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K E Y W O R D S A B S T R A C T

Free vibration 

Carbon nanotube-reinforced 

composite 

Mesh-free method 

In this work, the three-dimensional mesh-free (3D-Mfree) method is used for free vibration 

analysis of functionally graded (FG) cylindrical panels reinforced by carbon nanotubes. The 

material properties of panels are considered to be changed linearly in the thickness direction, 

and the effective material properties of the panels are estimated by the rule of mixture. Five 

models of carbon nanotubes distribution, including a uniform distributed model and four FG 

distributed models, are considered. The weak form governing equations of motion are derived 

using Hamilton’s principle, and the moving least squares (MLS) approximation is used to 

construct the 3D-Mfree shape functions in cylindrical coordinates. Various boundary conditions 

are considered, and effects of boundary conditions, carbon nanotube distribution, the volume 

fraction of carbon nanotubes, and the panel geometry on the natural frequencies are studied. The 

results are compared with other results available in the literature, and a close agreement is 

observed.

1. Introduction

Carbon nanotubes (CNTs) have been widely
accepted because of their many mechanical, 
electrical, and thermal properties and now 
attracted more attention in engineering 
applications. Usually, stiff fillers reinforce 
ordinary composites with macro-scale 
dimensions embedded in a variety of matrixes to 
improve the mechanical property of the 
composite system.  The discovery of CNTs 
changed the traditional macro-scale filler 
reinforcements by newly discovered nanoscale 
reinforcements [1]. 

Recently, CNTs were considered for use as 
reinforcements in modern composite structures 
because of their high elastic properties and 
strength compared to conventional fibers. For 
example, Young’s modulus of a CNT is higher than 
1 TPa, and its tensile strength is about 150 GPa; it 
means that they are a hundred times stronger 
than steel, whereas they are three to five times 
lighter than it. Some advantages make carbon 
nanotube-reinforced composite used in many 

structures designed to undergo high mechanical 
and thermal loads with low weight [2]. 

Many researchers studied the vibration of 
conventional composites, but a few studies have 
utilized the vibration of carbon nanotube 
reinforced composites (CNTRCs); on the other 
hand, most of the research deals with the 
mechanical and thermal properties of 
CNTRCs .Some research about the vibration of 
CNTRCs is as follows: 

The nonlinear bending analysis of plates 
made of carbon nanotube-reinforced composite 
was studied by Shen [3]. In this work, the 
mechanical properties of carbon nanotubes were 
considered dependent on temperature, and the 
molecular dynamics simulation was used to 
compute the mechanical properties. Ke et al. [4] 
performed nonlinear free vibration analysis of 
functionally graded carbon nanotube-reinforced 
composite beams. Their work is based on the 
Timoshenko beam theory, and the von Kármán 
geometric nonlinearity is considered. They 
assume that the mechanical property of carbon 
nanotube-reinforced composite beams are varied 
in thickness direction based on the rule of the 
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mixture, and finally, the Ritz method is used to 
extract the governing equations. Vibration 
behavior analysis of functionally graded carbon 
nanotube-reinforced cylindrical panels was 
studied by Sobhani Aragh et al. [5]. The effective 
mechanical properties of the composite are 
derived with Eshelby–Mori–Tanaka's approach 
and the two-dimensional generalized differential 
quadrature method (GDQM) was used to solve 
the governing equations and apply the 
corresponding boundary conditions. Wang and 
Shen [6] studied the nonlinear bending and 
vibration analysis of a sandwich plate; the 
sandwich plate was made of carbon nanotube-
reinforced composite face sheets, and their 
mechanical properties change along the 
thickness direction. Dynamic investigation of 
nanocomposite cylinders reinforced by single-
walled carbon nanotubes through the Mfree 
method conducted by Moradi-Dastjerdi et al.[7]. 
They used moving least squares (MLSs) shape 
functions to approximate the displacement field 
in an axisymmetric model. Lin and Xiang [8] 
studied free vibration analysis of carbon 
nanotube-reinforced composite beams based on 
the first and third-order beam theories. They 
used both uniform and functionally graded 
distribution of carbon nanotube reinforcement. 
The Ritz method was employed to extract the 
natural frequencies, and they concluded that 
FGX-CNT beams in all conditions exhibit the 
highest natural frequencies, and the beams with 
the FG_CNT model of reinforcements give the 
lowest natural frequencies. Free vibration 
analysis of carbon nanotube-reinforced polymer 
composite structures with various geometries is 
carried out by Mehar et al. [9]. They used a 
generic higher-order shear deformation theory, 
and Hamilton’s principle derives the equations of 
motion of the structures, and finally, the solution 
of equations was performed by the finite-element 
method. Karami et al. [10] presented an analytical 
study on functionally graded carbon nanotube-
reinforced composite plates. Their work is based 
on second-order shear deformation theory, and 
also they included the size effects with nonlocal 
elasticity theory in their analysis. Vibration 
analysis of FG-CNTRC in different geometries 
such as circular, annular, and sector plates is 
studied by Zhon et al. [11]. First-order shear 
deformation theory was used, and then the 
natural frequencies and corresponding mode 
shapes were extracted by the Ritz-variational 
method. The free vibration frequency of 
composite plates reinforced with single-walled 
carbon nanotubes by using a refined simplified 
two-variable nth-higher-order theory is 
performed by Bouazza and Zenkour [12]. They 
used an exact closed-form formulation based on 
this theory for solving the equations. 

