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This paper describes the application of refined plate theory to investigate free vibration and 

buckling analyses of functionally graded nanocomposite plates reinforced by aggregated carbon 

nanotube (CNT). The refined shear deformation plate theory (RSDT) uses four independent 

unknowns and accounts for a quadratic variation of the transverse shear strains across the 

thickness, satisfying the zero traction boundary conditions on the top and bottom surfaces of the 

plate without using shear correction factors. The motion equations are derived from Hamilton’s 

energy principle and Navier’s method is applied to solve this equation. The material properties 

of the functionally graded carbon nanotube reinforced composites (FG-CNTRCs) are assumed to 

vary along the thickness and estimated with the Mori–Tanaka approach. Effects on the natural 

frequency and critical buckling load of the FG-CNTRC plates by CNT volume fraction, CNT distri-

bution, CNT cluster distribution, and geometric dimensions of the plate are investigated. Effects 

of loading conditions on the critical buckling load are also examined. 
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1. Introduction   
  

Carbon nanotubes (CNTs), a new type of ad-
vanced material, have attracted a great deal of in-
terest from researchers. Because of their extremely 
attractive mechanical, electrical and thermal prop-
erties, CNTs show promising application in polymer 
composites as a potential reinforcement and multi-
functional element [1,2]. The introduction of CNTs 
into a polymer matrix may therefore greatly im-
prove mechanical properties, such as tensile 
strength and elastic modulus, of the resulting nano-
composites [3]. Molecular dynamics (MD) is one 
technique that can be used to study CNTs. Han and 
Elliott [4] successfully used the MD method to de-
termine the elastic modulus of composite structures 
under CNT reinforcement, and they investigated the 
effect of CNT volume fraction on mechanical proper-
ties of nanocomposites. They also investigated the 
effect of CNT waviness on the elastic properties and 

mechanical behavior of carbon nanotube reinforced 
composites (CNTRCs). Alian et al. [5] used a mul-
tiscale modeling technique to determine the effec-
tive elastic moduli of nanocomposite reinforced by 
agglomerated carbon nanotubes. Their results 
showed that the effective elastic properties of the 
nanocomposite decreased by increasing in CNT vol-
ume that is located in CNT clusters. The significant 
effect of CNT waviness on the load transfer and ac-
tive constrained layer damping behavior of the 
short fuzzy fiber-reinforced composite has been 
investigated [6-8]. Wuite and Adali [9] used a multi-
scale analysis to study the effects of volume, diame-
ter and distribution of CNTs on deflection and static 
behavior of CNTRC beams. Formica et al. [10] pre-
sented the vibration behavior of CNTRC plates by 
employing an equivalent continuum model based on 
the Mori–Tanaka approach. They found that the im-
provement in modal properties achieved a maxi-
mum when the carbon nanotubes were uniformly 
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aligned along the loading direction. Vodenitcharova 
and Zhang [11] used the Airy stress-function meth-
od to experimentally and computationally investi-
gate pure bending and bending-induced local buck-
ling of a nanocomposite beam reinforced by a single 
walled carbon nanotube (SWCNT). 

Functionally graded materials (FGMs) are inho-
mogeneous composites characterized by smooth 
and continuous variations in both compositional 
profile and material properties. Such excellent quali-
ties allow them to be fabricated as different struc-
tures in accordance with various service require-
ments. To obtain the required optimum perfor-
mance, the gradient variation of material properties 
can be achieved by gradually changing the volume 
fraction of the constituent materials. Reddy [12] 
presented static and dynamic analyses of the FGM 
plates based on third order shear deformation theo-
ry and by using the theoretical formulation and fi-
nite element models. Zenkour [13] presented a two 
dimensional solution to study the bending, buckling, 
and free vibration of simply supported FG ceramic–
metal sandwich plates. Cheng and Batra [14] used 
first and third order shear deformation theories to 
report deflections of a simply supported functional-
ly graded polygonal plate. Also, Cheng and Batra 
[15] studied the buckling and steady state vibra-
tions of a simply supported functionally graded po-
lygonal plate based on Reddy’s plate theory. Amabili 
et al. [16] compared Von Kárman, and first (FSDT) 
and third order shear deformation theories for non-
linear vibration analysis of rectangular laminated 
composite plates with different boundary condi-
tions, revealing that FSDT (with shear correction 

factor of √3/2) and the higher-order shear defor-
mation theory give practically coincident results. 
Khorshidi et al. [17-18] analyzed vibration behav-
iour of laminated composite and functionally graded 
plates in contact with a bounded fluid using the Ray-
leigh–Ritz method and Fourier series. Also, vibra-
tional behavior of single and multi-directional FG 
annular plates and laminated curved panels was 
investigated using three-dimensional elasticity the-
ory and generalized differential quadrature method 
(GDQM)[19-22]. 

Using the concept of FGM, CNTs can be distribut-
ed in certain grading profiles through certain direc-
tions to improve the mechanical properties and to 
reinforce the composite structures. The composites, 
which are reinforced by CNTs with grading distribu-
tion, are called functionally graded carbon nano-
tube-reinforced composites (FG-CNTRCs). Shen [23] 
suggested that the interfacial bonding strength can 
be improved with the use of a graded distribution of 
CNTs in the matrix. He investigated postbuckling of 
functionally graded nanocomposite cylindrical 
shells reinforced by CNTs subjected to axial com-

pression in a thermal environment, and showed that 
the linear functionally graded reinforcements can 
increase the buckling load. He estimated mechanical 
properties with a micro-mechanical model in vol-
ume fraction form with CNT efficiency parameters. 
Mehrabadi et al. [24] discussed mechanical buckling 
behavior of FG nanocomposite plates reinforced by 
SWCNTs based on the first-order shear deformation 
theory (FSDT) and mindlin plate theory. However, 
the rule of mixture is not applicable when straight 
CNTs are oriented randomly in the matrix. In these 
cases the Mori–Tanaka approach [25] is one of the 
best known analytical approaches to accurately de-
termine the effective material constants of compo-
site materials. Yas and Heshmati [26] used the Mo-
ri–Tanaka approach to study the vibrational proper-
ties of FG-nanocomposite beams reinforced by ran-
domly oriented straight CNTs under the action of 
moving load. Sobhani Aragh et al. [27] presented 
vibrational behavior of continuously graded CNT–
reinforced cylindrical panels based on the Eshelby–
Mori–Tanaka approach. They used the 2D GDQM to 
discretize the governing equations and to imple-
ment the boundary conditions. Pourasghar et al. 
[28] and Moradi-Dastjerdi et al. [29] performed a 
free vibration analysis of FG nanocomposite cylin-
ders reinforced by randomly oriented straight and 
locally aggregated CNTs, based on both three-
dimensional theory of elasticity, and mesh-free 
methods. Both teams estimated material properties 
of FG- CNTRCs with the Eshelby–Mori–Tanaka ap-
proach. Finally, vibrational behavior of single and 
multi-directional nanocomposite FG-CNTRC thick 
plates, sandwich curved panels and annular plates 
resting on a Pasternak elastic foundation, were in-
vestigated using three-dimensional elasticity theory 
and GDQM [30-34].  

