuity and absorbed mass 
are expressed as: 

𝑥̄ = 0: 

𝑤̄1(0, 𝑡) = 0  𝑎𝑛𝑑  
𝜕𝑤̄1(0, 𝑡)

𝜕𝑥̄
= 0 

𝑥 = 𝑙: 

𝐸̄𝑒𝑞,3𝐼𝑒𝑞,3

𝜕2𝑤̄3(𝑙, 𝑡)

𝜕𝑥2
− 𝜇2𝜌̄𝑒𝑞,3𝐴̄𝑒𝑞,3

𝜕2𝑤̄3(𝑙, 𝑡)

𝜕𝑡2
= 0 

𝐸̄𝑒𝑞,3𝐼𝑒𝑞,3
𝜕3𝑤̄3(𝑙,𝑡)

𝜕𝑥3
− 𝜇2𝜌̄𝑒𝑞,3𝐴̄𝑒𝑞,3

𝜕3𝑤̄3(𝑙,𝑡)

𝜕𝑥𝜕𝑡2
= 0 

𝑥 = 𝑙1: 

𝑤̄1(𝑙1, 𝑡) = 𝑤̄2(𝑙1, 𝑡) 

𝜕𝑤̄1(𝑙1, 𝑡)

𝜕𝑥
=

𝜕𝑤̄2(𝑙1, 𝑡)

𝜕𝑥
 

𝐸̄𝑒𝑞,1𝐼𝑒𝑞,1

𝜕2𝑤̄1(𝑙1, 𝑡)

𝜕𝑥2
− 𝐸̄𝑒𝑞,2𝐼𝑒𝑞,2

𝜕2𝑤̄2(𝑙2, 𝑡)

𝜕𝑥2
 

−𝜇2𝜌̄𝑒𝑞,1𝐴̄𝑒𝑞,1

𝜕2𝑤̄1(𝑙1, 𝑡)

𝜕𝑡2

+ 𝜇2𝜌̄𝑒𝑞,2𝐴𝑒𝑞,2

𝜕2𝑤̄2(𝑙2, 𝑡)

𝜕𝑡2
= 0 

𝐸̄𝑒𝑞,1𝐼𝑒𝑞,1

𝜕3𝑤̄1(𝑙1, 𝑡)

𝜕𝑥3
− 𝐸̄𝑒𝑞,2𝐼𝑒𝑞,2

𝜕3𝑤̄2(𝑙2, 𝑡)

𝜕𝑥3
 

−𝜇2𝜌̄𝑒𝑞,1𝐴̄𝑒𝑞,1
𝜕3𝑤̄1(𝑙1,𝑡)

𝜕𝑥𝜕𝑡2
+ 𝜇2𝜌̄𝑒𝑞,2𝐴𝑒𝑞,2

𝜕3𝑤̄2(𝑙2,𝑡)

𝜕𝑥𝜕𝑡2
= 0 

 

(27) 

 

𝑥 = 𝑙𝑀𝑝: 

𝑤̄2(𝑙𝑀𝑝, 𝑡) = 𝑤̄3(𝑙𝑀𝑝, 𝑡) 

𝜕𝑤̄2(𝑙𝑀𝑝, 𝑡)

𝜕𝑥
=

𝜕𝑤̄3(𝑙𝑀𝑝, 𝑡)

𝜕𝑥
 

𝐸̄𝑒𝑞,2𝐼𝑒𝑞,2

𝜕2𝑤̄2(𝑙𝑀𝑝, 𝑡)

𝜕𝑥2
− 𝜇2𝜌̄𝑒𝑞,2𝐴̄𝑒𝑞,2

𝜕2𝑤̄2(𝑙𝑀𝑝, 𝑡)

𝜕𝑡2
 

−𝐸̄𝑒𝑞,3𝐼𝑒𝑞,3

𝜕2𝑤̄3(𝑙𝑀𝑝, 𝑡)

𝜕𝑥2
+ 𝜇2𝜌̄𝑒𝑞,3𝐴̄𝑒𝑞,3

𝜕2𝑤̄3(𝑙𝑀𝑝, 𝑡)

𝜕𝑡2

= 0 

𝐸̄𝑒𝑞,2𝐼𝑒𝑞,2

𝜕3𝑤̄2(𝑙𝑀𝑝, 𝑡)

𝜕𝑥3
− 𝜇2𝜌̄𝑒𝑞,2𝐴̄𝑒𝑞,2

𝜕3𝑤̄2(𝑙𝑀𝑝, 𝑡)

