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This paper presents applied electric voltage performance in hydrothermal magneto flexo electric 
nanobeams embedded in the Winkler-Pasternak foundation based on nonlocal elasticity theory. 
Higher-order refined beam theory via Hamilton's principle is utilized to arrive at the governing 
equations of nonlocal nanobeams and solved by implementing an analytical solution. A paramet-
ric study is presented to analyze the effect of the applied electric voltage on dimensionless de-
flection via nonlocal parameters, slenderness, moisture constant, critical temperature, and foun-
dation constants. It is found that physical variants and beam geometrical parameters signifi-
cantly affect the dimensionless deflection of nanoscale beams. The accuracy and efficiency of the 
presented model are verified by comparing the results with that of published researches. A good 
agreement has arrived. The numerical examples are presented to explain how each variant can 
affect the structure's stability endurance. This type of model and its physical output show the 
great potential of hygro-magneto-thermo-flexo electric combination in the design of intelligent 
composite structures and use in structural health scanners. Recent advances in the application 
of nanotechnology have resulted in the manufacture of nanoelectromechanical devices. The at-
tractiveness of them is due to their excellent and distinctive mechanical and electrical properties. 

 

1. Introduction 

Structural monitoring of electrical nanobeams, na-
noplates, and nanomembranes is a recent novel field 
for many researchers due to their quality properties. 
The classical continuum theory is applied practically in 
the mechanical behavior of macroscopic structures. 
Still, it is improperly for the size effect on the mechan-
ical treatments on micro- or nanoscale structure. Nev-
ertheless, the classical continuum theory needs to be 
extended to factor in the nanoscale results. The prime 
magneto-electro-elastic (MEE) was used in the 1970s, 
and the MEE composite consisting of the piezoelectric 
and piezo magnetic phases was discovered this year. 
Van Den Boomgard et al. [1] the MEE nanomaterials 
(BiFeO3, BiTiO3-CoFe2O4, NiFe2O4-PZT) and their 
nanostructures became a significant role in researches 
(Zheng et al. [2], Martin et al. [3], Wang et al. [4], 
Prashanthi et al. [5]). For this reason, nanostructure's 
major potential for amplification many applications, 

their mechanical behavior should be investigated and 
well-identified before new designs can be proposed. 
The classical mechanic continuum theories demon-
strate that to predict the response of structures up to a 
minimum size sub, they fail to provide accurate predic-
tions. The nonlocal theories add a size parameter in the 
modeling of the continuum. This paper studied models 
that developed according to the greatly used nonlocal 
elasticity theory (Eringen [6], Eringen [7], Eringen [8], 
Eringen [9]). Timoshenko beam theory nonlocal elas-
ticity was investigated in their study. So based on an 
elastic medium, the stability response of SWCNT is de-
scribed. Winkler and Pasternak parameters, the aspect 
ratio of the SWCNT, and the nonlocal parameter were 
studied. Nonlinear free vibration of SWCNTs based on 
Eringen's nonlocal elasticity theory was developed by 
Yang et al. [10]. Ehyaei and Akbarizadeh [11] discussed 
vibration analysis of the micro composite thin beam 
based on modified couple stress theory elaborately. 

https://macs.semnan.ac.ir/article_5809.html
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Later, Ebrahimi and Barati [12] developed a unified 
formulation to model inhomogeneous nonlocal beams. 
Free vibration analysis of chiral double-walled carbon 
nanotube embedded in an elastic medium using non-
local elasticity theory and Dihaj et al. [13] have inves-
tigated Euler- Bernoulli beam model. The vibration 
and buckling of piezoelectric and piezomagnetic nano-
beams are verified based on the third-order beam 
model by Ebrahimi and Barati [14, 15, 16, 17]. The vi-
bration, buckling, and bending of Timoshenko nano-
beams based on a meshless method was proposed by 
Roque et al. [18]. Embedded in the nonlocal compo-
nent relevance of Eringen, major articles were pub-
lished searching to enlarge nonlocal beam models for 
nanostructures Peddieson et al. [19]. A novel method 
was proposed via nonlocal Euler–Bernoulli and Timo-
shenko beam theory, accepted by many studies to ver-
ify bending of the beam by (Civalek and Demir [20], 
Wang [21], Wang et al. [22]). During the years of re-
search the small-size agents in SWCNTs, several stud-
ies were devoted by (Murmu and Pradhan [23], Karami 
et al. [24]) for the wave propagation of functionally 
graded anisotropic nanoplates resting on the Winkler-
Pasternak foundation. The propagation of elastic 
waves in thermally affected embedded carbon-nano-
tube-reinforced composite beams via various shear 
deformation plate theories was analyzed by Ebrahimi 
and Rostami [25]. 