Since FSDT violates the equilibrium conditions 
on the top and bottom surfaces of the plate, a shear 
correction factor is required to compensate for the 
error because of a constant shear strain assumption 
throughout the thickness. The shear correction fac-
tor not only depends on the material and its geo-
metric properties, but also on its loading and 
boundary conditions. Although the FSDT provides a 
sufficiently accurate description of response for thin 
to moderately thick plates, it is not convenient to 
use because of the difficulty in determining the cor-
rect value of the shear correction factor. To avoid 
the use of a shear correction factor, many refined 
shear deformation plate theories (RSDTs) have been 
developed including the sinusoidal shear defor-
mation plate theory (SSDT) [35-36], RSDT [37-38], 
and hyperbolic shear deformation plate theory 
(HSDT) [39-41]. RSDT is based on an assumption 
that the in-plane and transverse displacements con-
sist of bending and shear components in which the 
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bending components do not contribute toward 
shear forces and, likewise, the shear components do 
not contribute toward bending moments. The mo-
tion equation can be derived from Hamilton’s ener-
gy principle and Navier’s method solves this equa-
tion. Moradi-Dastjerdi et al. [42] used an RSDT with 
only four independent unknowns, and presented the 
free vibration analysis of sandwich plates with FG 
randomly oriented CNTRC face sheets resting on an 
elastic foundation. Khorshidi et al. [43-44] used 
nonlocal elasticity theory based on exponential 
shear deformation theory, for free vibration and 
buckling analyses of the FG rectangular nanoplates. 
They also used refined trigonometric shear defor-
mation plate theory to study the out-of-plane vibra-
tion of the rectangular isotropic plates with differ-
ent boundary conditions [45].  

Although several studies of the free vibration or 
buckling of FG and FG nanocomposite plates have 
been carried out based on a variety of plate theories, 
no studies can be found applying these analyses to 
aggregated CNT reinforced plates. In this study, the 
RSDT is developed to investigate the free vibration 
and buckling analyses of simply supported function-
ally graded nanocomposite plates reinforced by ag-
gregated single-walled carbon nanotubes 
(SWCNTs). The applied nanocomposite is assumed a 
mixture of CNTs (randomly oriented and locally ag-
gregated into some clusters) that are embedded in a 
polymer. The material properties of the nanocom-
posite plates are assumed to vary along the thick-
ness of plate and estimated though the Mori–Tanaka 
method because of its simplicity and accuracy even 
at a high volume fraction of inclusions. Effects on the 
natural frequency and critical buckling load of the 
FG-CNTRC plates by CNT volume fraction, CNT dis-
tribution, CNT cluster distribution, and geometric 
dimensions of the plate are investigated. Effects of 
loading conditions on the critical buckling load are 
also examined. 

 

2. Material Properties in FG-CNTRC Rein-
forced Composite 

 
Consider a CNTRC is made from a mixture of 

SWCNT (that randomly oriented and locally aggre-
gated into some clusters) and matrix which is as-
sumed to be isotropic. Many studies have been pub-
lished each with a different focus on mechanical 
properties of polymer nanotube composites. How-
ever, the common theme has been enhancement of 
Young’s modulus. In this section, the effective me-
chanical properties of the CNT reinforced composite 
that straight CNTs are oriented randomly, or locally 
aggregated in to some clusters, are obtained based 
on the Eshelby–Mori–Tanaka approach. The result-
ing effective properties for these CNT reinforced 
composites are isotropic, despite the CNTs being 
transversely isotropic. 
2.1 Composites reinforced with randomly oriented, 
straight CNTs 

In this section, the effective mechanical proper-
ties of composites with randomly oriented nonclus-
tered CNTs (as shown in Fig. 1) are studied. The ori-
entation of a straight CNT is characterized by two 
Euler angles α and β, as shown in Fig. 1. When CNTs 
are completely randomly oriented in the matrix, the 
composite is isotropic, and its bulk modulus K and 
shear modulus G are derived as [46]:  
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where subscripts m and r are referred to matrix and 
CNT respectively, f is volume fraction and also, 
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Figure 1. Representative volume element (RVE) with randomly 
oriented, straight CNTs. 
 

kr, lr, mr, nr, and pr are the Hill’s elastic moduli for the 
reinforcing phase (CNTs). As mentioned before, the 
CNTs are transversely isotropic and have a stiffness 
matrix given below (Hill’s elastic moduli): 
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(7) 

where EL, ET, EZ, GTZ, GZL, GLT, TZ , ZL  and LT  are 

material properties of the CNT reinforced composite 
which can be determined from the inverse of the 
rule of mixture.  

So, the effective Young’s modulus E and Pois-
son’s ratio   of the composite is given by: 

 

(8) 

 

(9) 

 
2.2 Effect of CNT aggregation on the properties of 
the composite 

The CNTs were arranged within the matrix to in-
troduce clustering. Because of a large aspect ratio 
(usually >1000), a low bending rigidity, and Van der 
Waals forces, CNTs have a tendency to bundle or 
cluster together making it quite difficult to produce 
fully-dispersed CNT reinforced composites. The ef-
fect of nanotube aggregation on the elastic proper-
ties of randomly oriented CNTRCs is presented in 

this section. Shi et al. [46] derived a two parameter 
micromechanics model to determine the effect of 
nanotube agglomeration on the elastic properties of 
a randomly oriented CNTRC (Fig. 2). It is assumed 
that a number of CNTs are uniformly distributed 
throughout the matrix and that other CNTs appear 
in cluster form because of aggregation, as shown in 
Fig. 2. The total volume of the CNTs in the repre-
sentative volume element (RVE), denoted by Vr, can 
be divided into the following two parts: 

 

(10) 

where 𝑉𝑟
𝑐𝑙𝑢𝑠𝑡𝑒𝑟  denotes the volumes of CNTs inside a 

cluster, and 𝑉𝑟
𝑚 is the volume of CNTs in the matrix 

and outside the clusters. The two parameters used 
to describe the aggregation are defined as: 
 

(11) 

where V is the volume of RVE, Vcluster is the volume of 
clusters in the RVE. 𝜇 is the volume fraction of clus-
ters with respect to the total volume V of the RVE, η 
is the volume ratio of the CNTs inside the clusters 
over the total CNT inside the RVE. When 𝜇 = 1, 
there is uniform distribution of nanotubes through-
out the entire composite without aggregation; with 
a decreasing 𝜇, the agglomeration degree of CNTs 
becomes more severe. When 𝜂 = 1, all nanotubes 
are located in the clusters. The case 𝜂 = 𝜇 means 
that the volume fraction of CNTs inside the clusters 
is equal to that of CNTs outside the clusters, so all 
CNTs are located and randomly oriented as in Fig. 1. 
Thus, we consider the CNT-reinforced composite as 
a system consisting of spherically shaped clusters in 
a matrix. We first estimate the effective elastic stiff-
ness of the clusters and the matrix respectively, and 
then calculate the overall property of the whole 
composite system. The effective bulk modulus Kin 
and shear modulus Gin of the cluster can be calculat-
ed with Prylutskyy et al. [47]: 
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Figure 2. RVE with functionally graded Eshelby cluster model of 
aggregation of CNTs. 
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and the effective bulk modulus Kout and shear modu-
lus Gout of the matrix outside the cluster can be cal-
culated by: 

 

(14) 

 

(15) 

Finally, the effective bulk modulus K and the effec-
tive shear modulus G of the composite are derived 
from the Mori-Tanaka method as follows: 
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The effective Young’s modulus E and Poisson’s ratio 
  of the composite can be calculated in the terms of 

K and G by Eqs. (8) and (9). 
 

3. Refined Plate Theory 
 

Consider a rectangular FG-CNTRC plate with 
thickness h, and edges parallel to axes x and y, as 
shown in Fig. 3. The volume fractions of CNTs or 𝑓𝑟 , 
are varied along the thickness of the plate as follow-
ing: 
𝑓𝑟 = (𝑓𝑟

𝑢 − 𝑓𝑟
𝑑)(1 + 𝑧 ℎ⁄ )𝑝 + 𝑓𝑟

𝑑 , − ℎ 2⁄ < 𝑧 < ℎ 2⁄  (21) 
𝑓𝑚 = 1 − 𝑓𝑟  (22) 
Where p (0 ≤ 𝑝 < ∞) is the volume fraction expo-
nent and 𝑓𝑟

𝑢 and 𝑓𝑟
𝑑 are the values of CNT volume 

fraction in upper (𝑧 = ℎ 2⁄ ) and downer surfaces 
(𝑧 = −ℎ 2⁄ ), respectively.  
Fig. 4 shows the variation of CNT volume fraction 
along the thickness of a plate for different values of 
the volume fraction exponent, p. The effective 
Young’s modulus E and Poisson’s ratio   are ob-

tained from Eqs. (8), (9). 