Bending analysis of nano/microbeams under 
the concentrated and distributed loads is 
investigated by Demir and Civalek [13]. They 
used Euler Bernoulli beam theory via the 
enhanced Eringen differential model. Also, the 
singularity function method is used to calculate 
the deflection of the concentrated and distributed 
loaded beams. 

Dynamic instability of viscoelastic porous 
functionally graded nanobeam embedded on 
visco-Pasternak medium subjected to an axially 
oscillating loading and the magnetic field is 
performed by Jalaeiand Civalek [14]. They 
employed Eringen’s differential law in 
conjunction with Timoshenko beam theory and 
Hamilton’s principle to derive equations of 
motion.  Finally, Navier’s solution and Bolotin’s 
approach are utilized to obtain the dynamic 
instability region of viscoelastic porous FG 
nanobeam . 

Civalek et al. [15] studied free vibration 
analysis of carbon nanotube‐reinforced 
composite microbeams.  In their work, carbon 
nanotubes are distributed in a polymeric matrix 
with four different reinforcement patterns, and 
material properties of the CNTRC microbeams 
are predicted by using the rule of mixture. 
Hamilton's principle derives the microstructure‐
dependent governing differential equations 
based on the couple stress theory. Finally, the 
obtained vibration equation is solved by using 
Navier's solution method. 

Buckling and free vibration of rectangular 
polymeric laminate reinforced by graphene 
sheets are investigated by Karimi Zeverdejani 
and Tadi Beni [16]. In this paper, various patterns 
are considered for the augmentation of each 
laminate. Critical buckling load is evaluated for 
different parameters, including boundary 
conditions, reinforcement pattern, loading 
regime, and laminate geometric states.  

Buckling and post-buckling of graphene-
reinforced laminated composite plates subjected 
to uniaxial and biaxial loadings are investigated 
by Karimi Zeverdejani et al. [17]. This paper uses 
poly-methyl-methacrylate for the matrix, and 
three patterns are considered for the plate cross-
section. Graphene sheets are considered in both 
perfect and defective forms. The free vibration of 
polymer nanocomposite reinforced by graphene 
sheet is investigated by Karimi Zeverdejani and 
Tadi Beni [18]. In this work, the new size-
dependent formulation is presented for 
nanocomposites based on the couple stress 
theory. For this purpose, the first shear 
deformation theory is applied. The effect of the 
scale parameter is investigated based on 
anisotropic couple stress theory. It is observed 
that graphene defects cause to diminish the 
lamina frequency. 
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Three-dimensional (3D) vibration analysis of 
FG carbon nanotube reinforced cylindrical panel 
with the mesh-free method has not been studied 
to the best of the authors’ knowledge. Also, there 
are two main shortcomings and limitations in 
many works performed before: two-dimensional 
modeling using shell theories and limitations in 
modeling boundary conditions. So the major aim 
of the present work is a three-dimensional free 
vibration study of FG carbon nanotube reinforced 
cylindrical panels under various boundary 
conditions using the Mfree method. The volume 
fraction of carbon nanotubes, the geometry of the 
panel, and boundary conditions are the 
parameters that their effects on natural 
frequencies are studied in this paper. 
For validation of the 3D-Mfree approach, the results 