Hajnayeb and Foruzande [26] verify free vibration 
analysis of a piezoelectric nanobeam using nonlocal 
elasticity theory with its numerical computation. 
Thermo-magneto-electro vibrations of FG nanobeam 
and plates are studied for stability analysis via various 
physical variants by Ebrahimi et al. [27], Ebrahimi et 
al. [28], Ebrahimi et al. [29]. Yazdi has discussed the 
large amplitude forced vibration of the functionally 
graded nanocomposite plate with piezoelectric layers 
resting on a nonlinear elastic foundation [30]. Thermo-
magneto-electro-elastic analysis of a functionally 
graded nanobeam integrated with functionally graded 
piezomagnetic layers was proposed in composite 
structures by Arefi and Zenkour [31]. An investigation 
has been conducted on the wave propagation analysis 
of smart strain gradient piezo-magneto-elastic non-
local beams by Ebrahimi and Barati [32]. The static 
analysis of laminated piezo-magnetic size-dependent 
curved beam was concentrated on the modified couple 
stress theory by Arefi [33]. Studies were conducted on 
the analytical solutions to magneto-electro-elastic 
beams by Aimin and Haojiang [34].  

Furthermore, many researchers have presented 
the static and dynamic characteristics of beams and 
plates exposed to hygro-thermal environments be-

cause of the considerable effects on the structure's be-
havior. An analytical method to determine Gayen and 
Roy [35] presented the stress distributions in circular 
tapered laminated composite beams under hygro and 
thermal loadings in detail. Kurtinaitiene et al. [36] in-
troduced the effect of additives on the hydrothermal 
synthesis of manganese ferrite nanoparticles. The size 
effects on static behavior of nanoplates resting on elas-
tic foundation subjected to hygro-thermal loadings 
have been developed using several beam theories by 
Alzahrani et al. [37]. They extended the nonlocal con-
stitutive relations of Eringen to contain the hygro-ther-
mal effects. Also, Sobhy [38] studies show the fre-
quency response of simply-supported shear deforma-
ble orthotropic graphene sheets exposed to hygro-
thermal loading.  

Ghorbanpour Arani and Zamani [39] examined the 
bending of electro-mechanical sandwich nanoplate 
based on silica aerogel foundation with physical varia-
bles. They described that the influence of parameters 
on nanostructures such as applied voltage, porosity in-
dex, foundation characteristics, parameter, plate as-
pect ratio, and thickness ratio was studied on bending 
response of sandwich nanoplate. It was shown that the 
three-unknown shear and normal deformations non-
local beam theory for the bending analysis by Simsek 
et al. [40]. He researched the bending and buckling of 
the FG based on the nonlocal Timoshenko and Euler–
Bernoulli beam theory. Also, he was described that the 
power-law exponent has a wide influence on the re-
sponses of FG nanobeam. Free vibration of size-de-
pendent magneto-electro-elastic nanoplates was de-
rived by authors (Ke et al. [41], Ramirez et al. [42]). 

Authors, Zur et al. [43], Arefi et al. [44], Arefi and 
Zenkour [45], Arefi and Zenkour [46], Arefi et al. [47] 
have investigated free vibration and bending analyses 
of thermo-magneto-electro-elastic of nanoplates. Arefi 
and Zenkour [48] studied the size-dependent electro-
elastic analysis of a sandwich microbeam based on 
higher-order sinusoidal shear deformation theory and 
strain gradient theory. Arefi and Rabczuk [49] ana-
lyzed the nonlocal higher-order shear deformation 
theory for electro-elastic analysis of a piezoelectric 
doubly curved nanoshell. They concluded that with an 
increase of nonlocal parameters, the stiffness of the 
nanoshell is decreased. Consequently, the displace-
ment components, rotation component, and maximum 
electric potential are increased significantly.  Barati et 
al. [50] reported the dynamic response of nanobeams 
subjected to moving nanoparticles and hygro-thermal 
environments based on nonlocal strain gradient the-
ory. They found that the dynamic deflection increased 
as the temperature/moisture increased. Bending vi-
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bration and electro-magneto-elastic responses of pie-
zomagnetic curved nanobeams have been developed 
by authors Arefi and Zenkour [51, 52]). Zenkour and 
Alghanmi [53] constructed the analytical model for the 
static response of sandwich plates with FG core and pi-
ezoelectric faces under thermo-electro-mechanical 
loads and resting on elastic foundations. They have 
shown that the inclusion of Pasternak's foundation re-
duces deflections. The modified coupled stress theory 
and vibration analysis of nanobeams resting on visco-
Pasternak foundations have been studied by Sobhy 
and Zenkour [54] and Zenkour and El-Shahrany [55].  

