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Low weight and high strength requirements are prime target design objectives in strength 

demanding applications. Skillful design of low density, low weight and eco-friendly natural 

fiber composites could provide an alternative material route to the actualization of lighter 

structures. The present study proposed ANN-FEM computational framework for the 

macro-mechanical analysis of multi-oriented Plantain Empty Fruit Bunch Fiber Laminate 

(PEFBFL) and Plantain Pseudo Stem Fiber Laminate (PPSFL). Control factors were 

numerically varied using Finite Element Method (FEM) and the resultant FEM models 

which encapsulated material properties of the laminate was streamlined into Artificial 

Neural Network (ANN) training scheme. A standard feed-forward backpropagation 

network was adopted and the ANN model consists of stacking sequence, laminate aspect 

ratio and fiber orientation as input variables while the selected network outputs variables 

include average stress and displacement. The laminate constitutive equation was 

developed which enabled the establishment of laminate load deformation affiliation and 

equivalent elastic constants. The damage onset for individual lamina was detected by the 

maximum principal stress theory and the overall laminate strength of 40.12 N/mm^2 was 

obtained for PEFBFL and 32.16N/mm^2 for PPSFL. On the whole, there was steady 

reduction in laminates elastic modulus which points to compromised stiffness in material 

principal axis arising from gradual failure of the plies, this trend continued until the last ply 

failure occurred in ply 3 and 4 at 90 degrees in tensile mode of transverse direction. 

Stresses and displacements observed using CLT agree very closely with predictions of ANN. 

1. Introduction 

Natural fibers have been traditionally utilized 
over the years to address human needs such as 
in production of sacks, ropes, bags, rugs, floor 
covers, carpet backs, binder twines, hats, mats, 
baskets, stuffing material for upholstery and 
mattresses due to their low cost, low density, 
fair specific modulus, high toughness, non-toxic, 
recyclability and availability compared with 
synthetic fibers [1; 2]. Additionally, these 
properties have become the center of attraction 
for the surge in utilization of natural fibers in 
reinforcing polymer matrix for application in 
automotive [3], civil works and transportation 
sector [4], oil and gas sector [5], wind energy 
industry [6], housing sector [7], maritime sector 
[8], power and telecommunication industries 
[9]. Although, the greater part of the natural 
fibers such as those extracted from plantain 
plant are hydrophilic naturally leading to poor 

interfacial bond with hydrophobic polymer 
matrix [10], it can still be used successfully as a 
reinforcement after effective chemical treatment 
[11]. 

Continued exploration of post-harvest 
plantain plant residues in the development of 
engineering materials such as reinforced 
composites has been on the increase. Natural 
fibers extracted from bio wastes offer significant 
advantage over woody biomass, since they have 
low micro-fibril angle, small lumen mean, high 
cellulose content, high crystallinity and 
relatively longer fibers which gives better 
control of fiber lay-up and orientation [12; 13; 
14]. The use of biodegradable and locally 
available Plantain Pseudo Stem (PPS) and Empty 
Fruit Bunch (EFB) fibers from renewable 
agricultural sources in fabrication of Plantain 
Empty Fruit Bunch Fiber Reinforced Composite 
and Plantain Pseudo Stem Fiber Reinforced 
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Composite have been reported and assessed [15; 
16]. 

Extensive research evidence has thereafter 
emerged regarding various physical and 
mechanical properties of plantain fiber 
reinforced composites [15; 17; 16; 18; 11; 19; 
20; 21; 22]; nonetheless, majority of these 
studies has concentrated on the properties of 
single plies which consists of unidirectional fiber 
reinforced lamina. Generally, reinforced 
composites in which fibers are aligned in one 
direction would be very weak in the transverse 
direction; consequently, any small transverse 
load arising from uneven lateral contraction can 
initiation crack. There is therefore need to 
combine some of the best aspects of 
unidirectional plantain fiber reinforced laminas 
in order to achieve a more robust material, this 
is because incorporation of variously oriented 
plies in one laminate will definitely lead to 
significant advantages when compared with 
conventional monolithic materials [23].  

The boundless coalescence of ply 
orientations and stacking sequence obtainable at 
the design stage of laminates provides the 
necessary design pliancy to achieve high 
modulus industrial materials [24].  In this 
regard, laminated composites can be tailored for 
directional stiffness properties in longitudinal 
and transverse directions via combination of 
axis and off axis laminates. This is essential to 
guard against catastrophic failure in a way that 
peradventure any of the layers fail first, the 
composite can still endure more loads prior to 
the eventual failure of last ply [25]. Obviously, 
the failure stress and stiffness properties of 
plantain fiber reinforced laminates can be 
acquired through numerical techniques [26; 27]. 
Basically, the principles of laminated composite 
material mechanics can be learned at a macro-
scale where mechanical behaviour of the 
laminate and the structure are the primary focal 
point of investigations [28]. This provides 
superior initial guess for the designer in terms of 
average properties of the composite material 
[29; 30; 31]. Advanced numerical and 
computational tools have evolved over the years 
for application in solving diverse composite 
design problems and skilful utilization of these 
tools would further diminish the design and 
improvement time alongside the expense of 
experimentation expected in the design 
development phase of laminates.  

Rahimi, Hussain, Meon and Mahmud [32] 
reported that ANSYS software is capable of 
predicting the failure of composite laminates 
based on Maximum Stress and Tsai-Wu theories. 
Saxena and Kirtania [33] used finite element 
analysis and analytical methods in evaluation of 
symmetric cross-ply laminated composite plates, 

authors computational results compared closely 
with the theoretical results. Other researchers 
has reported comparable results between finite 
element and analytical methods for inter-
laminar stresses in laminated composite beam 
[34], first ply failure of laminated composite 
plates [35], cross-ply laminate of boron/epoxy 
composite failure under uniformly distributed 
load [36], failure of inter-ply hybrid laminated 
composite [37], failure of carbon fiber-
reinforced polymer laminated composite thin-
walled I-beams [38] and failure of fiber/epoxy 
composite laminate interface using cohesive 
multi-scale model [39]. It is necessary to 
integrate finite element analysis and artificial 
neural network in order to boost accuracy and 
speed in design process.  

Various macro-mechanical models such as 
elasticity models [40], plasticity models [41] and 
nonlinear constitutive model [42] have also been 
formulated to embody the constitutive 
affiliations of laminates. Hsuan-Teh and Lung-
Shen [42] carried out constitutive modelling of 
composite laminates under uniaxial 
compression, authors detected damage onset 
using Tsai-Wu and the maximum stress 
criterion. Dimitrienko [43] developed universal 
models of laminated composites constitutive 
relations with discrete information on main 
conjugated stress-strain tensors pairs. 
Development of a constitutive equation for a 
novel plantain fiber reinforced laminate is 
required for establishment of the laminate load 
deformation affiliation and equivalent elastic 
constants.  

There is also need to relate the externally 
applied force on plantain fiber reinforced 
laminate to the resulting deformation of strain 
stresses at ply level, this will provide the best 
standing to determine whether any ply has 
failed using appropriate failure theory. Different 
failure theories have been used in the literature 
to evaluate failure initiation in fiber reinforced 
laminates; Rajanish, Nanjundaradhya, Ramesh 
and Bhaskar [44] classified them into limit/non-
interactive (maximum stress and maximum 
strain); interactive (TsaiHill and Tsai-Wu) and 
partially-interactive (Hashin-Rotem and Puck) 
theories. The validity and criteria for selecting 
any of these theories is well documented [45; 
46; 47]. The non-interactive maximum principal 
stress criterion was adopted in the present 
study to account for various ply failure modes 
inherent in plantain fiber reinforced laminate. 

2. Methodology 

2.1. Determination of effective ply thickness 

The fiber mass fraction 𝑀𝑓 is determined 

from eq. (1) and the ply thickness in terms of 
mass fraction of fibers is presented in eq. (2). 
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𝑀𝑓 = 
𝜌𝑓𝑣𝑓

𝜌𝑓𝑣𝑓 + 𝜌𝑚(1 − 𝑣𝑓)
                             (1) 

 

𝑡 =  𝑚𝑓2 [
1

𝜌𝑓
+
1

𝜌𝑚
(
1 − 𝑀𝑓

𝑀𝑓
)]                        (2) 

 
where 𝜌𝑚 is the density of matrix while𝜌𝑓 and 𝑣𝑓  

are the density and optimal volume fraction 
(50%) of fiber respectively. Properties and 
characteristics of the plantain fiber 
reinforcement–polyester matrix with detailed 
implementation of Archimedes principle has 
been reported elsewhere [15; 18] and by 
knowing the density of polyester resin as 
1200kg/m3, the ply thickness from eq. (2) and 
specific mass of fiber𝑚𝑓2is presented in Table 1. 

The individual layers of laminate composites 
are held together by matrix to form a plate. The 
layers of the laminate composites referred in the 
present study are of thesame constituent 
materials having different reinforcing pattern. 
The matrix and fiber part of the laminate 
composite are respectively polyester and 
plantain fiber with properties described in 
Tables 2 and 3. Obviously, the analysis of 
laminate depends on the properties of individual 
layers and the detailed mechanical properties of 
single layer of Plantain Empty Fruit Bunch Fiber 
Reinforced Composite (PEFBFC) and Plantain 

Pseudo Stem Fiber Reinforced Composite 
(PPSFC) have been reported by [16]. 