were compared with the available results in the 

literature for various material properties such as 

homogeneous, isotropic, and fiber-reinforced 

cylindrical panels. 

2. Statement of the Problem  

2.1. The material properties of CNTs 
A carbon nanotube reinforced cylindrical 

panel of radius Ra, with dimension L × S, different 

boundary conditions at the edges = 0, = and 
Also at the edges z= 0, z=L is shown in Fig. 1. The 
effective mechanical property of CNTRC 
cylindrical panels are obtained as [7,19] 
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where, 11

CNE , 22

CNE , 12

CNG , CN

ij  and CN  are 

elasticity modules, shear module, Poisson's ratio 

and mass density of CNTs, respectively and
mE , 

mG , 
m and m  are those of matrix respectively.

( 1,2,3)j j = are the CNTs efficiency that 

determined by matching the elastic modulus of 
CNTRCs obtained by the MD simulation results 
with the numerical results are obtained from the 
rule of mixture. 

 
Fig. 1. The design scheme of the CNTRC cylindrical panels 

CNV Furthermore, mV  are CNTs and matrix 

volume fractions and defined as: 

1m CNV V+ =  (2) 

Five profiles of linear variation of CNTs 
volume fraction in the thickness direction are 
considered (Fig. 2) and defined as: 
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( )
*

/

m

CN CN CN CN CN
V

w w



 
=

+ −
 (8) 

where, 
CNw is the mass fraction of CNTs.  

The Poisson’s ratio is considered to change 
according to reference [3], i.e. 

*

12 12

CN m

CN mV V  = +  (9) 

2.2. Governing equations 
Hamilton’s principle is used for extracting the 

weak forms of governing equations. In the 
absence of external works, Hamilton’s principle 
for free vibration analysis is indicated as below 
[20]: 

𝛿 ∫ (T‐Π)𝑑𝑡 = 0
𝑡2
𝑡1

 (10) 

where T is kinetic energy,  refers to elastic strain 

energy. More in detail, as follows: 

𝑇 =
1

2
∫ 𝜌
𝛺

�̇�𝑇�̇�𝑑𝑣 (11) 

𝛱 =
1

2
∫ 𝜀𝑇
𝛺

𝜎𝑑𝑣 (12) 

In the above relations,σ , ε , u , u , and  are 

stress vector, strain vector, displacement vector, 
velocity vector, and mass density, respectively.  
Also  is the whole volume of the continuum 
body. Using Eqs. (11) and (12), in Eq. (10), the 
equation of motion can be expressed as weak 
form by the following relation: 

∫ 𝛿𝜀𝑇
𝛬

𝜎𝑑𝑣 + ∫ 𝜌
𝛬

𝛿𝑢𝑇�̈�𝑑𝑣 = 0 (13) 

in which, ü is acceleration vector. 
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Fig. 2. Five profiles of linear variation of CNTs volume fraction 

in the thickness direction 

 

For a linear elastic body, the general Hook’s law 

is defined as follow: 

𝜎 = 𝐷𝜀 (14) 
where D for an orthotropic body [20] is as follows:  

𝐷 =

[
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Stress and strain vectors in cylindrical 
coordinates are as follows: 

𝜎 = [𝜎𝑧 𝜎𝜃 𝜎𝑟 𝜎𝑟𝜃 𝜎𝑟𝑧 𝜎𝜃𝑧]
𝑇 

𝜀 = [𝜀𝑧 𝜀𝜃 𝜀𝑟 𝜀𝑟𝜃 𝜀𝑟𝑧 𝜀𝜃𝑧]𝑇 
(17) 