Barati and Zenkour [56] analyzed the forced vibra-
tion of sinusoidal FG nanobeams resting on hybrid 
Kerr foundation in hygro-thermal environments. They 
also found that increase of Kerr foundation parameters 
leads to postponement in resonance frequencies of FG 
nanobeams. Daik and Zenkour [57] reported the bend-
ing of Functionally Graded Sandwich Nanoplates Rest-
ing on Pasternak Foundation under Different Bound-
ary Conditions. The electro-mechanical energy absorp-
tion, resonance frequency, and low-velocity impact 
analysis of the piezoelectric doubly curved system 
were derived by Guo et al. [58]. Dai et al. [59] devel-
oped on the vibrations of the non-polynomial viscoe-
lastic composite open-type shell under residual 
stresses. Dynamic simulation of the ultra-fast-rotating 
sandwich cantilever disk via finite element is modeled 
by Wu and Habibi [60]. Al-Furjan et al. [61] introduced 
the vibrational characteristics of a higher-order lami-
nated composite viscoelastic annular microplate via 
modified couple stress theory. Al-Furjan et al. [62] pro-
posed the three-dimensional frequency response of 
the CNT-Carbon-Fiber reinforced laminated circu-
lar/annular plates under initial stresses. Non-polyno-
mial framework for stress and strain response of the 
FG-GPLRC disk using three-dimensional refined 
higher-order theory was derived by Al-Furjan et al. 
[63]. Dai et al. [64] investigated the frequency charac-
teristics and sensitivity analysis of a size-dependent 
laminated nanoshell. 

Wang et al. [65] developed the frequency and buck-
ling responses of a high-speed rotating fiber metal lam-
inated cantilevered microdisk. Ghabussi et al. [66] con-
structed the seismic performance assessment of a 
novel ductile steel braced frame equipped with Steel 
curved dampers. Ghabussi et al. [67] proposed the fre-
quency characteristics of a viscoelastic graphene nano-
platelet–reinforced composite circular microplate. 
Ghabussi et al. [68] studied the improving seismic per-
formance of portal frame structures with steel curved 
dampers. They observed that there were significant 
improvements in the seismic performance of both 
types of portal frames by utilizing proposed steel 

curved dampers. Zhao et al. [69] presented the bending 
and stress responses of the hybrid axisymmetric sys-
tem via the state-space method and 3D-elasticity the-
ory. Ma et al. [70] developed the chaotic behavior of 
graphene-reinforced annular systems under harmonic 
excitation. Jiao et al. [71] proposed the coupled particle 
swarm optimization method with a genetic algorithm 
for the static-dynamic performance of the magneto-
electro-elastic nanosystem. Huang et al. [72] have dis-
cussed the computer simulation via a couple of ho-
motopy perturbation methods and the generalized dif-
ferential quadrature method for nonlinear vibration of 
functionally graded non-uniform micro-tube.  

Literature review reveals the lack of an analytical 
investigation concerning bending of hygro thermo 
magneto flexo electric nanobeams based on nonlocal 
elasticity theory. Thus, the authors aimed to construct 
an analytical model of bending hygro thermo magneto 
flexo electric nanobeams based on nonlocal elasticity 
theory.           

This paper studied the bending of hygro thermo 
magneto flexo electric nanobeams (Fig. 1) based on the 
nonlocal elasticity theory. Governing equations of a 
nonlocal nanobeam on Winkler-Pasternak substrate 
are derived via Hamilton's principle. Galerkin method 
is implemented to solve the governing equations. Ef-
fects of different factors such as nonlocal parameter, 
slenderness, moisture constant, critical temperature, 
applied voltage and magnet potential, Winkler-Paster-
nak parameters effect on deflection characteristics of a 
nanobeam are investigated. 