2.2. Design of experiment and Finite Element 
modeling 

The classical Central Composite Design (CCD) 
method was used to determine the number of 
numerical experiments to be evaluated. CCD is a 
useful design of experiment (DOE) template 
which minimizes the required number of 
iterations for full material assessment. It  
involves varying the stacking sequence from 
(30/0/90)s to (30/45/90)s, laminate aspect 
ratio from 1.31 to 0.79 and fiber orientation 
from 300 to 900 as shown in Fig. 1. This control 
factor arrengement gave a total of 26 
experimental runs. 

The Finite Element Analysis was conducted 
in ANSYS Parametric Design Language (APDL). A 
3D 4-node shell 181 element with six degrees of 
freedom was used in creating the model 
following the symmetry of layer code shown in 
Fig. 1a. According to Abhishek [35], SHELL181 is 
useful in evaluation of thin to moderately-thick 
shell structures. The material model was 
assigned to structural linear elastic orthotropic 
behaviour and then the shell section was 
modified to conform to fiber angle orientations 
and lay-up. 

 
 

Table 1: Plantain fiber ply parameters determined by application of Archimedes principle 

FIBER 
SOURCE 

𝑚𝑓2(g) 𝑣𝑓2(mm3) 
Density 
kg/m3 

Ply Thickness 
(mm) 

PEFB fiber 20.397 53364.8 381.966 0.108 
PSTEM fiber 20.670 58364.8 354.151 0.228 

 
Table 2: Mechanical properties of single layer plantain fibers reinforced polyester composites [16] 

Composi
tes 

Properties 
𝑆𝑢1 

(MPa) 
𝑆𝑢2 

(MPa) 
𝑆𝑦 

(MPa) 

𝐸1 
(MPa) 

𝐸2 
(MPa) 

𝐸 
(MPa) 

𝑣12 𝜏𝑚𝑎𝑥  
(MPa) 

G12 
(MPa) 

PEFBFC 410.15 37.3397 33.69 14922 7030.962 9990.10 0.38 19.3100 3622.99 
PPSFC 288.10 33.1330 29.24 13027.5 6817.175 9146.305 0.29 15.5700 3332.84 
Note: 𝑆𝑢1, 𝑆𝑢2 are tensile strengths in the longitudinal and transverse directions respectively. 

 
Table 3: Mechanical properties of plantain fibers and polyester resin [16] 

Property Polyester resin 
Young modulus (MPa) 2000 – 4500 
Tensile strength (MPa) 40 - 9 0 
Compressive strength (MPa) 90 -250 
Tensile elongation at break (%) 2 
Water absorption 24h at 20 °C 0.1 - 0.3 
Flexural modulus (GPa) 11.0 
Poisson's ratio. 0.37 – 0.38 
 Plantain Pseudo Stem  Fibers 
Young modulus  (MPa) 23555 
UTS (MPa) 536.2 
Strain (%) 2.37 
 Plantain Empty fruit bunch  Fibers 
Young modulus  (MPa) 27344 
UTS (MPa) 780.3 
Strain (%) 2.68 
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Fig. 1: (a) Stacking sequence and (b) Boundary Condition for 
PEFBFL (Nodes = 825,  Elements = 768) 

 
Each layer thickness corresponds to the ply 

thickness as specified in Table 1, finite element 
model was created using rectangular cross 
section and the meshing was done for the entire 
laminate at a time. In the post-processing phase, 
results of laminate stresses in x direction and 
deformation are viewed and plotted at nodes as 
shown in Fig. 2.  

The data acquired were fitted to the 
empirical polynomial regression model of eq. 
(3). 

 

𝑌 = 𝛽0 +∑ 𝛽𝑖𝑥𝑖

𝑘

𝑖=1

+∑𝛽𝑖𝑖𝑥𝑖
2

𝑘

𝑖=1

+∑∑ 𝛽𝑖𝑗𝑥𝑖

𝑘

𝑗

𝑘−1

𝑖=1

𝑥𝑗 + 𝜀 (3) 

 
where Y is responses (stress and 

displacement); β0,βi (i = 1, 2,…..k) and βij (i = 1, 
2,…k; j = 1, 2,…k) are the model coefficients; xi 

and xj are the coded independent variables. Also, 
the adequacy of the model was checked using 
the coefficient of determination (R2).  

2.3. Artificial Neural Network training 
scheme 

The Neural Network model was trained using 
the raw numerical dataset obtained from the 
finite element simulation. The weighted sum of 
inputs arriving at each neuron was passed 
through an activation function to generate an 
output signal. A total of 17 (65.4%) of 
experimental results was used to train the 
network, 5 (19.2%) of the experimental result 

was used to validate the training while the 
remaining 4 (15.4%) was used for testing. In 
order to reduce the deviations of response 
predictions, a trial and error method was 
utilised to establish the suitable number of 
neurons required in the hidden layer, this was 
achieved by repeating the training cycle at 
varying number of neurons in the hidden layer. 
The Multi-layer perceptron which was trained 
with back-propagation algorithm has three input 
neurons representing the design independent 
variables (stacking sequence, laminate aspect 
ratio and fiber orientation), a single hidden layer 
of ten neurons and an output layer consisting of 
two neurons representing the stress and 
displacement as shown in Fig. 4. The network 
performance was assessed using Mean Square 
Error (MSE) and coefficient of determination 
(R2). Error minimization was achieved by 
Levenberge–Marquardt (LM) method. The 
Levenberg-Marquardt algorithm uses an 
approximation to the Hessian Matrix in a 
Newton-like update shown in Eq. (4). 

𝑥𝑘+1 = 𝑥𝑘 ± [𝐽
𝑇𝐽 + 𝜇𝐼]−1𝐽𝑇𝑒                    (4) 

where J = Jacobian matrix containing first 
derivatives of the network errors, e = vector of 
network errors. At 𝜇 = 0, eq. (4) becomes the 
regular Newton’s method using an approximate 
Hessian matrix, however at 𝜇 ≫ 0, eq. (4) 
becomes gradient descent with a small step size.  
The mean sum of squares of the network errors 
was captured using Eq. (5). 

𝑓 = 𝑀𝑆𝐸 =
1

𝑛
∑(𝑒𝑖)

2

𝑛

𝑖=1

                           (5) 

 

 
Fig. 2: (a)Laminate Stresses and (b) Displacement in x 

direction for PEFBFL 

a 

b 

a 

b 
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Fig. 3: Flowchart showing the graft of ANN-FEM 

technique 

 

 
Fig. 4: Artificial neural network with 3 input variables, 1 

hidden layer of 10 neurons and 2 output variables. 

 

2.4. Formulation of laminate stiffness 
framework 

Following classical laminate theory [48; 49; 
29], the variation of direct strain in x and y is 
given in eq. (6). Classical Laminate Theory (CLT) 
is a predictive means used in the analysis of 
laminate behaviour based on its stacking 
sequence and material properties. The theory 
assumed that each layer of the laminate is both 
quasihomogeneous and orthotropic; the 
thickness of the plate is much smaller than any 
of its characteristic dimension; the 
displacements arising from mechanical loading 
is small compared with thickness of the plate; 
the in-plane strains are small compared with 
unity; transverse shear and normal strain  are 
negligible; no warping exist; each ply obeys 
Hooke’s Law and the plate thickness is constant 
throughout the laminate. Eqs. 6-20 provides the 
mathematical background for application of CLT. 

𝑒𝑥 = 
𝑑𝑢0

𝑑𝑥
−  𝑧

𝑑2𝑤0

𝑑𝑥2
= 𝑒𝑥

0 −  𝑧𝑘𝑥       

𝑒𝑦 = 
𝑑𝑣0
𝑑𝑦

−  𝑧
𝑑2𝑤0
𝑑𝑦2

= 𝑒𝑦
0 −  𝑧𝑘𝑦  

 
and shear strain in x-y plane reads: 

 

𝑒𝑥𝑦 = 
𝑑𝑢0
𝑑𝑦

+
𝑑𝑣0
𝑑𝑥

−  𝑧
𝑑2𝑤0
𝑑𝑦2

= 𝑒𝑦𝑥
0 −  𝑧𝑘𝑥𝑦      (7) 

 
Combining eqs. 6 -7 in a matrix form gives: 
 

[

𝑒𝑥
𝑒𝑦
𝑒𝑥𝑦

] =  [

𝑒𝑥
0

𝑒𝑦
0

𝑒𝑦𝑥
0

] − 𝑧 [

𝑘𝑥
𝑘𝑦
𝑘𝑥𝑦

]                                      (8) 

 
Integrating in-plane force intensities and 

moment over the thickness of ply p in x,y and x-
y-directions reads: 

 

[𝑁𝑥]𝑝 = ∫ 𝜎𝑥𝑑𝑧
𝑧𝑝

𝑧𝑝−1

; [𝑀𝑥]𝑝 = −∫ 𝜎𝑥𝑧𝑑𝑧
𝑧𝑝

𝑧𝑝−1

 (9) 

[𝑁𝑦]𝑝 = ∫ 𝜎𝑦𝑑𝑧
𝑧𝑝

𝑧𝑝−1

;  [𝑀𝑦]𝑝 = −∫ 𝜎𝑦𝑧𝑑𝑧
𝑧𝑝

𝑧𝑝−1

 (10) 