 
Figure 3. Schematic of the CNTRC plate. 

 

 
Figure 4. Variation of properties along the thickness of cylinders 
for different values of p according to Eq. (21). 
 

3.1 Basic assumptions 
The assumptions of the present theory are as fol-

lows [37]: 
a) The displacements are small in comparison with 
the plate thickness and thus the strains involved are 
infinitesimal. 
b) The transverse displacement 𝑊 includes two 
components: bending 𝑤b and shear 𝑤s, and these 
components are functions of coordinates x, y only.  
𝑊(x, y, z) = 𝑤b(𝑥, 𝑦) + 𝑤s(𝑥, 𝑦) (23) 
c) The transverse normal stress 𝜎z is negligible in 
comparison with the in-plane stresses 𝜎x and 𝜎y. 

d) The displacements U in the x-direction, and V in 
the y-direction, consist of extension, bending, and 
shear components. 
𝑈 = 𝑢 + 𝑢𝑏 + 𝑢 𝑠,      𝑉 = 𝑣 + 𝑣𝑏 + 𝑣𝑠  (24) 
The bending components 𝑢𝑏 and 𝑣𝑏 are assumed to 
be similar to the displacements given by classical 
plate theory. Therefore, the expression for 𝑢𝑏 and 𝑣𝑏 
can be given as: 

𝑢 𝑏 = −𝑧
𝜕𝑤𝑏
𝜕𝑥

,     𝑣 𝑏 = −𝑧
𝜕𝑤𝑏
𝜕𝑦

 (25) 

In conjunction with 𝑤𝑠 , the shear components 𝑢𝑠 
and 𝑣𝑠 give rise to the parabolic variations of shear 
strains 𝛾𝑥𝑧 , 𝛾𝑦𝑧 and hence to shear stresses 𝜏𝑥𝑧 , 𝜏𝑦𝑧 

across the thickness of the plate in such a way that 
the shear stresses 𝜏𝑥𝑧 , 𝜏𝑦𝑧 are zero at the top and 
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bottom faces of the plate. Consequently, the expres-
sion for 𝑢𝑠 and 𝑣𝑠 can be given as: 

𝑢 𝑠 = [
1

4
𝑧 −

5

3
𝑧 (
𝑧

ℎ
)
2

]
𝜕𝑤𝑠
𝜕𝑥

,       

𝑣 𝑠 = [
1

4
𝑧 −

5

3
𝑧 (
𝑧

ℎ
)
2

]
𝜕𝑤𝑠
𝜕𝑦

 
(26) 

3.2 Kinematics and constitutive equations 
Based on the assumptions made in the preceding 

section, the displacement field can be obtained [37] 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) − 𝑧
𝜕𝑤𝑏
𝜕𝑥

− 𝑓(𝑧)
𝜕𝑤𝑠
𝜕𝑥

 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) − 𝑧
𝜕𝑤𝑏
𝜕𝑦

− 𝑓(𝑧)
𝜕𝑤𝑠
𝜕𝑦

 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤𝑏(𝑥, 𝑦) + 𝑤𝑠(𝑥, 𝑦) 

(27) 

where 

𝑓(𝑧) = 𝑧[
−1

4
+
5

3
(
𝑧

ℎ
)2] (28) 

The strains associated with the displacements in Eq. 
(27) are: 
𝜀𝑥 = 𝜀𝑥

0 + 𝑧𝑘𝑥
𝑏 + 𝑓(𝑧)𝑘𝑥

𝑠 , 
 𝜀𝑦 = 𝜀𝑦

0 + 𝑧𝑘𝑦
𝑏 + 𝑓(𝑧)𝑘𝑦

𝑠  

𝛾𝑥𝑦 = 𝛾𝑥𝑦
0 + 𝑧𝑘𝑥𝑦

𝑏 + 𝑓(𝑧)𝑘𝑥𝑦
𝑠   

 𝛾𝑦𝑧 = 𝑔(𝑧)𝛾𝑦𝑧
𝑠 , 𝛾𝑥𝑧 = 𝑔(𝑧)𝛾𝑥𝑧

𝑠  

𝜀𝑧 = 0 

(29) 

where 

𝜀𝑥
0 =

𝜕𝑢0
𝜕𝑥

, 𝑘𝑥
𝑏 = −

𝜕2𝑤𝑏
𝜕𝑥2

, 𝑘𝑥
𝑠 = −

𝜕2𝑤𝑠
𝜕𝑥2

 

𝜀𝑦
0 =

𝜕𝑣0
𝜕𝑦

, 𝑘𝑦
𝑏 = −

𝜕2𝑤𝑏
𝜕𝑦2

, 𝑘𝑦
𝑠 = −

𝜕2𝑤𝑠
𝜕𝑦2

 

γxy
0 =

∂u0
∂y

+
∂v0
∂x

, 𝑘𝑥𝑦
𝑏 = −2

𝜕2𝑤𝑏
𝜕𝑥𝜕𝑦

, 

𝑘𝑥𝑦
𝑠 = −2

𝜕2𝑤𝑠
𝜕𝑥𝜕𝑦

 

𝛾𝑦𝑧
𝑠 =

𝜕𝑤𝑠
𝜕𝑦

, 𝛾𝑥𝑧
𝑠 =

𝜕𝑤𝑠
𝜕𝑥

, 𝑔(𝑧) = 1 −
𝑑𝑓(𝑧)

𝑑𝑧
 

(30) 

For elastic and isotropic materials, the constitutive 
relations can be written as: 

{

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

} = ⌈

𝑄11 𝑄12 0
𝑄12 𝑄22 0
0 0 𝑄66

⌉ {

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
} 

{
𝜏𝑦𝑧
𝜏𝑧𝑥
} = ⌈[

𝑄44 0
0 𝑄55

]⌉ {
𝛾𝑦𝑧
𝛾𝑧𝑥
} 

(31) 

where (𝜎𝑥 , 𝜎𝑦 , 𝜏𝑥𝑦 , 𝜏𝑦𝑧 , 𝜏𝑥𝑧) and (𝜀𝑥, 𝜀𝑦, 𝛾𝑥𝑦 , 𝛾𝑦𝑧 , 𝛾𝑧𝑥) 

are the stress and strain components, respectively. 
Using the material properties defined in Eq. (21), 
stiffness coefficients, 𝑄𝑖𝑗 , can be expressed as: 

𝑄11 = 𝑄22 =
𝐸(𝑧)

1 − 𝜐2
, 𝑄12 =

𝜐 𝐸(𝑧)

1 − 𝜐2
,

𝑄66 = 𝑄44 = 𝑄55 =
𝐸(𝑧)

2(1 + 𝜐)
 

(32) 

3.3 Governing equations 
Using Hamilton’s energy principle the motion 

equation of the isotropic plate is derived: 

𝛿 ∫ (𝑈 + 𝑉 − 𝐾)𝑑𝑡
𝑡2

𝑡1

= 0 (33) 

where 𝑈 is the strain energy, 𝑉 work done by ap-
plied forces, and 𝐾 is the kinetic energy of the iso-
tropic plate. Employing the minimum of the total 
energy principle leads to a general equation of mo-
tion and boundary conditions. Taking the variation 
of the above equation and integrating by parts: 