3. Mesh-free Formulation 

The mesh-free Galerkin method based on 
moving least squares approximation (MLS) is 
used in this work. In this method, the field 
variable u(X) in the domain   at an arbitrary 
point ( , , )r zX in the cylindrical coordinate is 

approximated as follows [21, 22, 23]: 

𝑢(𝛸) = ∑ 𝑃𝑖(𝛸
𝑚
𝑖=1 )𝑎𝑖 = 𝑃𝑇(𝑋)𝑎(𝑋) (18) 

where P(X) , a(X)  and m are the base vector, the 

variable coefficients vector, and the number of 

components of the base vector, respectively. In 3D 

space in cylindrical coordinate, a complete base 

vector basis of order s is given by: 

𝑃(𝑋) = [1 𝑟 𝜃 𝑧𝑟𝜃 𝜃𝑧 𝑟𝑧 

𝑟2 𝜃2 𝑧2 … 𝑟𝑠 𝜃𝑠 𝑧𝑠]𝑇 
(19) 

Furthermore, a(X)  is a general function that, 

in MLS approximation, at an arbitrary point X , 

a(X)  is considered to minimize the weighted 

residual.  
The weighted residual is defined as: 

𝐽 = ∑ 𝑤(𝑋 − 𝑋𝑖
𝑛
𝑖=1 )[𝑃𝑇(𝑋)𝑎(𝑋) − �̂�𝑖]

2 (20) 

in which, n, ( )iw −X X  and ˆ
iu  are the number of 

nodes in the support domain of the point ( , , )r zX , 

the weight function, and virtual nodal value at the 

node iX , respectively. By minimization the 

weighted residual: 

0
J
=

a
 (21) 

a(X) is derived as follow: 

𝑎(𝑋) = [𝑀(𝑋)]−1𝑄(𝑋)�̂� (22) 

where M  is called the moment matrix given by: 

𝑀(𝑋) = ∑ 𝑤(𝑋 − 𝑋𝑖)𝑃(𝑋𝑖)𝑃
𝑇(𝑋𝑖)

𝑛
𝑖=1  (23) 

and 

𝑄(𝑋) = [𝑄1 𝑄2 … 𝑄𝑛] 
𝑄𝑖 = 𝑤(𝑋 − 𝑋𝑖)𝑃(𝑋𝑖) 

(24) 

û is virtual nodal value vector and defined as 

follow: 

1 2
ˆ ˆ ˆ ˆ[ ]Tnu u uu =  (25) 

By substituting Eq. (22) in Eq. (18), we have: 

1

ˆ( )
n

i i

i

u u
=

= X  (26) 

i is MLS shape function of node located at 

𝑋 = 𝑋𝑖 and expressed as follow: 

𝛷𝑖(𝑋) = 𝑃𝑇(𝑋)[𝑀(𝑋)]−1𝑄𝑖 (27) 

Now by using the MLS approximation, the 
displacement vector u  in cylindrical coordinates 
can be approximated as follows: 

𝑢 = [𝑢𝑟 𝑢𝜃 𝑢𝑧]𝑇 = 𝛷�̂� (28) 

where: 
1 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ ]n n n T

r z r zu u u u u u u =  (29) 

and 

1 2

1 2

1 2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

n

n

n

   
 

=   
 
    

Φ   

 (30) 

The strain–displacement relationship is 
expressed in the matrix form as: 
𝜀 = 𝐵�̂� (31) 

in which B , the strain matrix is given as: 
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1

1 1 2

1 2

1 1 1 2

1 1 2

1 1

0 0 0 0

1 1
0 0

0 0 0 0

1 1
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n n

z z
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r r

r r r r r r

z r z r

z r z r

 

 

 

  
  
 

    
  
 
  

  
=  

      − −
    
    
 

    
    
 

    

B  (32) 

In the absence of body forces and surface 
tractions, using Eqs. (13), (28), and (31) in Eq. 
(14) leads to: 

𝛿(�̂�)𝑇(∫ 𝐵𝑇𝐷𝐵𝑑𝑣
𝛬

)�̂� + 𝛿(�̂�)𝑇(∫ 𝜌𝛷𝑇𝛷𝑑𝑣
𝛬

)�̈̂� = 0  

 (33) 