[𝑁𝑥𝑦]𝑝 = ∫ 𝜎𝑥𝑦𝑑𝑧
𝑧𝑝

𝑧𝑝−1

;  [𝑀𝑥𝑦]𝑝 = −∫ 𝜎𝑥𝑦𝑧𝑑𝑧
𝑧𝑝

𝑧𝑝−1

      (11) 

 
The knowledge of 𝜎𝑥 , 𝜎𝑦 and 𝜎𝑥𝑦 on the plies 

is necessary for complete evaluation of eqs. (9 – 
11). Considering two possible loading conditions 
of longitudinal (direction 1) and transverse 
(direction 2) in the matrix, the resulting direct 
strains from Hooks law are respectively 𝑒1 =
−𝑣21𝜎1

𝐸1
  and 𝑒2 =

−𝑣12𝜎1

𝐸1
 where 𝑣12 = major 

Poisson’s ratio and 𝑣21 = minor Poisson’s ratio. 
Hence the application of both direct stresses  𝜎1 
and 𝜎2 will yield corresponding strains as 
follows: 

 

𝑒1 =
𝜎1
𝐸1
−
𝑣21𝜎2
𝐸2

, 𝑒2 =
𝜎2
𝐸2
−
𝑣12𝜎1
𝐸1

         (12) 

And the stress-strain relationship for an 
orthotropic ply can be expressed as: 

 

[

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

] = [

�̅�11 �̅�12 �̅�13
�̅�12 �̅�22 �̅�23
�̅�13 �̅�23 �̅�33

] [

𝑒𝑥
𝑒𝑦
𝑒𝑥𝑦

]        (13) 

 
where 
�̅�11 = 𝑐𝑜𝑠

4𝜃𝑄11 + 𝑠𝑖𝑛
4𝜃𝑄22 + 2𝑐𝑜𝑠

2𝜃𝑠𝑖𝑛2𝜃𝑄12
+ 4𝑐𝑜𝑠2𝜃𝑠𝑖𝑛2𝜃𝑄33 

�̅�22 = 𝑠𝑖𝑛
4𝜃𝑄11 + 𝑐𝑜𝑠

4𝜃𝑄22 + 2𝑐𝑜𝑠
2𝜃𝑠𝑖𝑛2𝜃𝑄12

+ 4𝑐𝑜𝑠2𝜃𝑠𝑖𝑛2𝜃𝑄33 
�̅�33 = 𝑐𝑜𝑠

2𝜃𝑠𝑖𝑛2𝜃𝑄11 + 𝑐𝑜𝑠
2𝜃𝑠𝑖𝑛2𝜃𝑄22

− 2𝑐𝑜𝑠2𝜃𝑠𝑖𝑛2𝜃𝑄12
+ (𝑐𝑜𝑠2𝜃−𝑠𝑖𝑛2𝜃)2𝑄33 

(6) 
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�̅�12 = 𝑐𝑜𝑠
2𝜃𝑠𝑖𝑛2𝜃𝑄11 + 𝑐𝑜𝑠

2𝜃𝑠𝑖𝑛2𝜃𝑄22
+ (𝑐𝑜𝑠4𝜃 + 𝑠𝑖𝑛4𝜃)𝑄12
− 4𝑐𝑜𝑠2𝜃𝑠𝑖𝑛2𝜃𝑄33 

�̅�13 = 𝑐𝑜𝑠
3𝜃𝑠𝑖𝑛𝜃𝑄11 − 𝑐𝑜𝑠𝜃𝑠𝑖𝑛

3𝜃𝑄22
+ (𝑐𝑜𝑠𝜃𝑠𝑖𝑛3𝜃 − 𝑐𝑜𝑠3𝜃𝑠𝑖𝑛𝜃)𝑄12
+ 2(𝑐𝑜𝑠𝜃𝑠𝑖𝑛3𝜃
− 𝑐𝑜𝑠3𝜃𝑠𝑖𝑛𝜃)𝑄33 

�̅�23 = 𝑐𝑜𝑠𝜃𝑠𝑖𝑛
3𝜃𝑄11 − 𝑐𝑜𝑠

3𝜃𝑠𝑖𝑛𝜃𝑄22
+ (𝑐𝑜𝑠3𝜃𝑠𝑖𝑛𝜃 − 𝑐𝑜𝑠𝜃𝑠𝑖𝑛3𝜃)𝑄12
+ 2(𝑐𝑜𝑠3𝜃𝑠𝑖𝑛𝜃
− 𝑐𝑜𝑠𝜃𝑠𝑖𝑛3𝜃)𝑄33 

 
Combining eq. (13) with eq. (8),  we have: 
 

[

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

]

𝑝

= [

𝐴11 𝐴12 𝐴13
𝐴12 𝐴22 𝐴23
𝐴13 𝐴23 𝐴33

] [

𝑒𝑥
0

𝑒𝑦
0

𝑒𝑦𝑥
0

]

+ [

𝐵11 𝐵12 𝐵13
𝐵12 𝐵22 𝐵23
𝐵13 𝐵23 𝐵33

] [

𝑘𝑥
𝑘𝑦
𝑘𝑥𝑦

]   (14) 

 
Eq. (14) describes the association between 

the applied force (N) and the resulting midplane 
laminate deformations. While the extensional 
and coupling stiffnessis presented in eqs. (15) 
and (16) respectively. 

 

𝐴𝑖𝑗 = ∑(𝑧𝑝 − 𝑧𝑝−1)

𝑛

𝑝=1

(�̅�𝑖𝑗)𝑝

= ∑(𝑡𝑝)

𝑛

𝑝=1

(�̅�𝑖𝑗)𝑝    (15) 

𝐵𝑖𝑗 = ∑−(
𝑧𝑝
2 − 𝑧𝑝−1

2

2
)

𝑛

𝑝=1

(�̅�𝑖𝑗)𝑝

=  ∑−(𝑡𝑝𝑧�̅�)

𝑛

𝑝=1

(�̅�𝑖𝑗)𝑝
 (16) 

 
In similar consideration for moment about 

specific axis for ply 1to n  in Fig. 1 gives: 
 

[

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

]

𝑝

= [

𝐵11 𝐵12 𝐵13
𝐵12 𝐵22 𝐵23
𝐵13 𝐵23 𝐵33

] [

𝑒𝑥
0

𝑒𝑦
0

𝑒𝑦𝑥
0

]

+ [

𝐷11 𝐷12 𝐷13
𝐷12 𝐷22 𝐷23
𝐷13 𝐷23 𝐷33

] [

𝑘𝑥
𝑘𝑦
𝑘𝑥𝑦

] (17) 

 
Eq. (17) gives the bending stiffness term (𝐷𝑖𝑗) 

which depends on transformed reduced stiffness 

term (�̅�𝑖𝑗) and the ply cordinate terms.  

 

𝐷𝑖𝑗 =  ∑(
𝑧𝑝
3 − 𝑧𝑝−1

3

3
)

𝑛

𝑝=1

(�̅�𝑖𝑗)𝑝

= ∑(𝑡𝑝𝑧�̅�
2 +

𝑡𝑝
2

12
)

𝑛

𝑝=1

(�̅�𝑖𝑗)𝑝
    (18) 

Inversion of the laminate stiffness terms in 
eq. (13) yields the required transformed 
reduced compliance terms 𝑎𝑖𝑗 , so considering a 

fully populated extensional stiffness matrices 
(strain component of eq.  (14)   

 
𝑎

=

[
 
 
 
 
 
 
(𝐴22𝐴33 − 𝐴23

2 )

𝐴𝐴

(𝐴13𝐴23 − 𝐴12𝐴33)

𝐴𝐴

(𝐴12𝐴23 − 𝐴22𝐴13)

𝐴𝐴
(𝐴13𝐴23 − 𝐴12𝐴33)

𝐴𝐴

(𝐴11𝐴33 − 𝐴13
2 )

𝐴𝐴

(𝐴12𝐴13 − 𝐴11𝐴23)

𝐴𝐴
(𝐴12𝐴23 − 𝐴22𝐴13)

𝐴𝐴

(𝐴12𝐴13 − 𝐴11𝐴23)

𝐴𝐴

(𝐴11𝐴22 − 𝐴12
2 )

𝐴𝐴 ]
 
 
 
 
 
 

 (19) 

 
Where 𝐴𝐴 = 𝐴11𝐴22𝐴33 + 2𝐴12𝐴23𝐴13 −
𝐴22𝐴13

2 − 𝐴33𝐴12
2 − 𝐴11𝐴23

2  
 
Considering a fully populated bending 

stiffness matrices (k component of eq. 14) 
 

𝑑

=

[
 
 
 
 
 
 
(𝐷22𝐷33 −𝐷23

2 )

𝐷𝐷

(𝐷13𝐷23 −𝐷12𝐷33)

𝐷𝐷

(𝐷12𝐷23 − 𝐷22𝐷13)

𝐷𝐷
(𝐷13𝐷23 −𝐷12𝐷33)

𝐷𝐷

(𝐷11𝐷33 −𝐷13
2 )

𝐷𝐷

(𝐷12𝐷13 −𝐷11𝐷23)

𝐷𝐷
(𝐷12𝐷23 −𝐷22𝐷13)

𝐷𝐷

(𝐷12𝐷13 −𝐷11𝐷23)

𝐷𝐷

(𝐷11𝐷22 − 𝐷12
2 )

𝐷𝐷 ]
 
 
 
 
 
 

 (20) 

 
Where𝐷𝐷 = 𝐷11𝐷22𝐷33 + 2𝐷12𝐷23𝐷13 −

𝐷22𝐷13
2 − 𝐷33𝐷12

2 − 𝐷11𝐷23
2  

 

3. Results and discussions 

3.1. CCD optimum conditions 

The optimization exercise for stress and 

displacement was conducted utilizing the 

flexibility of the Design Expert optimization tool 

function. Eq. (3) was solved for the best 

solutions. A usual approach which involves 

selecting the best solution was adopted and the 

chosen optimal solutions gave stacking sequence 

= (30/45/90)s, laminate aspect ratio = 1.31, 

fiber orientation = 900 and desirability = 1. The 

laminate with optimum characteristics was 

further analyzed by applying the Classical 

Laminate Theory along the thickness of specified 

fiber source. 