𝜕𝑥𝜕𝑡2
 

−𝑀𝑝

𝜕2𝑤̄2(𝑙𝑀𝑝, 𝑡)

𝜕𝑡2
− 𝐸̄𝑒𝑞,3𝐼𝑒𝑞,3

𝜕3𝑤̄3(𝑙𝑀𝑝, 𝑡)

𝜕𝑥3
 

+𝜇2𝜌̄𝑒𝑞,3𝐴̄𝑒𝑞,3
𝜕3𝑤̄3(𝑙𝑀𝑝,𝑡)

𝜕𝑥𝜕𝑡2
= 0 

In general, the vibrational response of the 
system is considered to equal w̅(x, t) = w̅(x)eit, 
and in order to solve the vibrational equations, 
the shape function response of each section is 
equal to [17]: 

𝑊̄𝑖(𝑥) = 𝜒1,𝑖 𝑐𝑜𝑠(𝜂𝑖𝑥) + 𝜒2,𝑖 𝑠𝑖𝑛(𝜂𝑖𝑥) + 
𝜒3,𝑖 𝑐𝑜𝑠(𝜆𝑖𝑥) + 𝜒4,𝑖 𝑠𝑖𝑛(𝜆𝑖𝑥) 

(28) 

where, 
1,𝑖

 is the unknown coefficient. Also, 
𝑖
 

and 
𝑖
 are respectively the function of natural 

frequency and geometrical characteristic of the 
system and are stated as: 

𝜂𝑖 = √𝑎𝑖𝜔
2 + √(𝑎𝑖𝜔

2)2 + 𝑏𝑖𝜔
2 

𝜆𝑖 = √−𝑎𝑖𝜔
2 + √(𝑎𝑖𝜔

2)2 + 𝑏𝑖𝜔
2 

(29) 

where, 𝑎𝑖 and 𝑏𝑖 can be calculated from the 
following equations [17]: 

𝑎𝑖 =
(𝜇2𝜌̄𝑒𝑞,𝑖𝐴̄𝑒𝑞,𝑖)

(2𝐸̄𝑒𝑞,𝑖𝐼𝑒𝑞,𝑖)
 

𝑏𝑖 =
(𝜌̄𝑒𝑞,𝑖𝐴̄𝑒𝑞,𝑖)

(𝐸̄𝑒𝑞,𝑖𝐼𝑒𝑞,𝑖)
 

(30) 

Now, if the boundary conditions and 
compatibility conditions are submitted in the Eq. 
28 the frequency matrix is obtained. The natural 
frequencies and mode shapes of the system can 
also be obtained by solving the frequency 
equation. 

4. Simulations and Results 

In this section, the frequency analysis of the 
mass sensor nanobeam at higher modes is 
simulated. The physical and geometrical 
characteristics of the nanobeam are listed in 
Table 1. 
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Table 1. mass sensor nanobeam Characteristics 

Physical characteristics 
Geometric 

Specification (nm) 

 𝜌 (
kg

m3⁄ ) E(Gpa) l1 l2 𝑡1 h1 h2 

sio2 2330 107 60 30 20 10 5 

 

Table 2. comparison of the first dimensionless natural 
frequency 𝜔̅ 

R  Current 

research 

Reference [15] 

 

0 

0 

0.1 

0.2 

1.8751 

1.8792 

18919 

1.8751 

1.8791 

1.8917 

 
Firstly, to verify the presented solution, the 

first dimensionless natural frequency of a 
cantilever nanobeam is compared with the 
values presented in [15]. The case study is a 
uniform nanobeam without any sensed mass. It 
should be noted the dimensionless natural 
frequency of the uniform nanobeam is defined as 

 𝜛 = 𝜔𝑙2√
𝜌̄𝑒𝑞𝐴̄𝑒𝑞

𝐸̄𝑒𝑞𝐼𝑒𝑞
. 

Also, in table 3, the natural frequency of a 
classical beam for different attached mass is 
compared with the frequencies presented in 

[24] where P

eq eq

M
R

A
=  is defined. As it can be 

seen, the results of the present study are in good 
agreement with the results presented in [15] 
and [24], and hence the proposed analytical 
solution for vibration analysis of the nanobeam 
can be confidently implemented. However, a bit 
differences in results can be related to numerical 
solution and rounding. 

Furthermore, in the first simulation, the 
effect of the exact modeling of the nanobeam on 
its frequency behavior is investigated. For this 
purpose, the nonlocal discontinuous nanobeam 
as a precise model is compared with the 
inaccurate models: the local discontinuous 
beam, nonlocal uniform beam, and local uniform 
beam. It is considered that the sensed mass is 
located at the free end of the nanobeam, and the 
natural frequency of the beam is calculated. 