∫ [∫ 𝜎𝑥𝛿𝜖𝑥 + 𝜎𝑦𝛿𝜖𝑦 + 𝜏𝑥𝑦𝛿𝛾𝑥𝑦 + 𝜏𝑦𝑧𝛿𝛾𝑦𝑧
𝑣

𝑡2

𝑡1

+ 𝜏𝑧𝑥𝛿𝛾𝑧𝑥 − 𝜌(𝑢̈𝛿𝑢 + 𝑣̈𝛿𝑣 + 𝑤̈𝛿𝑤)]𝑑𝑣

+∫ (𝑁
𝑥
0(𝛿𝑤𝑏,𝑥 + 𝛿𝑤𝑠,𝑥) + 𝑁𝑦

0(𝛿𝑤𝑏,𝑦
𝐴

+ 𝛿𝑤𝑠,𝑦))𝑑𝐴]𝑑𝑡 = 0 

(34) 

where ̈  represents the second derivative with re-
spect to time and also (𝑁𝑥

0, 𝑁𝑦
0 ) are in-plane pre-

buckling forces. 
The equations of motion can be obtained by substi-
tution of Eqs. (27) and (29) into Eq. (34) and by 
consideration of the following assumptions. The 
stress resultants 𝑁, 𝑀, 𝑆 and the mass moments of 
inertia are defined by: 

[

𝑁𝑥 𝑁𝑦 𝑁𝑥𝑦

𝑀𝑥
𝑏 𝑀𝑦

𝑏 𝑀𝑥𝑦
𝑏

𝑀𝑥
𝑠 𝑀𝑦

𝑠 𝑀𝑥𝑦
𝑠

] = ∫ (𝜎𝑥 , 𝜎𝑦 , 𝜏𝑥𝑦) (
1
𝑧

𝑓(𝑧)
)𝑑𝑧

ℎ

2

−
ℎ

2

 (35.a) 

(𝑠𝑥𝑧
𝑠  , 𝑠𝑦𝑧

𝑠 ) = ∫ (𝜏𝑥𝑧 , 𝜏𝑦𝑧)𝑔(𝑧)𝑑𝑧

ℎ

2

−
ℎ

2

 (35.b) 

(𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5, 𝐼6)

= ∫ 𝜌(𝑧)(1, 𝑧, 𝑧2, 𝑓(𝑧), 𝑧𝑓(𝑧), (𝑓(𝑧))2)𝑑𝑧

ℎ

2

−
ℎ

2

 
(35.c) 

So, the equation of motion can be written as:  
𝛿𝑢0:      𝑁𝑥,𝑥 + 𝑁𝑥𝑦,𝑦 = 𝐼2𝑤̈𝑏,𝑥 + 𝐼4𝑤̈𝑠,𝑥 − 𝐼1𝑢̈0 (36.a) 
𝛿𝑣0:      𝑁𝑦,𝑦 +𝑁𝑥𝑦,𝑥 = 𝐼2𝑤̈𝑏,𝑦 + 𝐼4𝑤̈𝑠,𝑦 − 𝐼1𝑣̈0 (36.b) 
𝛿𝑤𝑏:     𝑀𝑥,𝑥𝑥

𝑏 +𝑀𝑦,𝑦𝑦
𝑏 + 2𝑀𝑥𝑦,𝑥𝑦

𝑏 + 𝑝(𝑤)

= 𝐼3(𝑤̈𝑏,𝑥𝑥 + 𝑤̈𝑏,𝑦𝑦) + 𝐼5(𝑤̈𝑠,𝑥𝑥 + 𝑤̈𝑠,𝑦𝑦)

− 𝐼2(𝑢̈0,𝑥 + 𝑣̈0,𝑦) − 𝐼1(𝑤̈𝑏 + 𝑤̈𝑠) 

(36.c) 

𝛿𝑤𝑠:     𝑀𝑥,𝑥𝑥
𝑠 +𝑀𝑦,𝑦𝑦

𝑠 + 2𝑀𝑥𝑦,𝑥𝑦
𝑠 + 𝑠𝑦𝑧,𝑦

𝑠

+ 𝑠𝑥𝑧,𝑥
𝑠 + 𝑝(𝑤)

= 𝐼5(𝑤̈𝑏,𝑥𝑥 + 𝑤̈𝑏,𝑦𝑦) + 𝐼6(𝑤̈𝑠,𝑥𝑥 + 𝑤̈𝑠,𝑦𝑦)

− 𝐼4(𝑢̈0,𝑥 + 𝑣̈0,𝑦) − 𝐼1(𝑤̈𝑏 + 𝑤̈𝑠) 

(36.d) 

where 
𝑝(𝑤)

= 𝑁𝑥
0(𝑤𝑏,𝑥𝑥 + 𝑤𝑠,𝑥𝑥) + 𝑁𝑦

0(𝑤𝑏,𝑦𝑦 + 𝑤𝑠,𝑦𝑦) 
(37) 

Substituting Eq. (31) into Eq. (35) and integrating 
through the thickness of the plate, the stress result-
ants are given as: 

{
𝑁

𝑀𝑏

𝑀𝑠

} = [
𝐴 𝐵 𝐵𝑠

𝐵 𝐷 𝐷𝑠

𝐵𝑠 𝐷𝑠 𝐻𝑠
] {

𝜖

𝑘𝑏

𝑘𝑠
} ,    𝑆 = 𝐴𝑠𝛾 (38) 

where 
𝑁 = {𝑁𝑥 , 𝑁𝑦 , 𝑁𝑥𝑦}

𝑇,𝑀𝑏 = {𝑀𝑥
𝑏 , 𝑀𝑦

𝑏 , 𝑀𝑥𝑦
𝑏 }𝑇,  

𝑀𝑠 = {𝑀𝑥
𝑠  , 𝑀𝑦

𝑠 , 𝑀𝑥𝑦
𝑠 }

𝑇
 

(39) 
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𝜖 = {𝜖𝑥
0 , 𝜀𝑦

0 , 𝛾𝑥𝑦
0 }𝑇 , 𝑘𝑏 = {𝑘𝑥

𝑏  , 𝑘𝑦
𝑏, 𝑘𝑥𝑦

𝑏 }𝑇 ,

𝑘𝑠 = {𝑘𝑥
𝑠  , 𝑘𝑦

𝑠 , 𝑘𝑥𝑦
𝑠 }𝑇 

(40) 

S = {𝑆𝑥𝑧
𝑠  , 𝑆𝑦𝑧

𝑠 }T , γ = {𝛾𝑥𝑧 , 𝛾𝑦𝑧}
T (41) 

𝐴 = [

𝐴11 𝐴12 0
𝐴12 𝐴22 0
0 0 𝐴66

] ,

𝐵 = [

𝐵11 𝐵12 0
𝐵12 𝐵22 0
0 0 𝐵66

] , 𝐷 = [

𝐷11 𝐷12 0
𝐷12 𝐷22 0
0 0 𝐷66

] 

𝐵𝑆 = [

𝐵11
𝑠 𝐵12

𝑠 0

𝐵12
𝑠 𝐵22

𝑠 0

0 0 𝐵66
𝑠
] , 𝐷𝑆 = [

𝐷11
𝑠 𝐷12

𝑠 0

𝐷12
𝑠 𝐷22

𝑠 0

0 0 𝐷66
𝑠
], 

𝐻𝑆 = [

𝐻11
𝑠 𝐻12

𝑠 0

𝐻12
𝑠 𝐻22

𝑠 0

0 0 𝐻66
𝑠
], 𝐴𝑠 = [

𝐴44
𝑠 0

0 𝐴55
𝑠 ] 

(42) 

and stiffness components are given as: 

{𝐴𝑖𝑗  , 𝐵𝑖𝑗  , 𝐷𝑖𝑗  , 𝐵𝑖𝑗
𝑠  , 𝐷𝑖𝑗

𝑠  , 𝐻𝑖𝑗
𝑠 } =

 ∫ {1, 𝑧, 𝑧2, 𝑓(𝑧), 𝑧𝑓(𝑧), (𝑓(𝑧))2}𝑄𝑖𝑗𝑑𝑧
ℎ

2

−
ℎ

2

  