3.2. ANN training evaluation and 
performance 

The training record was used to plot the 
performance progress. The Mean Square Error 
of the trained network for PEFBFL strength 
prediction was 0.46, having a regression 
coefficient of 0.99 while the network for PEFBFL 
displacement prediction has Mean Square Error 
of 4.55442E-09 and regression coefficient of 
0.93 (Figs. 5 & 6). Similarly, The Mean Square 
Error of the trained network for PPSFL strength 
prediction is 0.6557, having a regression 
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coefficient of 0.96 while the network for PEFBFL 
displacement prediction has Mean Square Error 
of 1.25768E-09 and regression coefficient of 
0.94 (Figs. 7 & 8). In all, the training data 
indicates a good fit and the validation results 

also show reasonably high R2 values that are 
close to 1. The regression coefficient measures 
the correlation between the predicted responses 
(outputs) and the experimental responses 
(targets). 

 

Fig.  5: (a) Actual value of PEFBFL stress versus predicted (b) Regression plot for validation 

 
Fig. 6: (a) Actual value of PEFBFL displacement versus predicted (b) Regression plot forvalidation 

 
Fig. 7: (a) Actual value of PPSFL stress versus predicted (b) Regression plot for validation 

36 38 40

35

36

37

38

39

40

Stress (N/mm
2
)

O
u

tp
u

t 
~

=
 0

.9
8

*T
a

rg
e

t 
+

 0
.6

6 Training: R=0.99196

 

 

Data

Fit

Y = T

36 38 40

35

36

37

38

39

40

Stress (N/mm
2
)

O
u

tp
u

t 
~

=
 1

*T
a

rg
e

t 
+

 -
0

.9

Validation: R=0.98841

 

 

Data

Fit

Y = T

36 38 40

35

36

37

38

39

40

Target

O
u

tp
u

t 
~

=
 0

.0
5

1
*T

a
rg

e
t 

+
 3

8 Test: R=0.56879

 

 

Data

Fit

Y = T

36 38 40

35

36

37

38

39

40

Average stress (N/mm
2
)

O
u

tp
u

t 
~

=
 1

*T
a

rg
e

t 
+

 -
0

.5
3

All: R=0.95256

 

 

Data

Fit

Y = T

3 3.5 4

x 10
-3

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2
x 10

-3

Displacement (mm)

O
u

tp
u

t 
~

=
 0

.7
6

*T
a

rg
e

t 
+

 0
.0

0
0

8
6

Training: R=0.92579

 

 

Data

Fit

Y = T

3 3.5 4

x 10
-3

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2
x 10

-3

Displacement (mm)

O
u

tp
u

t 
~

=
 0

.9
1

*T
a

rg
e

t 
+

 0
.0

0
0

3
7

Validation: R=0.94405

 

 

Data

Fit

Y = T

3 3.5 4

x 10
-3

2.8

3

3.2

3.4

3.6

3.8

4

4.2
x 10

-3

Target

O
u

tp
u

t 
~

=
 0

.6
1

*T
a

rg
e

t 
+

 0
.0

0
1

5

Test: R=0.86648

 

 

Data

Fit

Y = T

3 3.5 4

x 10
-3

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2
x 10

-3

Target

O
u

tp
u

t 
~

=
 0

.7
6

*T
a

rg
e

t 
+

 0
.0

0
0

8
7

All: R=0.91943

 

 

Data

Fit

Y = T

26 28 30 32
26

27

28

29

30

31

32

Stress (N/mm
2
)

O
u

tp
u

t 
~

=
 0

.9
2

*T
a

rg
e

t 
+

 2
.2

Training: R=0.9593

 

 

Data

Fit

Y = T

27 28 29 30 31 32

27

28

29

30

31

32

Stress (N/mm
2
)

O
u

tp
u

t 
~

=
 0

.9
5

*T
a

rg
e

t 
+

 1
.4

Validation: R=0.95581

 

 

Data

Fit

Y = T

27 28 29 30 31 32

27

28

29

30

31

32

Target

O
u

tp
u

t 
~

=
 0

.7
7

*T
a

rg
e

t 
+

 6
.2

Test: R=0.84112

 

 

Data

Fit

Y = T

26 28 30 32
26

27

28

29

30

31

32

Target

O
u

tp
u

t 
~

=
 0

.9
*T

a
rg

e
t 

+
 2

.9

All: R=0.94138

 

 

Data

Fit

Y = T



C. Emeka Okafor, C. Chukwutoo Ihueze / Mechanics of Advanced Composite Structures 8 (2021) 51-68 

58 

 
Fig. 8: (a) Actual PPSFL value of displacement versus predicted (b) Regression plot for validation 
 

3.3. Overall reduced stiffness terms 

The optimal set of plantain fiber reinforced 
laminate with thickness (t) which is composed of 
six stacked plies in the order (30/45/90)𝑠  is 
represented in Fig. 9. 

Minor Poisson’s Ratio is the strain resulting 
from stress in the axial direction. The minor 
Poisson’s ratio v21 for single layer plantain fibers 
reinforced polyester composites using eq. (12) 
and relevant data in Table 1 is found as: 

𝑣21,PEFBFC = 
𝐸2𝑣12
𝐸1

=
7030.962 ∗ 0.38

14,922
=  0.179   

𝑣21,PPSFC = 
𝐸2𝑣12
𝐸1

=
6817.175 ∗ 0.29

13027.5
=  0.152   

Similarly, the ply reduced stiffness matrix (𝑄) 
for a single layer of PEFBFC (N/mm2) and single 

layer PPSFC (N/mm2) is also evaluated and 
presented in eq. (21) For PEFBFC and For PPSFC 
in eq. (22). 

𝑄PEFBFC

= {
16011.07 2865.98 0
2865.98 7544.113 0

0 0 3622.99
} (21) 

𝑄PPSFC

= {
13628.23 2071.49 0
2071.49 7131.53 0

0 0 3332.835
} (22) 

 
Hence the transformed reduced stiffness 

term for the multi-oriented plantain 
fiber/polyester laminate described in Fig. 10 is 
obtained from eq. (13) and presented in Table 4 
for PEFBFL and Table 5 for PPSFL. 

 

 

Fig.  9: Elements of the laminate showing point force and moment strengths 
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Fig. 10: Six layer PEFB fiber symmetric laminate code (mm) 

 
 

Table 4: �̅�𝑖𝑗 values (N/mm^2) for PEFBFL (30/45/90)s 

Ply 
Fiber 

Orientation 
(Degree) 

�̅�11  �̅�22  �̅�33  �̅�12 �̅�13  �̅�23 

1 30 13269.72 9036.24 4247.60 3490.59 2193.77 1472.53 
2 45 10944.78 10944.78 4455.81 3699.00 2116.74 2117.00 
3 90 7544.11 16011.07 3622.99 2866.00 0.00 0.00 
4 90 7544.11 16011.07 3622.99 2866.00 0.00 0.00 
5 45 10944.78 10944.78 4455.81 3699.00 2116.74 2117.00 
6 30 13269.72 9036.24 4247.60 3491.00 2193.77 1472.53 
 

Table 5: �̅�𝑖𝑗 values (N/mm^2) for PPSFL (30/45/90)s 

Ply 
Fiber 

Orientation 
(Degree) 

�̅�11  �̅�22  �̅�33  �̅�12 �̅�13  �̅�23 

1 30 11388.02 8139.69 3948.85 2687.50 1762.22 1050.92 
2 45 9558.52 9558.52 4154.19 2892.84 1624.17 1624.17 
3 90 7131.53 13628.2 3332.84 2071.49 0 0 
4 90 7131.53 13628.2 3332.84 2071.49 0 0 
5 45 9558.52 9558.52 4154.19 2892.84 1624.17 1624.17 
6 30 11388.02 8139.69 3948.85 2687.5 1762.22 1050.92 
 
Since the laminate in this study is symmetric, 

the coupling Bij described in eq. (16) tends to 

zero while the extensional Aij and bending Dij 

stiffness terms are computed using the ply 
thickness and centroidal values described in Fig. 
10 and tabulations in Table 6 for PEFBFL and in 
Table 7 for PPSFL. 