Equation (33) should be satisfied for every 

arbitrary ˆ( ) u . Therefore, we have: 

(∫ 𝐵𝑇𝐷𝐵𝑑𝑣
𝛬

)�̂� + (∫ 𝜌𝛷𝑇𝛷𝑑𝑣
𝛬

)�̈̂� = 0 (34) 

or 

�̂��̈̂� + �̂��̂� = 0 (35) 

where: 
1 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ ]N N N T

r z r zu u u u u u U =  (36) 

and 

�̂� = ∫ 𝜌𝛷𝑇𝛷𝑑𝑣
𝛬

, �̂� = ∫ 𝐵𝑇𝐷𝐵𝑑𝑣
𝛬

 (37) 

N is the total number of nodes. Both of these 
integrals can be obtained simply by numerical 

integration. For numerical integration, the panel 
domain is first discretized by several cells, and 
the Gauss integration scheme is used for each 

cell; finally, the global stiffness matrix K̂ and the 

mass matrix M̂  are obtained numerically by 
sweeping all gauss integration points inside the 
domain . For performing the Gauss integration, 
each cell is mapped into a reference cell with pre-
appreciated Gauss integration points and their 
corresponding weights. By mapping relations, 
the corresponding Gauss integration points in the 
cell of the real domain are derived, and 
integration is performed using the mapped Gauss 
integration points. 

For imposing the essential boundary 
conditions, the global stiffness and mass matrixes 
are modified by transformation method as 
follow: 

𝑀 = (𝑇−1)𝑇�̂�𝑇−1 , 𝐾 = (𝑇−1)𝑇�̂�𝑇−1 (38) 

in which 
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1

1

1

1

1

( ) 0 0 ( ) 0 0

0 ( ) 0 0 ( ) 0

0 0 ( ) 0 0 ( )

( ) 0 0 ( ) 0 0

0 ( ) 0 0 ( ) 0

0 0 ( ) 0 0 ( )

N

N

N

N N N

N N N

N N N
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=  
  
 

  
   

1 1

1 1

1 1

X X

X X

X X

X X

X X

X X

 

 

 

(39) 

After modification of stiffness and mass 
matrixes, the essential boundary conditions are 
enforced on the modified matrixes exactly like 
the finite element method. In the modified 
stiffness and mass matrixes, the row and columns 
corresponding to the degree of freedoms are 
removed that we want to be constrained.   

4. Validation 

In this section, the convergence results are 
obtained to find the sufficient node numbers and 

distribution in the problem domain and its 
boundaries for extracting the natural 
frequencies. So, the fundamental natural 
frequency parameter for a homogeneous 
isotropic cylindrical panel with (SSSS) boundary 
conditions and various geometrical parameters is 
computed and shown in Table 1. 

Normalized fundamental frequencies (�̄� =

𝛺ℎ√𝜌0/𝐸0) for an isotropic FGM cylindrical panel 

(L/Ra=0.5, L/t=2) for various values of power-
law index n are presented in Table 2 and 
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compared with The semi-analytical solution by 
Zahedinejad et al. [24] and a 2-D higher-order 
deformation theory solution by Matsunaga [25]. 
The material properties in the thickness direction are 

as bellow: 

( )

( )

i 3

3

kg
E 70 Gpa      2702     

kg
E 380 Gpa      3800 

0.3

i

o o

m

m







 
= =  

 

 
= =  

 

=

 

For this simulation, dimensionless first 
natural frequencies for various thickness to 
radius ratios and span angles are extracted and 
listed in Table 3. The comparison is made in this 
table with the semi-analytical results presented 
by Zahedinejad et al. [24]. 