(i,j=1,2,6) 

𝐴44
𝑠 = 𝐴55

𝑠 = ∫
𝐸(𝑧)

2(1 + 𝜐)

ℎ

2

−
ℎ

2

[𝑔(𝑧)]2𝑑𝑧 

(43) 

 
3.4 Navier’s solution for simply supported rectan-
gular plates 

Rectangular plates are generally classified in ac-
cordance with the type of support used. The analyti-
cal solutions of Eq. (36) for simply supported FG-
CNTRC plates are used here. The following bounda-
ry conditions are imposed at the side edges [37]: 

𝑣0(0, 𝑦) = 𝑤𝑏(0, 𝑦) = 𝑤𝑠(0, 𝑦) =
𝜕𝑤𝑏
𝜕𝑦

(0, 𝑦)

=
𝜕𝑤𝑠
𝜕𝑦

(0, 𝑦) = 0 

𝑣0(𝑎, 𝑦) = 𝑤𝑏(𝑎, 𝑦) = 𝑤𝑠(𝑎, 𝑦) =
𝜕𝑤𝑏
𝜕𝑦

(𝑎, 𝑦)

=
𝜕𝑤𝑠
𝜕𝑦

(𝑎, 𝑦) = 0 

𝑢0(𝑥, 0) = 𝑤𝑏(𝑥, 0) = 𝑤𝑠(𝑥, 0) =
𝜕𝑤𝑏
𝜕𝑥

(𝑥, 0)

=
𝜕𝑤𝑠
𝜕𝑥

(𝑥, 0) = 0 

𝑢0(𝑥, 𝑏) = 𝑤𝑏(𝑥, 𝑏) = 𝑤𝑠(𝑥, 𝑏) =
𝜕𝑤𝑏
𝜕𝑥

(𝑥, 𝑏)

=
𝜕𝑤𝑠
𝜕𝑥

(𝑥, 𝑏) = 0 

𝑁𝑥(0, 𝑦) = 𝑀𝑥
𝑏(0, 𝑦) = 𝑀𝑥

𝑠(0, 𝑦) = 𝑁𝑥(𝑎, 𝑦)
= 𝑀𝑥

𝑏(𝑎, 𝑦) = 𝑀𝑥
𝑠(𝑎, 𝑦) = 0 

𝑁𝑥(𝑥, 0) = 𝑀𝑥
𝑏(𝑥, 0) = 𝑀𝑥

𝑠(𝑥, 0) = 𝑁𝑥(𝑥, 𝑏)
= 𝑀𝑥

𝑏(𝑥, 𝑏) = 𝑀𝑥
𝑠(𝑥, 𝑏) = 0 

(44) 

The displacement functions that satisfy the equa-
tions of boundary conditions (Eq. (44)) are selected 
as the following Fourier series: 

{

𝑢0
𝑣0
𝑤𝑏
𝑤𝑠

} =∑∑

{
 

 
𝑢𝑚𝑛 cos(𝜆𝑥) sin(𝜇𝑦) 𝑒

𝑖𝜔𝑡

𝑣𝑚𝑛 sin(𝜆𝑥) cos(𝜇𝑦) 𝑒
𝑖𝜔𝑡

𝑤𝑏𝑚𝑛 sin(𝜆𝑥) sin(𝜇𝑦) 𝑒
𝑖𝜔𝑡

𝑤𝑠𝑚𝑛 sin(𝜆𝑥) sin(𝜇𝑦) 𝑒
𝑖𝜔𝑡}
 

 ∞

𝑛=1

∞

𝑚=1

 (45) 

where 𝑢𝑚𝑛, 𝑣𝑚𝑛 , 𝑤𝑏𝑚𝑛 and 𝑤𝑠𝑚𝑛  are the arbitrary 
parameters to be determined, 𝜔 is the eigen fre-
quency associated with (m,n)th eigen mode, 𝜆 =
 𝑚𝜋 𝑎⁄  and 𝜇 =  𝑛𝜋 𝑏⁄ . Substituting Eq. (45) into 
equations of motion (Eq. (36)) we get the below 
eigenvalue equations for any fixed value of m and n:  

([𝑘] − 𝜔2[𝑀]){∆} = 0 (46) 

and the elements of the coefficient matrix k and M 
are given in Appendix A. To avoid trivial solution of 
equation (46), the following equations should be 
solved: 

|[𝑘] − 𝜔2[𝑀]| = 0 (47) 

or, with pre-multiplying Eq. (36) by [𝑀]−1, becomes: 

|[𝑀]−1[𝑘] − 𝜔2[𝐼]| = 0 (48) 

the natural frequencies (𝜔) can be derived by solv-
ing this equation. 

For stability problems, the natural frequency 
vanishes and the obtained equations allow deriva-
tion of results that concern the buckling of a plate 
subjected to a system of uniform in-plane compres-
sive loads 𝑁𝑥

0 and 𝑁𝑦
0. Assuming that there is a given 

ratio between these forces such that 𝑁𝑥
0 = −𝑁0 and 

𝑁𝑦
0 = −𝛾𝑁0;𝛾 = 𝑁𝑦

0 𝑁𝑥
0⁄ , we get: 

([𝑘] − 𝑁0[𝑁]){∆} = 0 (49) 
where  

{∆} = {

𝑢𝑚𝑛
𝑣𝑚𝑛
𝑤𝑏𝑚𝑛
𝑤𝑠𝑚𝑛

}, 𝑁 = [

𝑎11     𝑎12     𝑎13     𝑎14 
𝑎12     𝑎22     𝑎23     𝑎24 
𝑎13     𝑎23     𝑎33     𝑎34 
𝑎14     𝑎24     𝑎34     𝑎24 

],  

𝑀 = [

𝑚11 0
0 𝑚22 

𝑚13 𝑚14 

𝑚23 𝑚24 

𝑚13 𝑚23 

𝑚14 𝑚24 

𝑚33 𝑚34 

𝑚34 𝑚44 

] 

(50) 

𝑁0 = [

0    0    0    0
0    0    0    0
0    0    𝑘    𝑘
0    0    𝑘    𝑘

], 𝑘 = −𝑁0(𝜆
2 + 𝛾𝜇2) (51) 

 
4. Results and Discussions 
 

In this section, first the accuracies of applied 
methods are examined in the calculations of the 
nanocomposite modulus, free vibration, and buck-
ling, by comparing obtained results with reported 
corresponding results in the literatures. Second, the 
effects of plate dimensions, CNT volume fraction, 
orientation, aggregation, and their variation pat-
terns are investigated regarding the frequency and 
critical buckling load parameter of FG-CNTRC plates. 
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4.1 Validation of models 
First, the Mori-Tanaka approach that is applied for 
calculation of the nanocomposite modulus is exam-
ined. As defined before, the parameters μ and η are 
indicators of the volume fractions of clusters, and 
CNTs in the clusters, respectively. Fig. 5 shows 
Young’s modulus of a CNT-reinforced composite for 
various value of µ when η=1 that is compared with 
the experimental data (by Odegard et al. [48]). This 
figure shows that at full dispersion of the randomly 
oriented CNTs, μ=1, Young’s modulus has the big-
gest values. Young’s modulus was decreased by in-
creasing the CNTs aggregation (decreasing of the μ) 
or decreasing the CNTs volume fraction. Also, it can 
be seen that the aggregation state of η=1 and μ=0.4 
has nearly the same Young’s modulus as the exper-
imental data. These results are in agreement with an 
argument proposed by Barai and Weng [49]. 

In the following simulations, CNTRC plates are 
considered made of Poly (methyl- methacrylate, 
referred as PMMA) as matrix, with CNT as fibers. 