The extensional stiffness Aij(N/mm) and 

bending Dij(N −mm)stiffness as defined in eqs.  

(15) and (18) are computed using plies 1, 2 and 
3 in turn doubling the result in consideration of 
ply symmetry to get total laminate extensional 
and bending stiffness written in matrix form in  
eq. (23) to (26) for PEFBFL and PPSFL. 
𝐴PEFBFL

= [
6859.859 2172.008 931.0699
2172.008 7774.291 775.3385
931.0699 775.3385 2662.502

]                 (23) 

𝐷PEFBFL

= [
282.41249 79.84915 47.448143
79.84915 221.97223 35.941324
47.448143 35.941324 97.012995

]        (24) 

𝐴PPSFL

= [
12803.6 3489.235 1544.196
3489.235 14284.84 1219.839
1544.196 1219.839 5214.762

]               (25) 

𝐷PPSFL

= [
2294.7227 579.84773 354.39678
579.84773 1858.3847 247.60829
354.39678 247.60829 848.94709

]       (26) 

Evaluation of eqs. (19) and (20) gives the 

transformed reduced compliance 𝑎𝑖𝑗 (
1

N/mm
) and 

bending stiffness 𝑑𝑖𝑗 (
1

N−mm
) matrices for 

PEFBFL and PPSFL as shown in eq. (27) to (30). 
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𝑎PEFBFL

= [
0.000165 −4.2E − 05 −4.6E − 05
−4.2E − 05 0.000143 −2.7E − 05
−4.6E − 05 −2.7E − 05 0.000399

]      (27) 

 
𝑑PEFBFL

= [
0.0041559 −0.00124 −0.001573
−0.00124 0.0051627 −0.001306
−0.001573 −0.001306 0.0115612

]       (28) 

𝑎PPSFL

= [
8.59E − 05 −1.9E − 05 −2.1E − 05
−1.9E − 05 7.57E − 05 −1.2E − 05
−2.1E − 05 −1.2E − 05 0.000201

]       (29) 

𝑑PPSFL

= [
0.0004951 −0.000132 −0.000168
−0.000132 0.0005951 −0.000118
−0.000168 −0.000118 0.0012827

]        (30) 

The laminate equivalent elastic constants are 
therefore computed for membrane and bending 
modes using appropriate expressions in Table 8. 
3.4. Macroscopic assessment of ply failure based 
on Maximum Principal Stress Theory 

Ply strength analysis was performed using 
Maximum Principal Stress Theory, the use of this 
noninteractive failure criterion was justified 
because of the need to ascertain probable 
laminar mode of failure. The load required to 
cause the first ply failure was obtained from the 
strength ratio of the plies. The maximum 
strength ratio was subsequently used to 
calculate the load factor and the load intensity 
required to cause the first ply failure. 

 

Table 6: Ordinate values for PEFBFL (30/45/90)s 

Ply 
Fiber Orientation 

(Degree) 

tp 

(mm) 

𝑧�̅� 

(mm) (𝑡𝑝𝑧�̅�
2 +

𝑡𝑝
2

12
)(mm) 

1 30 0.108 -0.27 0.00798 
2 45 0.108 -0.162 0.00294 
3 90 0.108 -0.054 0.00042 
4 90 0.108 0.054 0.00042 
5 45 0.108 0.162 0.00294 
6 30 0.108 0.27 0.00798 

 
Table 7: Ordinate values for PPSFL (30/45/90)s 

Ply 
Fiber Orientation 

(Degree) 

tp  

(mm) 

𝑧�̅�  

(mm) (𝑡𝑝𝑧�̅�
2 +

𝑡𝑝
2

12
) (mm) 

1 30 0.228 -0.57 0.07506 
2 45 0.228 -0.342 0.02766 
3 90 0.228 -0.114 0.00395 
4 90 0.228 0.114 0.00395 
5 45 0.228 0.342 0.02766 
6 30 0.228 0.57 0.07506 

 
Table 8: Equivalent elastic constants of laminates 

Elastic 
constant 

Membrane mode Bending mode 
  Source  Result Source Result 

PEFBFL PPSFL PEFBFL PPSFL 

𝐸𝑥 = 
1

𝑡 (
𝐴22𝐴33−𝐴23

2

𝐴𝐴
)

 93450.41 8514.19 
12

𝑡3 (
𝐷22𝐷33−𝐷23

2

𝐷𝐷
)

 10611873.8 9466.81 

𝐸𝑦 = 
1

𝑡 (
𝐴11𝐴33−𝐴13

2

𝐴𝐴
)

 107955.6 9654.24 
12

𝑡3 (
𝐷11𝐷33−𝐷13

2

𝐷𝐷
)

 8542388.10 7876.59 

𝐺𝑥𝑦 = 
1

𝑡 (
𝐴11𝐴22−𝐴12

2

𝐴𝐴
)

 38634.96 3640.82 
12

𝑡3 (
𝐷11𝐷22−𝐷12

2

𝐷𝐷
)

 3814649.15 3654.32 

𝑣𝑥𝑦 = −
(
𝐴13𝐴23−𝐴12𝐴33

𝐴𝐴
)

(
𝐴22𝐴33−𝐴23

2

𝐴𝐴
)

 0.25 0.22 −
(
𝐷13𝐷23−𝐷12𝐷33

𝐷𝐷
)

(
𝐷22𝐷33−𝐷23

2

𝐷𝐷
)

 0.30 0.27 

𝑦𝑦𝑥 = 

 

−
(
𝐴13𝐴23−𝐴12𝐴33

𝐴𝐴
)

(
𝐴11𝐴33−𝐴13

2

𝐴𝐴
)

 
 
0.29 

0.25 −
(
𝐷13𝐷23−𝐷12𝐷33

𝐷𝐷
)

(
𝐷11𝐷33−𝐷13

2

𝐷𝐷
)

 0.24 0.22 

𝑚𝑥 = − 
(
𝐴12𝐴23−𝐴22𝐴13

𝐴𝐴
)

(
𝐴22𝐴33−𝐴23

2

𝐴𝐴
)

 0.28 0.24 − 
(
𝐷12𝐷23−𝐷22𝐷13

𝐷𝐷
)

(
𝐷22𝐷33−𝐷23

2

𝐷𝐷
)

 0.38 0.34 

𝑚𝑦 = − 
(
𝐴12𝐴13−𝐴11𝐴23

𝐴𝐴
)

(
𝐴11𝐴33−𝐴13

2

𝐴𝐴
)

 0.19 0.16 − 
(
𝐷12𝐷13−𝐷11𝐷23

𝐷𝐷
)

(
𝐷11𝐷33−𝐷13

2

𝐷𝐷
)

 0.25 0.20 
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Notably, the load factor is inversely 
proportional to the strength ratio only for 
Maximum Principal Stress Theory. However, for 
Tsai-Hill failure criterion, the load factor is 
inversely proportional to the square root of 
strength ratio. For Hoffman criterion and Tsai-
Wu criterion, the relationship between load 
factor and strength ratio has combination of 
quadratic and linear functions. Hence for initial 
design development phase of laminates, 
Maximum Principal Stress Theory is adjudged 
valid. 

3.4. 1. First-ply-failure analysis:  

Considering only membrane load, a partially 
populated compliance matrices is obtained from 
eq. (19) and by applying theordinate values for 
PEFBFL ply laminate (30/45/90)s in Fig. 6: 

 

𝐿11 = 2{(0.108 ×  13269.72)𝑃𝑙𝑦 1 +

(0.108 ×  10944.78)𝑃𝑙𝑦 2 + (0.108 ×

 7544.11)𝑃𝑙𝑦 3} =6859.86 

𝐿22 = 2{(0.108 ×  9036.24)𝑃𝑙𝑦 1 +

(0.108 ×  10944.78)𝑃𝑙𝑦 2 + (0.108 ×

 16011.07)𝑃𝑙𝑦 3} =7774.292 

𝐿33 = 2{(0.108 ×  4247.60)𝑃𝑙𝑦 1 +

(0.108 ×  4455.81)𝑃𝑙𝑦 2 + (0.108 ×

 3622.99)𝑃𝑙𝑦 3} =2662.503 

𝐿12 = 2{(0.108 ×  3490.59)𝑃𝑙𝑦 1 +

(0.108 ×  3698.8)𝑃𝑙𝑦 2 + (0.108 ×

 2865.98)𝑃𝑙𝑦 3} =2791.012 

 

𝐿 = [

𝐿11 𝐿12 0
𝐿12 𝐿22 0
0 0 𝐿33

]

= [
6859.86 2791.012 0
2791.012 7774.292 0

0 0 2662.503
] 

 

𝑙 =

[
 
 
 
 
 
𝐿22
𝐿𝐿

−𝐿12
𝐿𝐿

0

−𝐿12
𝐿𝐿

𝐿11
𝐿𝐿

0

0 0
1

𝐿33]
 
 
 
 
 

= [
0.0001599 −4.47E − 05 0
−4.47E − 05 0.0001599 0

0 0 0.000376
] 

And a membrane equivalent Young’s 
modulus (Ex) in the direction of the applied load 
is 

 

𝐸𝑥 =
1

𝑡 (
𝐿22

𝐿𝐿
)
=

1

0.648 (
6859.86

48613136.28
)

= 9649.789 (N/mm2)  
 
where 𝑡 is the total thickness of the laminate (tp× 
number of layers) and   𝐿𝐿 = 𝐿11𝐿22 − 𝐿12

2 . An 

axial load of 476N is applied at first instance to 
the 25×19.05 (LW) rectangular section of Fig. 1, 
the force intensity 𝑁𝑥  is the axial force per unit 
width of the section (𝑁𝑥 = 476 19.05⁄ =
25𝑁/𝑚𝑚 as 𝑁𝑦 = 0 and 𝑁𝑥𝑦 = 0). Then the 

laminate mid-plane deformations strains 
𝑒𝑥
𝑜, 𝑒𝑦

𝑜, 𝑒𝑥𝑦
𝑜  at the laminate reference axes are 

calculated for each ply using eq. (31).  
 