2. Formulation of the Problem 

The component of displacement via refined shear 
deformable beam can be expressed by: 

𝑢𝑥(𝑥, 𝑧) = 𝑢(𝑥) − 𝑧
𝜕𝑤𝑏

𝜕𝑥
− 𝑓(𝑧)

𝜕𝑤𝑠

𝜕𝑥
                                 (1) 

𝑢𝑧(𝑥, 𝑧) = 𝑤𝑏(𝑥) + 𝑤𝑠(𝑥)𝑢𝑧(𝑥, 𝑧) = 𝑤𝑏(𝑥) + 𝑤𝑠(𝑥) (2) 

where 𝑢 is axial mid-plane displacement and 𝑤𝑏 , 𝑤𝑠 de-

note the bending and shear components of transverse 

displacement, respectively. Also, f(z) is the shape func-

tion representing the shear stress/strain distribution 

through the beam thickness, which for the present 

study has a trigonometric essence; thus, a shear cor-

rection factor is not required. 

𝑓(𝑧) = 𝑧 + ℎ0 − 𝑡𝑎𝑛[0.03(𝑧 +  ℎ0)]                                     (3)  
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Fig. 1. The geometry of nanobeam resting on elastic foundation 

Non-zero strains of the suggested beam model can 
be expressed as follows: 

𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
− 𝑧

𝜕2𝑤𝑏

𝜕𝑥2
− 𝑓(𝑧)

𝜕2𝑤𝑠

𝜕𝑥2
                                           (4) 

𝛾𝑥𝑧 = 𝑔(𝑧)
𝜕𝑤𝑠

𝜕𝑥
                                                                       (5) 

where g(z)=1-df(z)/dz.                                         
According to Maxwell's equation, the relation be-

tween electric field (Ex, Ez) and electric poten-
tial(𝜙)and magnet field (Qx, Qz) and magnet potential 
(𝜓)can be obtained as Ke et al. [41]  

𝐸𝑥 = −𝜙,𝑥 = 𝑐𝑜𝑠(𝜉𝑧)
𝜕𝜙

𝜕𝑥
       𝑄𝑥 = −𝜓𝑥 = 𝑐𝑜𝑠(𝜉𝑧)

𝜕𝜓

𝜕𝑥
  

(6) 

𝐸𝑧 = −𝜙,𝑧 = −𝜉 𝑠𝑖𝑛(𝜉𝑧)𝜙 −
2𝑣

ℎ
        

𝑄𝑧 = −𝜓,𝑧 = −𝜉 𝑠𝑖𝑛(𝜉𝑧)𝜓 −
2𝑣

ℎ
                                       (7) 

Through extended Hamilton's principle, the gov-
erning equations can be derived as follows: 

∫ 𝛿(∏𝑠 −∏𝑤)
𝑡

0
𝑑𝑡 = 0                                                             (8) 

where (∏𝑆) is the total strain energy (∏𝑊)is the work 
done by externally applied forces. The first variation of 
strain energy 𝛱𝑆 can be calculated as: 

𝛿∏𝑆 = ∫ 𝜎𝑖𝑗𝛿𝜀𝑖𝑗𝑑𝑉 =𝑣
∫ (𝜎𝑥𝛿𝜀𝑥 + 𝜎𝑥𝑧𝛿𝛾𝑥𝑧)𝑑𝑉𝑣

          (9) 

Substituting Eqs.(1) - (5) into Eq.(9) yields: 

𝛿∏𝑆 = ∫

(

 
𝑁
𝜕𝛿𝑢

𝜕𝑥
−𝑀𝑏

𝜕2𝛿𝑤𝑏
𝜕𝑥2

−𝑀𝑠

𝜕2𝛿𝑤𝑠
𝜕𝑥2

+ 𝑄
𝜕𝛿𝑤𝑠
𝜕𝑥 )

 𝑑𝑥 +
𝑡

0

 

∫ ∫ (
−𝐷𝑥 𝑐𝑜𝑠(𝜉𝑧) 𝛿 (

𝜕𝜙

𝜕𝑥
) + 𝐷𝑧𝜉 𝑠𝑖𝑛(𝜉𝑧) 𝛿𝜙

−𝐵𝑥 𝑐𝑜𝑠(𝜉𝑧) 𝛿 (
𝜕𝜓

𝜕𝑥
) + 𝐵𝑧𝜉 𝑠𝑖𝑛(𝜉𝑧) 𝛿𝜓

)
ℎ

2
−ℎ

2

𝑎

0
𝑑𝑧𝑑𝑥

   