PMMA is an isotropic material with GPaEm 5.2 , 

3/1150 mKgm   and 34.0m . The (10, 10) 

SWCNTs are selected as reinforcements. The adopt-
ed material properties for SWCNT are: 

6466.51 CNE , 0800.72 CNE , TPaGCN 9445.112  , 

3/1400 mKgCN   and 175.0CN  [23].  

In this state the effects of distributions and ori-
entations of the CNTs on the Young’s modulus of a 
CNTRC are examined. Fig. 6 shows Young’s modulus 
of alignment, randomly oriented and locally aggre-
gated CNTRCs for various values of volume fraction 
of the CNTs. This figure shows that alignment orien-
tation of CNTs estimatesvery high values for effec-
tive Young’s modulus despite Fig. 5 showing the 
experimental data has the same values with μ=0.4 
and η=1. Also it can be seen that randomly oriented 
or fully dispersed, μ=η=1, nanotubes have more 
stiffness than other aggregated states, μ=0.4, 0.7, 
0.9. After verification of the Mori-Tanaka approach, 
free vibration analysis is performed. First normal-
ized frequency parameters (𝛺11) of isotropic FGM 
plates are presented for various values of volume 
fraction exponent, p, and ratio of length to thickness, 
a/h, in Table 1. The normalized natural frequency is 
then defined as: 

Ω𝑚𝑛 = ω𝑚𝑛𝑎
2√𝜌𝑚ℎ 𝐷𝑚⁄  (51) 

where 

𝐷𝑚 =
𝐸𝑚ℎ

3

12(1 − 𝜐2)
 (52) 

the subscript m is used for metal in the applied FGM 
plate. The comparisons show that the results agree 
very well with other available solutions.  

 
Figure 5. Comparison of the Young's modulus of CNT-reinforced 
composite at different degree of aggregation with the experi-
mental data from Odegard et al. [48]. 
 

 
Figure 6. Comparison of the Young's modulus of CNTRC at differ-
ent degree of aggregation with the randomly oriented and 
aligned CNTs. 

 
Table 1. Comparison of the first frequency parameters of square 
isotropic FGM plates. 
a/h Theory p=0 p=1 p=4 p=10 

2 
[50] 0.9400 0.7477 0.5997 0.5460 
[41] 0.9300 0.7725 0.6244 0.5573 

Present 0.9304 0.7360 0.5928 0.5417 

5 
[50] 0.2121 0.1640 0.1383 0.1306 
[41] 0.2113 0.1740 0.1520 0.1369 

Present 0.2113 0.1631 0.1378 0.1301 

10 
[50] 0.05777 0.04427 0.03811 0.03642 
[41] 0.05770 0.04718 0.04210 0.03832 

Present 0.05769 0.04419 0.03807 0.03637 

 
Finally, a comparison is carried out for buckling 

analysis of a simply supported FGM plate with 
a/b=1, a/h=10 and the ratio of transverse load to 
axial load of, 𝛾 = 𝑁𝑦 𝑁𝑥 =⁄ 0 (uniaxial compressive 

pressure). Critical buckling load parameter is de-
fined as 𝑁 = 𝑁𝑐𝑟𝑎

2 𝐸𝑚ℎ
3⁄  and listed in Table 2 for 

the first mode of FGM plates. These values are com-
pared with results of Bodaghi and Saidi [51] and 
Thai and Choi [52]. The results agree well with pre-
vious results for various values of p. 
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Table 2. Comparison of the critical buckling load parameters of 
square isotropic FGM plates with a/h=10. 

Theory p=0 p=1 p=2 
[51] 1437.361 702.304 534.441 
[52] 1437.389 702.251 534.835 

present 1437.390 702.251 534.837 

 
4.2 Free vibration analysis of CNTRC plates 

First, simply supported FG-CNTRC square plates 
are considered. In these plates the volume fraction 
of randomly oriented CNT, fr, varies from zero to 0.4 
according to Eq. (21) along the thickness of the 
plate. Fig. 7 shows the first natural frequency pa-
rameters, 𝛺11, that are calculated by the following 
equation based on the mechanical properties of CNT 
for various values of p and b/h.  

Ω = 𝜔
𝑏2

ℎ
√𝜌𝐶𝑁𝑇 𝐸2

𝐶𝑁𝑇⁄  (53) 

This figure shows that by increasing the ratio of 
width to thickness plates, b/h, or decreasing the 
volume fraction exponent, p, gives an increase 𝛺11. 
Also, Table 3 lists various modes of frequency pa-
rameters, 𝛺11, 𝛺12, 𝛺22, 𝛺13, for the same plate with 
a/h=10. This table shows that UD-CNTRC plates 
have more values of frequency parameters than FG 
plates and shows that 𝛺11 and 𝛺13 have the lowest 

and the highest values of frequency parameters, 
respectively.  

Consider simply supported FG-CNTRC square 
plates with randomly or aggregated CNT, a/h=10 
and fr =0→0.4. Table 4 shows the first natural fre-
quency parameters of these plates. This table shows 
that randomly oriented and state of μ=η=1, have the 
highest frequency values and closest values with 
their material properties. Also, it can be concluded 
that the parameter of η has more effect than μ on 
the frequency, and states that are near to fully-
dispersed have more frequency values. Fig. 8 illus-
trates variation of 𝛺11 versus μ for various values of 
η in UD-CNTRC square plate with a/h=10 and fr 
=0.4. Frequency parameters increase as μ increases 
or especially as η decreases. This behavior was seen 
for mechanical properties of the nanocomposites as 
well [29]. Fig. 9 shows the first natural frequency of 
the same plates with η=1 and various values of μ 
and a/h. This figure shows that frequency parame-
ters are increased by increasing μ or decreasing the 
ratio of length to thickness, a/h. As another exam-
ple, consider FG-CNTRC square plates with a/h=10, 
fr =0→0.4 and CNT aggregation state of μ=0.5 and 
η=1.  

 

 
Figure 7. First frequency parameters versus b/h for FG-CNTRC 
square plates with fully dispersed CNT and fr =0-0.4. 
 

 
Figure 8. First frequency parameters versus μ for FG-CNTRC 
square plates with aggregated CNT, a/h=10 and fr =0.4. 

Table 3. frequency parameters of FG-CNTRC square plates with fully dispersed CNT, a/h=10 and fr =0-0.4. 
(m,n) p=0.01 p=0.1 p=0.4 p=1 p=2.5 p=10 p=100 fr=0.2 
(1,1) 1.6843 1.5623 1.2708 0.9246 0.5399 0.2425 0.1964 1.1062 
(1,2) 4.0294 3.7427 3.0527 2.2263 1.3013 0.5759 0.4471 2.6450 
(2,2) 6.1980 5.7633 4.7113 3.4431 2.0145 0.8815 0.6628 4.0666 
(1,3) 7.5622 7.0364 5.7597 4.2146 2.4674 1.0730 0.7929 4.9605 

 
Table 4. frequency parameters of FG-CNTRC square plates with a/h=10 and fr =0-0.4. 