{

𝑒𝑥
0

𝑒𝑦
0

𝑒𝑦𝑥
0

} =

{
 
 

 
 
𝐿22
𝐿𝐿

−𝐿12
𝐿𝐿

0

−𝐿12
𝐿𝐿

𝐿11
𝐿𝐿

0

0 0
1

𝐿33}
 
 

 
 

{

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

}     (31) 

Or 
 

{

𝑒𝑥
0

𝑒𝑦
0

𝑒𝑦𝑥
0

}

= {
0.0001599 −4.47E − 05 0
−4.47E − 05 0.0001599 0

0 0 0.000376
} {
25
0
0
} 

 

{

𝑒𝑥
0

𝑒𝑦
0

𝑒𝑦𝑥
0

} = {
0.003998
−0.001117

0
}                                (32) 

 
3.3.1.1.Computation of PEFBFL ply strain in 
material axes:  

Eq. (32) is the constant strain distribution 
through the laminate thickness in all the three 
symmetric plies. However, the ply strain in the 
material reference axes is related to the material 
axes 1-2 in eq. (33). Symmetric plies are 
combined because only a membrane load is 
considered and the strain in the material axes 
are constant through the thickness, so once the 
computation is done for a definite ply 
configuration, the rest of the plies with the same 
configuration will have identical value, hence 

{

𝑒1
𝑒2
𝑒12
}

= [
𝑐𝑜𝑠2𝜃 𝑠𝑖𝑛2𝜃 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃
𝑠𝑖𝑛2𝜃 𝑐𝑜𝑠2𝜃 −𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃

−2𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 2𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 (𝑐𝑜𝑠2𝜃 − 𝑠𝑖𝑛2𝜃)
] {

𝑒𝑥
𝑒𝑦
𝑒𝑥𝑦

} (33) 

 
For plies 1 and 6 at 30o 

 

{

𝑒1
𝑒2
𝑒12
}

= [
0.75 0.25 0.433013
0.25 0.75 −0.43301

−0.86603 0.866 0.5
] {
0.003998
−0.001117

0
} 

 

{

𝑒1
𝑒2
𝑒12
} = {

0.002719
0.000162
−0.00443

} 
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For plies 2 and 5 at 45o 

 

{

𝑒1
𝑒2
𝑒12
} = [

0.5 0.5 0.5
0.5 0.5 −0.5
−1 1 0

] {
0.003998
−0.001117

0
} 

 

{

𝑒1
𝑒2
𝑒12
} = {

0.001441
0.001441
−0.00512

} 

 
For plies 3 and 4 at 90o 

 

{

𝑒1
𝑒2
𝑒12
}

= [
3.75E − 33 1 6.13E − 17

1 3.8E − 33 −6.1E − 17
−1.2E − 16 1.2E − 16 −1

] {
0.003998
−0.001117

0
} 

 

{

𝑒1
𝑒2
𝑒12
} = {

−0.00112
0.003998
−6.3E − 19

} 

 
3.3.1.2. Computation of PEFBFL ply stresses in 
material axes:  
The ply stresses in the material axis is related 

to the ply strains in the material axes as shown 
in eq. (34).  

{

𝜎1
𝜎2
𝜏12
}

=

{
 
 

 
 

𝐸1
1−𝑣12𝑣21

𝑣21𝐸1
1−𝑣12𝑣21

0

𝑣12𝐸2
1−𝑣12𝑣21

𝐸2
1−𝑣12𝑣21

0

0 0 𝐺12}
 
 

 
 

{

𝑒1
𝑒2
𝑒12
}         (34) 

 
Therefore the ply strains in material axes 1-2 

for each ply are used to establish the stress-
strain relationship as follows:   

 
For plies 1 and 6 at 30o 

 

{

𝜎1
𝜎2
𝜏12
}

= {
16011.07 2865.98 0
2866.76 7544.11 0

0 0 3622.99
} {
0.00271929
0.0001618
−0.00443

} 

{

𝜎1
𝜎2
𝜏12
} = {

44.00
9.02
−16.05

} 

 

For plies 2 and 5 at 45o 
 

{

𝜎1
𝜎2
𝜏12
}

= {
16011.07 2865.98 0
2866.76 7544.11 0

0 0 3622.99
} {
0.00144054
0.0014405
−0.005115

} 

{

𝜎1
𝜎2
𝜏12
} = {

27.19
15.00
−18.53

} 

 
For plies 3 and 4 at 90o 

 

{

𝜎1
𝜎2
𝜏12
}

= {
16011.07 2865.98 0
2866.76 7544.11 0

0 0 3622.99
} {
−0.001117
0.003998

−6.27E − 19
} 

{

𝜎1
𝜎2
𝜏12
} = {

−6.43
26.96
0.00

} 

 
Using the Maximum Principal Stress Theory 

which suggests that the ply will fail when any 
stress value in the material axes exceeds their 
respective ultimate strength. Such that  
 

|
𝜎1
𝑆𝑢1

| < 1; |
𝜎2
𝑆𝑢2

| < 1; |
𝜎12
𝜏𝑚𝑎𝑥

| < 1                     (35) 

 
The left hand side of eqs. (35) represents the 

strength ratio (SR). The maximum Strength ratio 
(SR) for the applied stress is factored in to 
obtain the load factor. Table 9 showed the ply 
stresses associated strength ratios at 𝑁𝑥 =
25N/mm for PEFBFL, it can be seen that 
maximum strength ratio of 0.9596 occured in ply 
2 at 45 degrees in shear mode. Therefore at 𝑁𝑥 =
25N/mm no ply failure has yet occurred, hence 
the load intensity that can cause first ply to fail 
according to Maximum Principal Stress Theory 
in the 45 degree plies in shear mode is 𝑁𝑥 =
25

0.95969
= 26 N/mm, furthermore, since the 

laminate is symmetric with membrane load only, 
the failure of ply two and ply five are predicted 
simultaneously. Similar computations were 
carried out for PPSFL and result presented in 
Table 10. 

 
Table 9: Ply stresses and associated strength ratios in PEFBFL @ 𝑁𝑥 = 25 (N/mm) and 𝐸𝑥 = 9649.789 (N/mm

2) 

ply θ e1 e2 e12 σ1 σ2 σ12 SR.1 SR.2 SR.12            
1 30 0.002719 0.00016 -0.00443 44.002 9.0161 -16.048 0.1073 0.2411 0.83112 
2 45 0.001441 0.00144 -0.00513 27.19 15.00 -18.53 0.0663 0.4009 0.95969 
3 90 -0.00112 0.00399 -6.26E-19 -6.43 26.96 0.00 0.01567 0.7208 1.2E-16 
4 90 -0.00112 0.00399 -6.27E-19 -6.43 26.96 0 0.01567 0.7208 1.20E-16 
5 45 0.001441 0.00144 -0.00512 27.19 15 -18.53 0.0663 0.4009 0.95969 
6 30 0.002719 0.00016 -0.00443 44.002 9.0161 -16.048 0.1073 0.2411 0.83112 
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Table 10: Ply stresses and associated strength ratios in PPSFL @ 𝑁𝑥 = 25(N/mm) and 𝐸𝑥 = 8736.345 (N/mm
2) 

ply θ e1 e2 e12 σ1 σ2 σ12 SR.1 SR.2 SR.12 
1 30 0.00144 0.00014 -0.00225 20.146 4.0099 -7.5124 0.04912 0.10722 0.38904 
2 45 0.00079 0.00079 -0.00260 14.92 8.23 -9.43 0.03638 0.22003 0.48834 
3 90 -0.0005 0.00209 -3.19E-19 -2.19 14.32 0.00 0.00533 0.38278 6.0E-17 
4 90 -0.0005 0.00209 -3.19E-19 -2.19 14.32 0 0.00533 0.38278 6.0E-17 
5 45 0.00079 0.00079 -0.00260 14.92 8.23 -9.43 0.03638 0.2200 0.48834 
6 30 0.00144 0.00014 -0.00225 20.146 4.0099 -7.5124 0.04912 0.10721 0.38904 

 
Table 11: �̅�𝑖𝑗 values (N/mm^2) for PEFBFL when ply 2 and 5 has completely failed 

Ply θ (Degree) �̅�11  �̅�22  �̅�33  �̅�12 �̅�13  �̅�23 
1 30 13269.72 9036.24 4247.60 3490.59 2193.77 1472.53 
2 45 0 0 0 0 0 0 
3 90 7544.11 16011.07 3622.99 2865.98 0 0 
4 90 7544.11 16011.07 3622.99 2865.98 0 0 
5 45 0 0 0 0 0 0 
6 30 13269.72 9036.24 4247.6 3490.59 2193.77 1472.53 

 

3.3.2 Second-ply-failure analysis 

For second-ply-failure analysis, it is assumed 
that all the elastic values E1, E2 and G12 for the 
two already failed plies 2 and 5 are zero; hence 
the reduced and transformed reduced stiffness 
for plies 2 and 5 are zero. Therefore the new 
assumed transformed reduced stiffness term for 
PEFBFL is presented in Table 11. 