 (10) 

in which the forces and moments expressed in the 
above equation are defined as follows: 

[𝑁,𝑀𝑏, 𝑀𝑠] = ∫ [1, 𝑧, 𝑓(𝑧)]𝜎𝑖𝑑𝐴𝐴
,    𝑖 = (𝑥, 𝑦, 𝑥𝑦)     (11) 

𝑄 = ∫ 𝑔(𝑧)𝜎𝑖𝑑𝐴𝐴
,   𝑖(𝑥𝑧, 𝑦𝑧)𝑄 = ∫ 𝑔(𝑧)𝜎𝑖𝑑𝐴𝐴

,   𝑖(𝑥𝑧, 𝑦𝑧) 

The first variation of the work done by applied 
forces can be written in the form: 

𝛿∏𝑊 = ∫

(

 
 
 
 

(−𝑁𝑥
0)

𝜕(𝑤𝑏+𝑤𝑠)

𝜕𝑥

𝜕𝛿(𝑤𝑏+𝑤𝑠)

𝜕𝑥

+(𝑁𝑇 + 𝑁𝐻)
𝜕(𝑤𝑏+𝑤𝑠)

𝜕𝑥

𝜕𝛿(𝑤𝑏+𝑤𝑠)

𝜕𝑥

−𝑘𝑤(𝑤𝑏 +𝑤𝑠)𝛿(𝑤𝑏 +𝑤𝑠)

+𝑘𝑝(𝑤𝑏 + 𝑤𝑠)
𝜕2𝛿(𝑤𝑏+𝑤𝑠)

𝜕𝑥2

+𝑓13(𝑤𝑏 + 𝑤𝑠)𝛿(𝑤𝑏 + 𝑤𝑠) )

 
 
 
 

𝑙

0
𝑑𝑥     (12) 

where 𝑘𝑤, and𝑘𝑝 are linear, shear coefficients of the 

medium, N
E, NB electric, and magnetic loading, respec-

tively. 
𝑁𝑥
0 = 𝑁𝐸 + 𝑁𝐵 

𝑁𝐸 = −∫ 𝑒31
2𝑉

ℎ
𝑑𝑧

ℎ

2
−ℎ

2

                                                       (13) 

𝑁𝐵 = −∫ 𝑒31
2𝛺

ℎ
𝑑𝑧

ℎ

2
−ℎ

2

                                                       (14) 

Kw, kp, and f13 are Winkler, Pasternak, and damping 
constants and NT, NHare applied forces due to varia-
tion of temperature and moisture as 

𝑁𝑇 = ∫ 𝐸(𝑧)𝛼𝑇(𝑧)𝛥𝑇𝑑𝑧
ℎ/2

−ℎ/2
                                                (15) 

𝑁𝐻 = ∫ 𝐸(𝑧)𝛽𝐻(𝑧)𝛥𝐻𝑑𝑧
ℎ/2

−ℎ/2
                                               (16) 

where 𝛼𝑇(𝑧)and 𝛽𝐻(𝑧) 
are thermal and moisture ex-

pansion coefficients, respectively. T and H denote the 
temperature and moisture variation, respectively. 

The following Euler–Lagrange equations are ob-
tained by inserting Eqs. (10), (12) in Eq. (8) when the 
coefficients of𝜕𝑢, 𝜕𝑤𝑏, 𝜕𝑤𝑠, 𝜕𝜙, 𝜕𝜓 

are equal to zero: 
𝜕𝑁

𝜕𝑥
= 0                                                                                   (17) 

𝜕2𝑀𝑏

𝜕𝑥2
+ (−𝑁𝐸 − 𝑁𝐵)𝛻2(𝑤𝑏 +𝑤𝑠) 

−(𝑁𝑇 + 𝑁𝐻)𝛻2(𝑤𝑏 + 𝑤𝑠) 
−𝑘𝑝𝛻

2(𝑤𝑏 +𝑤𝑠) + 𝑘𝑤(𝑤𝑏 + 𝑤𝑠) = 0                         (18) 

𝜕2𝑀𝑠

𝜕𝑥2
−
𝜕𝑄

𝜕𝑥
+ (−𝑁𝐸 −𝑁𝐵)𝛻2(𝑤𝑏 + 𝑤𝑠) 