In Table (4), the first natural frequency and 
its relative error for different models compared 
to the exact model (non-local discontinuous 
beam) has been calculated in MHz taking into 
account the nonlocal parameter to be  = 0.1. 

 
 
 

Table 3. comparison of the first dimensionless natural 
frequency 

R Frequency 
Current 

research 

Reference 

[24] 

 

0.01 

First 1.8568 1.852 

Second 4.6498 4.650 

 

0.1 

First 1.7228 1.723 

Second 4.3996 4.399 

 

1 

First 1.2480 1.248 

Second 4.0312 4.041 

 

Table 4. First natural frequency (MHz) of the nanobeam 
considering different models 

 First Frequency 

R = 0 R = 0.5 

Value Error 

() 

Value Error 

() 

Nonlocal 

stepped beam 

1.261 - 0.654 - 

Classic 

stepped beam 

1.249 0.95 0.651 0.458 

Nonlocal 

uniform beam 

1.357 7.6 0.776 18.65 

Classic 

uniform beam 

1.352 7.21 0.775 18.50 

 
It can be seen in Table (4) that the effect of 

discontinuity is essential in the exact modeling 
of the nanobeam. Therefore, the relative error 
caused by applying the continuous model is not 
negligible, compared to the discontinuous 
model, which shows the importance of the 
present work for the exact modeling of the 
beam. 

In another simulation, the natural frequency 
of the system caused by changing the location of 
the sensed mass is investigated. Besides, in 
Table 5, the first and second natural frequencies 
of the nanobeam are calculated in MHz and 
presented for different locations of the sensed 
mass. It should be noted that 𝐿̅𝑀 = (𝑙1 + 𝑙2)) 𝑙⁄ . 

Table 5. Effect of the sensed mass position on the first and 
second natural frequencies (MHz) of the mass sensor 

nanobeam 

  R 1 2 

0 

 

0.25 

 

0.25 1.221 4.936 

0.5 1.193 4.302 

0.5 
0.25 0.976 6.066 

0.5 0.828 6.063 

0.1 

0.25 
0.25 1.232 4.732 

0.5 1.203 4.178 

0.5 
0.25 0.981 5.661 

0.5 0.831 5.658 
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According to Table 5, in the first vibration 
mode, the natural frequency is reduced by 
changing the position of the sensed mass toward 
the free end of the nanobeam and increasing the 
attached mass. The reason is that in the first 
vibrational mode, with increasing the mass and 
its movement toward the free end, the inertia 
increases at the end of the beam and causes the 
reduction of the natural frequency. Besides, the 
effect of increasing the nonlocal term and size 
effects on the shift of the first natural frequency 
of the nanobeam is negligible, and these effects 
decrease with increasing the ratio of absorbed 
mass. However, in the second vibrational mode, 
since the node of the second shape function is 
adjacent to  = 0.75, increasing the absorbed 
mass in this position causes a smaller decrease 
in the natural frequency compared to other 
positions of the mass. Also, by increasing the 
vibrational modes, the effect of the nonlocal 
term and size effects on the frequency becomes 
more important and decreases the natural 
frequency of the beam. The reason is that in the 
classical elasticity theory, it is assumed that the 
atoms of bodies are rigidly bonded together; 
however, in the nonlocal elasticity theory, the 
atoms of bodies are linked together in an elastic 
environment matrix with an assumption of 
spring contact. Therefore, in the nonlocal 
elasticity theory, the stiffness of nanostructure is 
lower, and the natural frequency is reduced. 
Furthermore, the effect of nonlocal terms at the 
higher natural frequencies is more prominent. It 
may be explained by the reality that 
wavelengths are decreased for higher modes 
and the stronger interactions between atoms 
lead to increasing of the nonlocal effect. 

In another study, the effect of nonlocal 
parameters on the mode shapes of the mass 
sensor nanobeam is shown for different 
absorbed masses at its end. Fig. 2 shows the 
shape function of the first mode of the beam: 

 
Fig. 2. The first mode shape of the nanobeam for different 

sensed mass 

 
Fig. 3. The second mode shape of the nanobeam for different 

sensed mass 

As seen in Fig. 2, increasing the nonlocal term 
and size effects slightly increases the amplitude 
of the first mode of the nanobeam. However, size 
effects decrease with increasing the sensed 
mass. In fact, the nonlocal effects are not 
dominant at the first mode of vibration. On the 
contrary, the amplitude of the mode shape 
decreases with increasing the absorbed mass. 
The reason is that as the sensed mass increases, 
the total inertia of the mass sensor nanobeam 
increases and leads to a reduction of the 
amplitude of the end of the nanobeam. 