The altered laminate configuration shown in 
Table 11 is still symmetric, so considering only 
membrane load, a partially populated 
compliance matrices is obtained from eq. 24. 
Computed ply strain and stresses in material 
axes is shown in Table 12, the ply stresses in the 
material axis is related to the ply strains in the 
material axes as shown in eq. 34. The ply strain 
in material axes 1-2 for each ply is hence used to 
establish the stress-strain relationship. Table 12 
showed the ply stresses and associated strength 
ratios in PEFBFL at 𝑁𝑥 = 26N/mm, it can be 
seen that maximum strength ratio of 1.27715 
occured in ply 1 at 6 at 30 degrees in shear 
mode. Therefore at 𝑁𝑥 = 26N/mm  ply 1 at 6 
failure has occured, furthermore, since the 

laminate is symmetric with membrane load only, 
the failure of ply one and ply six are predicted 
simultaneously.  

Table 13 showed the ply stresses and 
associated strength ratios in PPSFL at 𝑁𝑥 =
26N/mm, it can be seen that maximum strength 
ratio of 0.59418 occurred in ply 1 at 6 at 30 
degrees in shear mode. Therefore at 𝑁𝑥 =
26N/mm  no subsequent ply failure has occured 
in this reduced stiffness laminate, therefore the 
load to cause the ply failure according to 
Maximum Principal Stress Theory in 30 degree 

plies in shear mode is 𝑁𝑥 =
26

0.59418⁄ =

44 N/mm. 

3.3.3 Third-ply-failure analysis 

For Third-ply-failure analysis, it is assumed 
that all the elastic values E1, E2 and G12 for the 
four failed plies 1, 2, 5 and 6 are zero, hence the 
reduced and transformed reduced stiffness for 
plies 1, 2, 5 and 6 are zero. Thus the new 
transformed reduced stiffness terms for the 
composite are presented in Table 14. 

 

 
Table 12: Ply stresses and associated strength ratios in PEFBFL @ 𝑁𝑥 = 26(N/mm) and 𝐸𝑥 = 6400.214(N/mm

2) 

ply θ e1 e2 e12 σ1 σ2 σ12 SR.1 SR.2 SR.12 
1 30 0.00430 0.00037 -0.0068 69.9847 15.1605 -24.66 0.1706 0.4054 1.2771 
2 45 0 0 0 0 0 0 0 0 0 
3 90 -0.00159 0.00627 -9.6E-19 -7.51 42.73 0 0.0183 1.1426 1.8E-16 
4 90 -0.00159 0.00627 -9.6E-19 -7.51 42.73 0 0.0183 1.1426 1.8E-16 
5 45 0 0 0 0 0 0 0 0 0 
6 30 0.004304 0.00037 -0.0068 69.9847 15.1605 -24.66 0.1706 0.4054 1.2771 

  
Table 13: Ply stresses and associated strength ratios in PPSFL @ 𝑁𝑥 = 26 (N/mm) and 𝐸𝑥 = 5826.376(N/mm2) 

ply θ e1 e2 e12 σ1 σ2 σ12 SR.1 SR.2 SR.12 
1 30 0.00227 0.00028 -0.00344 31.8576 6.7477 -11.474 0.0777 0.1804 0.594 
2 45 0 0 0 0 0 0 0 0 0 
3 90 -0.0007 0.00326 -4.87E-19 -2.07 22.56 0.00 0.0051 0.6033 9.1E-17 
4 90 -0.0007 0.00326 -4.87E-19 -2.07 22.56 0 0.0051 0.6033 9.10E-17 
5 45 0 0 0 0 0 0 0 0 0 
6 30 0.00227 0.00028 -0.00344 31.8576 6.7477 -11.474 0.0777 0.1804 0.594 
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Table 14: �̅�𝑖𝑗 values (N/mm^2) for PEFBFL when ply 1, 2, 5 and 6 has completely failed 

Ply θ �̅�11  �̅�22  �̅�33  �̅�12 �̅�13  �̅�23 
1 30 0 0 0 0 0 0 
2 45 0 0 0 0 0 0 
3 90 7544.11 16011.07 3622.99 2865.98 0 0 
4 90 7544.11 16011.07 3622.99 2865.98 0 0 
5 45 0 0 0 0 0 0 
6 30 0 0 0 0 0 0 

The altered laminate configuration shown in 
Table 14 is still symmetric, so considering only 
membrane load, a partially populated 
compliance matrices is obtained from eq. (19). 
Following the method used in first and second 
ply failure analysis, the ply stresses and 
associated strength ratios at 𝑁𝑥 = 26N/mm, is 
shown in Table 15. It can be seen that maximum 
strength ratio of 3.218395 occured in ply 3 and 4  
at 90 degrees in tensile mode of transverse 
direction. Therefore at 𝑁𝑥 = 26N/mm ply failure 
has occured in PEFBFL, furthermore, since the 
laminate is symmetric with membrane load only, 
the failure of ply one and six are predicted 
simultaneously. 

Similarly for PPSFL, it can be seen in Table 16 
that maximum strength ratio of 2.690382 
occurred in ply 3 and 4  at 90 degrees in tensile 
mode of transverse direction. Therefore at 𝑁𝑥 =
44N/mm ply failure has occured in PPSFL, 
furthermore, since the laminate is symmetric 

with membrane load only, the failure of ply one 
and six are predicted simultaneously. 

The average stress which is the overall 
laminate strength (𝜎𝑥) is therefore  failure load 
divided by laminate thickness which is 𝜎𝑥 =

 
𝑁𝑥

𝑡⁄ =  26 0.648⁄ = 40.12 N/mm2 for PEFBFL. 

While PPSFL is 𝜎𝑥 = 
𝑁𝑥

𝑡⁄ =  44 1.368⁄ =

32.16 N mm2⁄ . Eq. (31) gives the corresponding 

strain 𝑒𝑥at each ply failure as  𝑒𝑥 =
𝑁𝑥𝐿22

𝐿𝐿
 because 

𝑁𝑥 = 𝑁𝑥𝑦 = 0. 

4. Conclusions 

Based on the macro-mechanical analysis of 
(30/45/90)s laminate under tensile loading, the 
following conclusions are drawn: 

1. Higher number of layer contributes to 
increased strength and stiffness in multi-
oriented natural fiber/polyester laminate. 

 
Table 15: Ply stresses and associated strength ratios in PEFBFL @ 𝑁𝑥 = 26 (N/mm) and 𝐸𝑥 = 2343.699(N/mm

2) 

ply θ e1 e2 e12 σ1 σ2 σ12 SR.1 SR.2 SR.12 
1 30 0 0 0 0 0 0 0 0 0 
2 45 0 0 0 0 0 0 0 0 0 
3 90 -0.00306 0.01712 -2.473E-18 0.00 120.37 0.00 0 3.218395 4.6E-16 
4 90 -0.00306 0.01712 -2.47E-18 0 120.37 0 0 3.218395 4.60E-16 
5 45 0 0 0 0 0 0 0 0 0 
6 30 0 0 0 0 0 0 0 0 0 

 
Table 16: Ply stresses and associated strength ratios in PPSFL @ 𝑁𝑥 = 44 (N/mm) and 𝐸𝑥 = 2272.221(N/mm

2) 

Ply θ e1 e2 e12 σ1 σ2 σ12 SR.1 SR.2 SR.12 
1 30 0 0 0 0 0 0 0 0 0 
2 45 0 0 0 0 0 0 0 0 0 
3 90 -0.00215 0.0141552 -1.998E-18 6.12 100.62 0.00 0.01492 2.690382 3.7E-16 
4 90 -0.00215 0.0141552 -2.00E-18 6.12 100.62 0 0.01492 2.690382 3.70E-16 
5 45 0 0 0 0 0 0 0 0 0 
6 30 0 0 0 0 0 0 0 0 0 

 
 Table 17: The average values of stress (𝜎𝑥) and strain (𝑒𝑥) for PEFBFL and PPSFL 

Ply 
PEFBFL PPSFL 

𝑁𝑥 
𝐿22
𝐿𝐿

 𝑒𝑥  (%) 
𝜎𝑥 

(N/mm2) 
Displ. 
(mm) 

𝑁𝑥 
𝐿22
𝐿𝐿

 𝑒𝑥  (%) 
𝜎𝑥 

(N/mm2) 
Displ. 
(mm) 

1 25 0.00016 0.0039 38.5803 0.001 25 0.00008 0.0021 18.27485 0.000523 
2 26 0.00021 0.0063 40.1235 0.00157 26 0.00013 0.0034 19.00585 0.000815 
3 26 0.00039 0.0171 40.1235 0.00428 44 0.00032 0.0142 32.16374 0.00355 

 
Table 18: The values of stress (𝜎𝑥) and deformation for PEFBFL and PPSFL 

COMPOSITE 
 𝜎𝑥 (N/mm2) Displacement (mm) 
 CLT ANN %Error CLT ANN %Error 

PEFBFL  40.1235 40.1298 1.23 0.00428 0.004151 3.01 
PPSFL  32.1637 32.5589 1.23 0.00355 0.00358 0.85 
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2. The laminate equivalent elastic 
constants (𝐸𝑥 , 𝐸𝑦 , 𝐺𝑥𝑦  , 𝑣𝑥𝑦  , 𝑦𝑦𝑥 , 𝑚𝑥 𝑎𝑛𝑑 𝑚𝑦)  for 

symmetric plantain fiber/polyester laminate 
have been determined in membrane and 
bending modes.  