−(𝑁𝑇 + 𝑁𝐻)𝛻2(𝑤𝑏 + 𝑤𝑠) − 𝑘𝑝𝛻
2(𝑤𝑏 + 𝑤𝑠) 
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+𝑘𝑤(𝑤𝑏 +𝑤𝑠) + 𝑓13(𝑤𝑏 +𝑤𝑠) = 0                               (19) 

∫ (𝑐𝑜𝑠(𝜉𝑧)
𝜕𝐷𝑥

𝜕𝑥
+ 𝐷𝑧𝜉 𝑠𝑖𝑛(𝜉𝑧))

ℎ

2
−ℎ

2

𝑑𝑧 = 0                        (20) 

∫ (𝐵𝑥 𝑐𝑜𝑠(𝜉𝑧)
𝜕𝛿𝜓

𝜕𝑥
+ 𝐵𝑧𝜉 𝑠𝑖𝑛(𝜉𝑧) 𝛿𝜓)

ℎ

2
−ℎ

2

𝑑𝑧 = 0            (21) 

3. Nonlocal Elasticity Theory    

The nonlocal theory can be extended for the piezo 
magnetic nanobeams as: 

𝜎𝑖𝑗 − (𝑒𝑎)
2𝛻2𝜎𝑖𝑗 = [𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 − 𝑒𝑚𝑖𝑗𝐸𝑚 − 𝑞𝑛𝑖𝑗𝐻𝑛 −

𝛼𝑖𝑗𝑇 − 𝛽𝑖𝑗𝐻]                                                                       
(22) 

𝐷𝑖𝑗 − (𝑒𝑎)
2𝛻2𝐷𝑖𝑗 = [𝑒𝑖𝑘𝑙𝜀𝑘𝑙 + 𝑘𝑖𝑚𝐸𝑚 + 𝑑𝑖𝑛𝐻𝑛]       (23) 

𝐵𝑖 − (𝑒𝑎)
2𝛻2𝐵𝑖 = [𝑞𝑖𝑘𝑙𝜀𝑘𝑙 + 𝑑𝑖𝑚𝐸𝑚 + 𝜒𝑖𝑛𝐻𝑛]          (24) 

𝑝𝑖 − (𝑒𝑎)
2𝛻2𝑝𝑖 = [𝜀0𝜒𝑖𝑗𝐸𝑗 + 𝑒𝑖𝑘𝑙𝜀𝑘𝑙]                           (25) 

where 𝑐𝑖𝑗𝑘𝑙 corresponds with the components of the 

fourth-order elasticity tensor, also, 𝜒𝑖𝑗 is the relative die-

lectric susceptibility and 𝑓𝑖𝑗𝑘𝑙 is the flexoelectric coeffi-

cient. Also, 𝑒0𝑎 is a nonlocal parameter which is intro-
duced to describe the size-dependency of nanostruc-
tures. 
where ∇2  is the Laplacian operator. The stress rela-
tions can be expressed by:  

(1 − 𝜇2𝛻2)𝜎𝑥𝑥 = (1 − 𝜆
2𝛻2)[𝐶11𝜀𝑥𝑥 − 𝑒31𝐸𝑧 −

𝑞31𝐻𝑧 − 𝛼𝑇𝛥𝑇 − 𝛽𝐻𝛥𝐻]                                                               (26) 

(1 − 𝜇2𝛻2)𝜎𝑥𝑧 = (1 − 𝜆
2𝛻2)[𝐶55𝛾𝑥𝑧 − 𝑒15𝐸𝑥 − 𝑞15𝐻𝑥] 

(27) 

(1 − 𝜇2𝛻2)𝐷𝑥 = (1 − 𝜆
2𝛻2)[𝑒15𝛾𝑥𝑧 + 𝑘11𝐸𝑥 + 𝑑11𝐻𝑥]  

(28) 

(1 − 𝜇2𝛻2)𝐷𝑧 = (1 − 𝜆
2𝛻2)[𝑒31𝛾𝑥𝑧 + 𝑘33𝐸𝑧 + 𝑑33𝐻𝑧]  

(29) 

(1 − 𝜇2𝛻2)𝐵𝑥 = (1 − 𝜆
2𝛻2)[𝑞15𝛾𝑥𝑧 + 𝑑11𝐸𝑥 + 𝜒11𝐻𝑥]  

(30) 

(1 − 𝜇2𝛻2)𝐵𝑧 = (1 − 𝜆
2𝛻2)[𝑞31𝛾𝑥𝑧 + 𝑑33𝐸𝑧 + 𝜒33𝐻𝑧]  

(31) 

where 𝜇 = 𝑒0𝑎 and 𝜆 = 𝑙 are nonlocal and length scale 
parameters. 