Furthermore, the FG fiber-reinforced 
cylindrical panel results were obtained and 
compared with semi-analytical solutions through 
the differential quadrature method by Yas et al. 
[29] in Table 4. The fiber and matrix in this 
example are Tungsten (𝐸𝑤 = 400  GPa , 𝜌𝑤 =
19300  kg/m3, 𝜈𝑤 = 0.28) and Cupper (𝐸cu =
115  GPa , 𝜌𝑐𝑢 = 8960  kg/m3, 𝜈𝑐𝑢 = 0.31), 
respectively, and the volume fractions of the 
constituent vary according to the power-law 
distribution from (%100 Cu) at inner to (%25 Cu 
& %75 W) at outer surfaces. Tables 1, 2, 3, and 4 
show an excellent agreement between the results 
of the present model and other results in the 
literature. In addition, Table 1 shows that the 
proposed model has a good convergence rate. 

Finally, in this section, the comparison is 
made for an FG carbon nanotube reinforced panel 
performed by Yas et al. [30]. 

In this example, the generalized differential 
quadrature method derived the normalized 
natural frequencies of an FG carbon nanotube 
reinforced panel with SSSS boundary conditions. 
The frequency parameter is defined as follows: 

10
CNT

CNT
t

E


 =  

Table 1. Fundamental natural frequency parameter for 
various node distributions, (L/Ra=0.1, L/t=10 and ν=0.3, 

S=Raα) 

Node 

distribution

( )z r    

S /L   

0.5 1 1.5 

30×3×25 1.3175 0.5560 0.4105 

40×4×30 1.3172 0.5549 0.4090 

45×5×35 1.3171 0.5546 0.4085 

50×6×40 1.3170 0.5544 0.4083 

[26] 1.3360 0.5563 0.4044 

[27] 1.31742 0.55049 0.39987 

[28] 1.31597 0.55136 0.40266 

Table 2. Fundamental frequency parameters for an (SSSS) 
FG panel 

 n      
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Table 3. Comparison fundamental frequency parameter for 
an (SSSS) FG panels, (Ra/L=1) 

 t/Ra    

 𝛼 = 𝜋/3  𝛼 = 2𝜋/3  

 0.3 0.5 0.3 0.5 

[21] 0.3113 0.6731 0.2279 0.3768 

Present 

method 
0.3119 0.6750 0.2265 0.3746 

 

Table 4. Comparison of fundamental frequency parameter for an FG fiber-reinforced cylindrical panel (L/Ra=1, α=π/6, n=1) 

 Ra/t         

 20 40 60 80 100 120 140 160 180 

[26] 0.7530 0.4340 0.3370 0.2930 0.2740 0.2680 0.2620 0.2600 0.2450 

Present  

method 
0.7309 0.4259 0.3439 0.3079 0.2923 0.2824 0.2762 0.2720 0.2692 
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Fig. 3. Comparison of frequency parameter for a CNT 

reinforced panel (Ra/t=100, 
* 0.28CNV = , FG-V) 

 
Fig. 4. Comparison of frequency parameter for a CNT 

reinforced panel  (Ra/t=100, 
* 0.28CNV = , FG-Λ) 

Figures 3 and 4 show the variation of 
frequency parameters with length to mean radius 
ratio for an FG – CNT panel for different span 
angles. It should be noted that the results 
obtained by the present work are compared with 
the results of Yas et al. [30]. From figures 3 and 4, 
it is observed that the present work results are 
very close to those of Yas et al. [30]. 

5. Results and Discussion 

After validation of numerical results, CNTRC 
panels are studied by the presented 3D-Mfree 
simulation. A CNTRC panel is made of 
Polymethyl-methacrylate (PMMA) like matrix, 
with CNT as fibers aligned in the axial direction. 

PMMA is an isotropic material with 2.5mE = GPa, 
𝜌𝑚 = 1150kg/m3 and 𝜐𝑚 = 0.34. The (10,10) 
SWCNTs are selected as reinforcements. The 
material properties of SWCNT are 𝐸1

𝐶𝑁 = 5.6466 
TPa, 𝐸2

𝐶𝑁 = 7.0800 TPa, 𝐺12
𝐶𝑁 = 1.9445 TPa,

1400CN =  kg/m3, and 12 0.175CN = [7]. In this 

work, the CNT efficiency parameters have been 
estimated by matching Young’s moduli E11 and 
E22 of CNTRCs obtained by the rule of the mixture 
to those from the MD simulations and are listed 

in Table 5. Also, the third efficiency parameter is 

3 20.7 = [7]. 