(1,1) p=0.01 p=0.1 p=1 p=10 fr=0.2 
Randomly 1.6843 1.5623 0.9246 0.2425 1.1062 
𝜇 = 1, 𝜂 = 1 1.6834 1.5616 0.9244 0.2425 1.1059 
𝜇 = 0.5, 𝜂 = 1 0.2002 0.2008 0.1986 0.1520 0.2039 
𝜇 = 0.7, 𝜂 = 1 0.2731 0.2735 0.2615 0.1685 0.2759 
𝜇 = 0.5, 𝜂 = 0.7 1.5848 1.4714 0.8755 0.2389 1.0463 
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Table 5. frequency parameters of FG-CNTRC square plates with a/h =10, μ=0.5, η=1 and fr =0-0.4. 
(m,n) p=0.01 p=0.1 p=0.4 p=1 p=2.5 p=10 p=100 fr=0.2 
(1,1) 0.2002 0.2008 0.2016 0.1986 0.1774 0.1520 0.1327 0.2039 
(1,2) 0.4778 0.4790 0.4811 0.4743 0.4225 0.3612 03143 0.4863 
(2,2) 0.7332 0.7352 0.7385 0.7285 0.6559 0.5528 0.4796 0.7463 
(1,3) 0.8935 0.8959 0.9000 0.8882 0.8013 0.6725 0.5826 0.9094 

 

Table 5 shows various modes of frequency pa-
rameters, 𝛺11,  𝛺12,  𝛺22, 𝛺13, for various values of p. 
By comparing results of Table 5 and those of Table 
3, it can be concluded that aggregation of CNTs 
sharply decreases frequency parameters in all 
modes.  

In all of the above FG-CNTRC plates, volume frac-
tion of CNT was changed but FG-CNTRC plates can 
also be made by changing of the volume fraction of 
clusters. Consider CNTRC square plates with 
a/h=10, fr =0.2 and η=1. Volume fraction of clusters 
of CNTs, μ, varies from zero to 0.4 according to Eq. 

(21) along the thickness of plate. Table 6 shows var-
ious modes of frequency parameters, 𝛺11,  𝛺12,  𝛺22,
𝛺13, for various values of volume fraction exponent 
of clusters, p. This table shows that increasing p de-
creases frequency parameters in all modes. Fig. 10 
illustrates 𝛺11 versus η for distributions of clusters 
in the CNTRC square plates with a/h=10 and fr =0.4. 
Fig. 10 shows these UD and FG plates have similar 
values of 𝛺11 for big values of η. Finally, consider a 
UD-CNTRC square plate with a/h=10, fr =0.2, η=1 
and μ=0.5. Fig. 11 shows mode shapes of the plate at 
mode numbers of (1,1), (2,1), (1,2) and (3,1).  

 

 
Figure 9. First frequency parameters versus a/h for UD-CNTRC 
square plates with aggregated CNT and fr =0.4. 
 

 

 
Figure 10. First frequency parameters versus η for UD-CNTRC 
square plates with aggregated CNT, a/h =10 and fr =0.4.  

Table 6. frequency parameters of UD-CNTRC square plates with aggregated CNT, a/h=10, fr =0.2, η=1 and μ=0-0.4. 
(m,n) p=0.01 p=0.1 p=0.4 p=1 p=2.5 p=10 p=100 fr=0.2 
(1,1) 0.1791 0.1714 0.1569 0.1455 0.1376 0.1290 0.1203 0.1453 
(1,2) 0.4271 0.4091 0.3746 0.3468 0.3268 0.3058 0.2863 0.3462 
(2,2) 0.6554 0.6281 0.5753 0.5318 0.4995 0.4668 0.4385 0.5309 
(1,3) 0.7986 0.7655 0.7013 0.6478 0.6073 0.5672 0.5336 0.6466 

 
4.3 Buckling analysis of CNTRC plates 
In this section, buckling of FG-CNTRC plates is inves-
tigated. First, consider fully dispersed CNT rein-
forced nanocomposite plates under uniaxial com-
pressive pressure ( 𝛾 = 0) with CNT volume fraction 
of, fr =0→0.4. The critical buckling load parameters 
of these plates are listed in Table 7 for various val-
ues of plate dimensions (a/b and a/h) and volume 
fraction exponent (p). The results show that critical 
buckling load parameter is increased by increasing 

the ratios of a/b and a/h or decreasing p. When in-
creasing the aspect ratio of the plates (a/b), they 
show the behavior of simply supported beams. 
Thus, the critical buckling load is increased by in-
creasing the ratio of a/b. Also, by considering the 
definition of critical buckling load parameter, de-
creasing the plate thickness h, increases critical 
buckling load parameter. It was observed that in 
some cases, critical buckling happened at modes of 
(2, 1), (3, 1) or (4, 1).  
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(a) (1,1) 

 
(b) (2,1) 

 
(c) (1,2) 

 
(d) (3,1) 

Figure 11. The mode shapes of UD-CNTRC square plates with μ=0.5, η=1, a/h=10 and fr =0.2. 
 
Second, buckling of FG-CNTRC square plates under 
uniaxial compressive pressure ( 𝛾 = 0) with a/h=10, 
fr =0→0.4 is investigated. Table 8 shows the critical 
buckling load parameters of the plates for various 
states of CNT distributions and various values of p. 
States of μ=η=1 and fully dispersion have the biggest 
and closest buckling parameters, especially at p=10. 
Also, the results reveal that the critical buckling load 
of the plates has a higher value when distribution of 
the CNT in polymer is better, as the stiffness of 
CNTRC plates is larger when CNT distribution is 
better. 
Third, consider FG-CNTRC plates as previously, but 
instead under biaxial compressive pressure ( 𝛾 = 1). 
Critical buckling load parameters of this third model 

of plates are shown in Table 9. Comparing the re-
sults of Tables of 8 and 9, shows that critical buck-
ling load parameters of the plates under biaxial 
compressive load are almost half of the correspond-
ing values of the plates under uniaxial compres-
sive load.  
Finally, consider UD-CNTRC plates with fr =0.2 and 
aggregation state of μ=0.5 and η=1. Table 10 shows 
critical buckling load parameters of these plates 
with various plate dimensions (a/b and a/h) and 
loading parameter (𝛾). It can be seen that the critical 
buckling load parameter is increased by increasing 
ratios of a/b and a/h, whereas it is decreased by 
increasing the loading parameter. 
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Table 7. Critical buckling load parameters of FG-CNTRC plates with fully dispersed CNT, γ = 0, and fr =0-0.4. 

a/b a/h 
p 

0.01 0. 1 0.4 1 2.5 10 100 fr=0.2 

1 

2 294.8462a 260.8422a 186.7806a 113.2799a 48.7021a 7.8708a 1.8977a 120.7497a 

5 642.5812 552.7512 366.0923 195.3273 67.9488 13.2080 6.8846 265.7493 
10 736.8569 630.0932 411.1198 214.7617 72.5821 14.5825 9.3568 305.4156 
30 770.4270 657.4098 426.7051 221.3030 74.0840 15.0505 10.4791 319.5893 

100 774.4428 660.6697 428.5542 222.0729 74.2590 15.1057 10.6243 321.2803 

1.5 

2 354.5132b 314.8943b 229.1755b 144.0864b 66.6355b 10.8079b 2.2533b 145.0786b 

5 1153.5330a 1002.9824a 683.1757a 380.1545a 140.7012a 25.5806a 9.6911a 475.1888a 

10 1629.5324a 1399.5335a 923.2362a 489.7820a 169.0318a 33.1534a 18.2061a 674.3114a 

30 1858.4267a 1586.7252a 1031.3711a 535.9525a 179.8799a 36.4333a 24.7930a 770.7330a 

100 1888.6603a 1611.2839a 1045.3228a 541.7741a 181.2064a 36.8507a 25.8629a 783.5016a 

2 

2 396.9993c 352.7124c 258.4639c 166.0574c 80.3948c 13.7075c 2.6459c 162.5994c 
5 1567.6549b 1374.9253b 959.1718b 554.8582b 218.7951b 37.4486b 11.3034b 643.8058b 

10 2570.3249a 2211.0049a 1464.3691a 781.3092a 271.7952a 52.8321a 27.5384a 1062.9971a 
30 3029.9260a 2587.5585a 1682.8889a 875.2117a 294.0531a 59.4851a 40.1106a 1256.4700a 