Furthermore, the shape function of the 
second mode of the sensor nanobeam for 
different absorbed mass at the end of the beam 
is depicted in Fig. 3. 

As can be observed in Fig. 3, increasing the 
nonlocal term in the second vibrational mode 
increases the amplitude of the mode shape. The 
reason for the increase in the amplitude of mode 
shape is that the nonlocal term reduces the 
stiffness of the nanobeam and thus increases the 
vibrational amplitude. Also, the amplitude of the 
mode shape decreases with increasing the 
absorbed mass. It is also observed that by 
increasing the sensed mass, the effect of the 
nonlocal term on the mode shape of the 
nanobeam decreases. 

In another simulation, according to Table 6, 
the frequency behavior of the classical and 
nonlocal nanobeam is investigated for different 

thickness ratios ℎ̅ =
ℎ2

ℎ1
 . 

As is evident in Table 6, increasing the 
thickness of the nanobeam increases the natural 
frequency because increasing the thickness 
increases the mass and stiffness of the 
nanobeam simultaneously, but its effect on the 
stiffness is higher than on the structural mass. 
On the other hand, as this term increases, the 
ratio of the frequency reduction is decreased for 
the sensed mass nanobeam. 
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Table 6. First natural frequency (MHz) of the nanobeam 
considering different models 

 R h̅ 1 2 

0 

 

0 

 

0.3 0.869 4.924 

0.6 1.343 6.485 

 

0.25 

0.3 0.553 3.977 

0.6 0.896 5.387 

     

0.1 

 

0 

0.3 0.878 4.458 

0.6 1.354 6.072 

 

0.25 

0.3 0.556 3.621 

0.6 0.900 5.072 

 
In another study, the effect of the sensed 

mass and nonlocal term on the natural 
frequency shift of the nanobeam is investigated 
at the first and second vibrational modes. Fig. 4 
indicates the frequency shift 𝑓 = 𝑓1 − 𝑓0, where 
𝑓1 is the frequency of beam without absorbing 
the sensed mass, and 𝑓0 is the beam frequency 
with mass absorption. 

As can be seen in Fig. 4 the frequency shift of 
the nanobeam sensor increases with the 
increase of the absorbed mass. Furthermore, in 
the first mode of vibration, the effect of nonlocal 
term and size effects on frequency shifts are 
negligible. 

Also, the shift of the second mode of the 
frequency of the nanobeam relative to sensed 
mass is indicated in Fig. 5. 

As shown in Fig. 5, the frequency shift 
increases with the increase of the sensed mass at 
the second vibrational mode, but the slope of 
this increment is decreasing relative to the 
absorbed mass. In the second vibrational mode, 
the nonlocal term and size effects reduce the 
mass sensing of the nanobeam. On the other 
hand, the sensitivity and frequency change of 
nanobeam in the second vibrational mode was 
greater than that of the first vibrational mode; 
hence, it is recommended to use the mass sensor 
nanobeam at higher modes. 

 
Fig. 4. shift of the first natural frequency of the mass sensor 

nanobeam 

 
Fig. 5. The shift of the second natural frequency of the mass 

sensor nanobeam 

5. Conclusions 

In this paper, the precise modeling of the 
nanobeam has been carried out considering 
discontinuity based on the size-dependent 
nonlocal elasticity theory. The vibrational 
equations and boundary conditions of the mass 
sensor nanobeam have been derived by using 
Hamilton’s principle. Then, the frequency 
equation of the discontinuous nanobeam has 
been obtained as an algebraic relation by using 
an analytical solution and considering the 
sensed mass. The effect of various parameters 
such as length of discontinuity, sensed mass, and 
nonlocal parameters on the frequency behavior 
of the nanobeam have been investigated. The 
results showed that the effect of discontinuity on 
the precise modeling of the nanobeam is of great 
importance and should be taken into account; 
however, increasing the sensed mass has 
reduced the relative error of the modeling. The 
effect of the nonlocal term and size effects are 
important at higher vibrational modes and 
should be considered in the nanobeam 
modeling. Besides, by changing the position of 
the sensed mass toward the free end of the 
nanobeam, the natural frequency is reduced, but 
its sensing sensitivity increases. Increasing the 
thickness of the nanobeam increases the 
stiffness of the structure and its natural 
frequency but decreases the sensitivity of the 
mass sensor nanobeam. 
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