The natural frequency parameter is defined 
as: 

/m mK E =   
Fundamental frequencies of the panel for 

different span angles are listed in Table 6. This 
table shows that the maximum and minimum 
fundamental frequencies are obtained for FG-X 
and FG-◊ distribution of CNTs. In the former type, 
the volume fraction of CNT is zero at the mid 
surface of the panel and reaches its maximum 
value at the inner and outer surfaces on which 
maximum axial deformations occur, while for the 
latter, one maximum value of CNT volume 
fraction occurs at the mid surface of the panel, it 
may justify results obtained from this table. This 
table also shows that the fundamental frequency 
of the panel increases slightly with the increase in 
span angle. Table 7 depicts the effect of the 
geometry factor, t/Ra, on the first principal 
frequency of the panel. This table reveals that the 
fundamental frequency increases with the 
increase in t/Ra. An increase in this factor means 
getting thicker and, consequently, stiffer. It can 
justify the increase of fundamental natural 
frequency with the increase in t/Ra.  

Table 5. Elasticity moduli of PMMA/CNT composites by the 
rule of the mixture and MD simulation 

*

CNV  

MD  Rule of mixture  

E11 

(GPa) 

E22 

(GPa) 

E11 

(GPa) 
1  

E22 

(GPa) 
2  

0.12 94.6 2.9 94.78 0.137 2.9 1.022 

0.17 138.9 4.9 138.68 0.142 4.9 1.626 

0.28 224.2 5.5 224.50 0.141 5.5 1.585 

Table 6. First natural frequency parameter for various angle 

of CCFF panel, α. (t/Ra=0.1,L/Ra=1, * 0.17CNV = ) 

 UD FG-X FG-Λ FG-V FG-◊ 

α=π/6 1.9021 1.9576 1.8004 1.7922 1.7330 

α=π/4 1.9086 1.9629 1.8101 1.8023 1.7350 

α=π/3 1.9088 1.9637 1.8118 1.8022 1.7345 

α=π/2 1.9112 1.9656 1.8140 1.8054 1.7383 

Table 7. First natural frequency parameter for panel with 

various t/Ra ratios. (L/Ra=2, α=π/4, * 0.17CNV = ) 

 h/Rm UD FG-X FG-Λ FG-V FG-◊ 

CCFF 0.01 0.3451 0.3822 0.3215 0.3201 0.3057 

 0.05 1.0678 1.2119 0.9333 0.9361 0.8453 

 0.1 1.5717 1.6851 1.4234 1.4297 1.3269 

 0.2 1.9049 1.9588 1.7917 1.8116 1.7310 

       

CFFF 0.01 0.1206 0.1249 0.1194 0.1195 0.1177 

 0.05 0.2608 0.2883 0.2403 0.2414 0.2287 

 0.1 0.3894 0.4454 0.3412 0.3445 0.3151 

 0.2 0.6161 0.6890 0.5375 0.5444 0.4926 
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The effects of boundary conditions on the 
natural frequency parameters are presented in 
Table 8. According to this table, panels with CCCC 
and CFFF boundary conditions have the highest 
and lowest natural frequencies, respectively, as 
expected. These boundary conditions cause 
maximum and minimum stiffness values among 
all boundary conditions listed in this table. 
Finally, the effects of the volume fraction of CNTs 
for two boundary conditions are presented in 
Table 9. This table indicates that all-natural 
frequencies rise with the increase in volume 
fraction of CNT. CNT is much stiffer than the 
matrix material. It justifies the increase of natural 
frequencies with an increase in volume fraction 
of CNT. Additionally, it is obvious that for both 
types of boundary conditions presented in this 

table, maximum and minimum values of 
fundamental frequencies deal with FG-X and FG-
◊ distribution of CNT, but it is not the case for 
other frequencies. 