100 4817.9138c 4111.0404c 2668.1722c 1383.6709 463.1451c 94.1032c 65.5928c 1998.5589c 
aMode for plate is (m,n)=(2,1)  bMode for plate is (m,n)=(3,1)  cMode for plate is (m,n)=(4,1) 
 
Table 8. Critical buckling load parameters of FG-CNTRC square plates with a/h=10, γ = 0, and fr =0-0.4. 

 p=0.01 p=0.1 p=1 p=10 fr=0.2 
Randomly 736.8569 630.0932 214.7617 14.5825 305.4156 
𝜇 = 1, 𝜂 = 1 666.4453 577.1593 204.3684 14.3893 292.8660 
𝜇 = 0.5, 𝜂 = 1 10.4138 10.4014 9.8397 5.5833 10.3722 
𝜇 = 0.7, 𝜂 = 1 19.3693 19.3032 17.0656 6.8847 19.0047 
𝜇 = 0.5, 𝜂 = 0.7 652.4199 558.9323 192.5201 14.1503 273.2313 

 
Table 9. Critical buckling load parameters of FG-CNTRC square plates with a/h=10, γ = 1, and fr =0-0.4. 

 p=0.01 p=0.1 p=1 p=10 fr=0.2 
Randomly 368.4285 315.0466 107.3809 7.2912 152.7078 
𝜇 = 1, 𝜂 = 1 333.2226 288.5797 102.1842 7.1946 146.4330 
𝜇 = 0.5, 𝜂 = 1 5.2069 5.2007 4.9199 2.7916 5.1861 
𝜇 = 0.7, 𝜂 = 1 9.6846 9.6516 8.5328 3.4423 9.5023 
𝜇 = 0.5, 𝜂 = 0.7 326.2099 279.4662 96.2600 7.0751 136.6156 

 
Table 10. Critical buckling load parameters of UD-CNTRC plates with μ=0.5, η=0.7, and fr =0.2. 

a/b a/h 
𝛾 = 𝑁𝑦 𝑁𝑥⁄  

0 0.1 0.2 0.5 1 2 5 10 

1 

2 108.2666a 105.6259a 103.1110a 83.7473 62.8105 41.8736 20.9368 11.4201 
5 237.8406 216.2187 198.2005 158.5604 118.9203 79.2802 39.6401 21.6219 

10 273.2313 248.3921 227.6927 182.1542 136.6156 91.0771 45.5386 24.8392 
30 285.8653 259.8776 238.2211 190.5769 142.9327 95.2884 47.6442 25.9878 

100 287.3778 261.2525 239.4815 191.5852 143.6889 95.7926 47.8963 26.1530 

1.5 

2 130.1103b 126.9369b 123.9146b 111.8032a 91.6786a 67.4107a 37.5732a 21.6223a 

5 425.5896a 402.9251a 382.5524a 266.8472 174.4771 103.1001 46.2898 24.1298 
10 603.4322a 571.2459 482.6043 329.3064 215.3157 127.2320 57.1246 29.7777 
30 689.4420a 613.9956 518.7204 353.9504 231.4291 136.7536 61.3996 32.0062 

100 700.8266a 619.2725 523.1785 356.9924 233.4181 137.9289 61.9273 32.2812 

2 

2 145.8203c 142.2637c 138.8765c 126.5728b 86.6133 48.1185 20.6222 10.5626 
5 576.9331b 552.3828b 523.8876a 394.0031 236.4019 131.3344 56.2862 28.8295 

10 951.3625a 864.8751a 792.8021a 529.7794 317.8677 176.5932 75.6828 38.7644 
30 1123.9652a 1021.7872a 936.6377a 590.4315 354.2589 196.8105 84.3474 43.2023 

100 1147.7093a 1043.3721a 956.4245a 598.2341 358.9405 199.4114 85.4620 43.7732 
aMode for plate is (m,n)=(2,1)  bMode for plate is (m,n)=(3,1)  cMode for plate is (m,n)=(4,1) 
 

5. Conclusions 
 
In this paper the effects of various parameters on 
the natural frequency and critical buckling load of 
simply supported FG-CNTRC plates are investigated. 
The randomly oriented nanotubes were assumed to 
have aggregated into some clusters and the Mori–
Tanaka approach was used to estimate the mechan-
ical properties of nanocomposites. The motion 

equation was derived from Hamilton’s energy prin-
ciple and Navier’s method solved this equation. The 
following results are obtained from these analyses:  
 Fully dispersed and state of μ=η=1 for CNT dis-

tribution have the biggest and closest frequency 
values and critical buckling load as their material 
properties.  

 The parameter of η has more effect than μ on the 
frequency and critical buckling load of the plates. 



 

R. Moradi-Dastjerdi & H. Malek-Mohammadi / Mechanics of Advanced Composite Structures 4 (2017) 59-73 71 

 

 

 The frequency parameter and critical buckling 
load increase as μ increases or especially as η de-
creases. 

 Aggregation of CNTs sharply decreases frequen-
cy parameters and critical buckling loads in all 
modes. 

 With equal CNT volume fraction, UD-CNTRC 
plates have more values of frequency parameters 
and critical buckling than FG plates with linear 
distribution. 

 The frequency parameter and critical buckling 
load parameter are increased by increasing the 
ratio of a/h or decreasing the volume fraction 
exponent of CNT and cluster. 

 The critical buckling load parameters of the 
plates under biaxial compressive load are nearly 
half of the corresponding values of the plates 
under uniaxial compressive load.  

 The critical buckling load is increased by increas-
ing ratios a/b and a/h, whereas it is decreased 
by increasing the loading parameter. 

 
Appendix 
𝑎11 = (𝐴11𝜆

2 + 𝐴66𝜇
2),  

𝑎12 = (𝐴12 + 𝐴66)𝜇𝜆,  

𝑎13 = −(𝐵11𝜆
2 + 𝜇2(𝐵12 + 2𝐵66))𝜆,  

𝑎14 = −(𝐵11
𝑠 𝜆2 + 𝜇2(𝐵12

𝑠 + 2𝐵66
𝑠 ))𝜆,  

𝑎22 = (𝐴22𝜇
2 + 𝐴66𝜆

2),  
𝑎23 = −(𝜆

2(𝐵12 + 2𝐵66) + 𝐵22𝜇
2)𝜇 

𝑎24 = −(𝜆
2(𝐵12

𝑠 + 2𝐵66
𝑠 ) + 𝐵22

𝑠 𝜇2)𝜇,  
𝑎33 = (𝐷11𝜆

4 + 2𝐷12𝜆
2𝜇2 + 𝐷22𝜇

4 + 4𝐷66𝜆
2𝜇2 +

𝑘0 + 𝑘1(𝜆
2 + 𝜇2)), 

𝑎34 = (𝐷11
𝑠 𝜆4 + 2𝐷12

𝑠 𝜆2𝜇2 + 𝐷22
𝑠 𝜇4 + 4𝐷66

𝑠 𝜆2𝜇2 +
𝑘0 + 𝑘1(𝜆

2 + 𝜇2)), 
𝑎44 = (𝐻11

𝑠 𝜆4 + 2𝐻12
𝑠 𝜆2𝜇2 +𝐻22

𝑠 𝜇4 + 4𝐻66
𝑠 𝜆2𝜇2 +

𝑘0 + 𝑘1(𝜆
2 + 𝜇2) + 𝜇2𝐴44

𝑠 + 𝜆2𝐴55
𝑠 ), 

𝑚11 = 𝑚22 = 𝑚44 = −𝐼1, 𝑚13 = 𝐼2𝜆, 𝑚14 = 𝐼4𝜆, 
𝑚23 = 𝐼2𝜇, 𝑚24 = 𝐼4𝜇, 𝑚33 =  −(𝐼3(𝜆

2 + 𝜇2) + 𝐼1),  
𝑚34 = −(𝐼5(𝜆

2 + 𝜇2) + 𝐼1)    
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