3. The maximum principal stress theory 
provided the necessary sets of physics-based 
failure criteria for predicting the plantain 
fiber/polyester laminate failure using the 
lamina-based longitudinal, transverse and shear 
strengths. 

4. A steady reduction in the laminate 
elastic modulus was observed as a result of 
compromised stiffness in principal directions 
arising from gradual failure of the plies until the 
last ply failure occurred in ply 3 and 4 at 90 
degrees in tensile mode of transverse direction.  

5. Stresses and displacements observed in 
the symmetric plantain fiber/polyester laminate 
with specified mechanical loading condition 

using Classical Laminate Theory agree very 
closely with predictions of ANN. 

6. The urgency of a fast technique that 
simulates macro-mechanical characteristics of 
laminate can be fulfilled by using an artificial 
neural network trained with raw experimental 
data obtained from finite element analysis in the 
range of loads and material control factors 
studied. 

7. Considering the rich micro-structural 
information gathered from this stiffness and 
macroscopic analysis, it is believed that this 
technique deserves further study as an initial 
screening mechanism in advanced composite 
development programmes. 
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Appendix 

Table 19: The ANN training data set and response for PEFBFL 
 Independent variables Response 1 Response 2 
 

Exp 
No.  

Aspect 
Ratio  

Fiber 
Orientation  

Stacking 
Sequence  

Stress 
(N/mm2)    

ANN 
Predicted  

 Error  Displace
ment  
(mm) 

ANN 
Predicted  

 Error  

1 1.05 60 (30/0/90)s 37.13 36.6834 0.44660 0.00361 0.003614 -3.87E-06 
2 0.79 30 (30/0/90)s 36 36.1061 -0.10615 0.00315 0.003172 -2.18E-05 
3 1.05 60 (30/45/90)s 40.13 40.0192 0.110736 0.00423 0.004121 0.00010879 
4 1.05 60 (30/45/90)s 40.13 40.0192 0.110736 0.00423 0.004121 0.00010879 
5 1.05 60 (30/45/90)s 40.13 40.0192 0.110736 0.00423 0.004121 0.00010879 
6 1.05 60 (30/0/90)s 36.13 36.6834 -0.5534 0.00299 0.003614 -0.0006239 
7 0.68 60 (30/0/90)s 34.5 34.5005 -0.00053 0.00259 0.002606 -1.61E-05 
8 1.42 60 (30/45/90)s 39.13 40.0247 -0.89474 0.00423 0.004198 3.15E-05 
9 1.31 90 (30/0/90)s 38 39.8442 -1.84425 0.00423 0.004191 3.88E-05 
10 1.05 90 (30/45/90)s 40.13 40.1295 0.000424 0.00423 0.004193 3.68E-05 
11 1.31 30 (30/0/90)s 34.8 34.8637 -0.06373 0.00315 0.003485 -0.000335 
12 1.05 90 (30/0/90)s 36.6 36.6394 -0.03941 0.00353 0.003546 -1.63E-05 
13 1.05 60 (30/0/90)s 37.13 36.6834 0.446604 0.00315 0.003614 -0.000464 
14 1.05 60 (30/0/90)s 37.13 36.6834 0.446604 0.00423 0.003614 0.00061613 
15 0.79 90 (30/45/90)s 40.13 40.1281 0.0019 0.00423 0.003945 0.00028501 
16 1.31 90 (30/45/90)s 40.13 40.1298 0.000107 0.00423 0.004151 7.92E-05 
17 1.05 60 (30/45/90)s 38.13 40.0193 -1.88926 0.00423 0.004121 0.00010879 
18 1.42 60 (30/0/90)s 37.13 37.1604 -0.03047 0.00423 0.004207 2.35E-05 
19 0.79 30 (30/45/90)s 38.8 38.6298 0.170174 0.00315 0.003135 1.46E-05 
20 0.68 60 (30/45/90)s 37.13 37.1190 0.010906 0.00259 0.002642 -5.22E-05 
21 1.05 30 (30/0/90)s 35.8 35.7035 0.096432 0.00323 0.003332 -0.000102 
22 0.79 90 (30/0/90)s 35 34.9949 0.0051 0.00315 0.003176 -2.64E-05 
23 1.05 60 (30/45/90)s 40 40.0192 -0.01926 0.00422 0.004121 9.88E-05 
24 1.05 60 (30/0/90)s 37.13 36.6834 0.446604 0.00323 0.003614 -0.000384 
25 1.31 30 (30/45/90)s 38 37.9603 0.039629 0.00323 0.003255 -2.48E-05 
26 1.05 30 (30/45/90)s 38 38.4618 -0.46185 0.00323 0.003163 6.69E-05      

Σ -3.45975 
 

Σ -3.44E-04      
MSE= 0.46038 

 
MSE= 4.5544E-09 

Code value: (30/0/90)s =>1, (30/45/90)s=>2 
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Table 20: The ANN training data set and response for PPSFL  
Independent variables Response 1 Response 2 

Exp 
No. 

Aspect 
Ratio  

Fiber 
Orient
ation  

Stacking 
Sequence  

Stress 
(N/m
m2)   

ANN 
Predicted  

 Error  Displace
ment 
(mm)  

ANN 
Predicted  

Error  

1 1.05 60 (30/0/90)s 27.13 28.44332 -1.31332 0.00261 0.002682 -7.23E-05 
2 0.79 30 (30/0/90)s 26 26.0954 -0.0954 0.00215 0.002161 -1.07E-05 
3 1.05 60 (30/45/90)s 32.61 31.83736 0.772644 0.00358 0.003508 7.15E-05 
4 1.05 60 (30/45/90)s 32.61 31.83736 0.772644 0.00358 0.003508 7.15E-05 
5 1.05 60 (30/45/90)s 32.61 31.83736 0.772644 0.00358 0.003508 7.15E-05 
6 1.05 60 (30/0/90)s 28.13 28.44332 -0.31332 0.00299 0.002682 0.00030771 
7 0.68 60 (30/0/90)s 26.5 26.18098 0.319022 0.00259 0.002401 0.00018924 
8 1.42 60 (30/45/90)s 29.13 28.94753 0.182469 0.00358 0.003572 7.83E-06 
9 1.31 90 (30/0/90)s 30 30.00286 -0.00286 0.00358 0.003142 0.00043795 
10 1.05 90 (30/45/90)s 32.61 32.21414 0.395862 0.00358 0.003573 7.08E-06 
11 1.31 30 (30/0/90)s 26.8 26.78153 0.018465 0.00215 0.002192 -4.22E-05 
12 1.05 90 (30/0/90)s 28.6 28.5736 0.026401 0.00253 0.002878 -0.000348 
13 1.05 60 (30/0/90)s 29.13 28.44332 0.686676 0.00215 0.002682 -0.0005323 
14 1.05 60 (30/0/90)s 29.13 28.44332 0.686676 0.00358 0.002682 0.00089771 
15 0.79 90 (30/45/90)s 29 29.04575 -0.04575 0.00258 0.002687 -0.00011 
16 1.31 90 (30/45/90)s 32.61 32.55896 0.051038 0.00358 0.003578 1.93E-06 
17 1.05 60 (30/45/90)s 30.13 31.83736 -1.70736 0.00358 0.003508 7.15E-05 
18 1.42 60 (30/0/90)s 29.13 28.69715 0.432848 0.00358 0.003407 0.00017295 
19 0.79 30 (30/45/90)s 30.8 30.7556 0.044397 0.00255 0.002387 0.00016264 
20 0.68 60 (30/45/90)s 29.13 29.62188 -0.49188 0.00259 0.002551 3.94E-05 
21 1.05 30 (30/0/90)s 27.8 27.62689 0.173107 0.00223 0.002223 6.65E-06 
22 0.79 90 (30/0/90)s 26 26.18772 -0.18772 0.00215 0.002291 -0.0001414 
23 1.05 60 (30/45/90)s 32 31.83736 0.162644 0.00322 0.003508 -0.0002885 
24 1.05 60 (30/0/90)s 29.13 28.44332 0.686676 0.00223 0.002682 -0.000452 
25 1.31 30 (30/45/90)s 30 27.88602 2.113975 0.00223 0.002957 -0.0007266 
26 1.05 30 (30/45/90)s 30 30.01162 -0.01162 0.00223 0.002206 2.38E-05      

Σ 4.128949 
 

Σ -1.81E-04      
MSE= 0.655701 

 
MSE= 1.2577E-09 

Code value: (30/0/90)s =>1, (30/45/90)s=>2 
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