Table 8. First natural frequency parameter for panel with 
various boundary conditions. (L/Ra=1,t/Ra=0.1,α=π/3,

* 0.17CNV = ) 

 UD FG-X FG-Λ FG-V FG-◊ 

CCCC 2.3390 2.3987 2.2745 2.2596 2.1998 

CCFF 1.9077 1.9637 1.8022 1.8118 1.7345 

SSSS 1.5852 1.6958 1.4460 1.4775 1.3724 

SSFF 1.4814 1.6039 1.3284 1.3374 1.2308 

FFCC 1.3458 1.3740 1.3609 1.3554 1.3410 

CFFF 0.6431 0.7132 0.5720 0.5771 0.5270 

 

Table 9. First, five natural frequency parameters for panel with various ν*. (L/Ra=1, t/Ra=0.1, α=π/3) 

   
1  

2  
3  

4  
5  

FFSS * 0.12CNV =  UD 0.2334 0.3238 0.9982 1.1283 1.4188 

  FG-X 0.2413 0.3344 1.0275 1.1605 1.4244 

  FG-Λ 0.2353 0.3251 1.0055 1.1349 1.4290 

  FG-V 0.2343 0.3251 1.0020 1.1325 1.4179 

  FG-◊ 0.2277 0.3156 0.9771 1.1036 1.4226 

        

 * 0.17CNV =  UD 0.3016 0.4184 1.2895 1.4577 1.8830 

  FG-X 0.3177 0.4400 1.3495 1.5236 1.8481 

  FG-Λ 0.3056 0.4216 1.3059 1.4726 1.8574 

  FG-V 0.3036 0.4215 1.2983 1.4676 1.8356 

  FG-◊ 0.2907 0.4030 1.2497 1.4129 1.8449 

        

 * 0.28CNV =  UD 0.3160 0.4383 1.3510 1.5271 1.9209 

  FG-X 0.3537 0.4889 1.4909 1.6812 1.9770 

  FG-Λ 0.3262 0.4487 1.3927 1.5688 1.9960 

  FG-V 0.3212 0.4478 1.3736 1.5548 1.9512 

  FG-◊ 0.2955 0.4103 1.2757 1.4434 1.9706 

        

CCSS * 0.12CNV =  UD 1.5336 1.7017 1.8165 2.6248 3.0612 

  FG-X 1.5741 1.7071 1.8641 2.6837 3.1335 

  FG-Λ 1.4603 1.7022 1.7627 2.6038 2.9348 

  FG-V 1.4658 1.7117 1.7673 2.6046 2.9296 

  FG-◊ 1.4093 1.7068 1.7070 2.5409 2.8381 

        

 * 0.17CNV =  UD 1.9605 2.1985 2.3298 3.3806 3.9188 

  FG-X 2.0127 2.2143 2.4023 3.4864 4.0108 

  FG-Λ 1.8676 2.2045 2.2664 3.3669 3.7617 

  FG-V 1.8785 2.2235 2.2744 3.3671 3.7635 

  FG-◊ 1.8070 2.1883 2.2139 3.2617 3.6519 

        

 * 0.28CNV =  UD 2.1056 2.3041 2.4821 3.5656 4.1968 

  FG-X 2.1507 2.3675 2.5906 3.7800 4.2903 

  FG-Λ 2.0530 2.3460 2.4637 3.6121 4.1161 

  FG-V 2.0685 2.3871 2.4682 3.5991 4.1328 

  FG-◊ 2.0225 2.3665 2.3776 3.4352 4.0644 
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6. Conclusions 

Tree-dimensional frequency analysis of FG 
carbon nanotube-reinforced composite 
cylindrical panels was carried out by 3D-Mfree 
simulation. The Galerkin weak forms of 
governing equations with the platform of the 
Mfree method are constructed using the 
Hamilton principle.  
The present results are compared with the same 

results in other works, and it is concluded following 

results: 

1. The 3D-Mfree method has very fast 
convergence and stability and excellent 
agreement with the other literature results. 

2. The composite panels with the FG-X 
reinforcement model exhibit the largest 
fundamental frequency parameters and 
those of FG-O exhibit the lowest ones. 

3. The natural frequencies increase with the 

increasing volume fraction of CNTs ( *

CNV ). 
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