Integrating Eq. (26-31) over the cross-section area 
of nanobeam provides the following nonlocal relations 
for a refined beam model as also, normal forces and 
moments due to the electrical field can be defined by: 

𝑀𝑥 = ∫ (𝑒31
2𝑉

ℎ
+ 𝑞31

2𝛺

ℎ
)

ℎ

2
−ℎ

2

𝑧𝑑𝑧                                      (32) 

∫ (1 − 𝜇𝛻2)
ℎ

2
−ℎ

2

{𝐷𝑥} 𝑐𝑜𝑠( 𝜉𝑧)𝑑𝑧 = 𝐹11
𝑒 {

𝜕𝜙

𝜕𝑥
}                       (33) 

∫ (1 − 𝜇𝛻2)
ℎ

2
−ℎ

2

{𝐵𝑥} 𝑐𝑜𝑠( 𝜉𝑧)𝑑𝑧 = 𝑅11
𝑒 {

𝜕𝜓

𝜕𝑥
}                      (34) 

∫ (1 − 𝜇𝛻2)
ℎ

2
−ℎ

2

{𝐵𝑥} 𝑐𝑜𝑠( 𝜉𝑧)𝑑𝑧 = 𝑅11
𝑒 {

𝜕𝜓

𝜕𝑥
}                      (35) 

∫ (1 − 𝜇𝛻2)
ℎ

2
−ℎ

2

{𝐵𝑥} 𝑐𝑜𝑠( 𝜉𝑧)𝑑𝑧 = 𝑅11
𝑒 {

𝜕𝜓

𝜕𝑥
}                      (36) 

in which: 
{𝐴11, 𝐵11, 𝐵11

𝑠 , 𝐷11, 𝐷11
𝑠 , 𝐻11

𝑠 }

= ∫ 𝐶11(1, 𝑧, 𝑓, 𝑧
2, 𝑓𝑧, 𝑓2)𝑑𝑧

ℎ

2

−ℎ

2

 

                                                                      (37) 

(𝐴31, 𝐸31) = ∫ 𝑒31𝜉 𝑠𝑖𝑛( 𝜉𝑧){1, 𝑧, 𝑓}𝑧𝑑𝑧
ℎ

2
−ℎ

2

                   (38) 

(𝐹11, 𝐹33) = ∫ {𝑠11 𝑐𝑜𝑠
2( 𝜉𝑧), 𝑠33𝜉

2 𝑠𝑖𝑛2( 𝜉𝑧)}𝑑𝑧
ℎ

2
−ℎ

2

    (39) 

 

(𝑅11, 𝑅33) = ∫ {𝑑11 𝑐𝑜𝑠
2( 𝜉𝑧), 𝑑33𝜉

2 𝑠𝑖𝑛2( 𝜉𝑧)}𝑑𝑧
ℎ

2
−ℎ

2

 (40) 

                                 
(𝐺31, 𝑄31) = ∫ 𝑞31𝜉 𝑠𝑖𝑛( 𝜉𝑧){1, 𝑧}𝑧𝑑𝑧

ℎ

2
−ℎ

2

                      (41)

                             
(𝜒11, 𝜒33) = ∫ {𝜒11 𝑐𝑜𝑠

2( 𝜉𝑧), 𝜒33𝜉
2 𝑠𝑖𝑛2( 𝜉𝑧)}𝑑𝑧

ℎ

2
−ℎ

2

  (42) 

The governing equations of nonlocal strain gradi-
ent nanoplate under electrical field in terms of the dis-
placement can be derived by substituting Eqs. (32) -
(36), into Eqs. (17) - (21) as follows: 

[𝐴11
𝜕2𝑢

𝜕𝑥2
− 𝐵11

𝜕3𝑤𝑏

𝜕𝑥3
− 𝐵11

𝑠 𝜕3𝑤𝑠

𝜕𝑥3
+ 𝐴31

𝜕𝜙

𝜕𝑥
+ 𝐺31

𝜕𝜓

𝜕𝑥
] =

𝜕𝑁𝑥

𝜕𝑥
    

(43) 

[
 
 
 𝐵11

𝜕3𝑢

𝜕𝑥3
− 𝐷11

𝜕4𝑤𝑏
𝜕𝑥4

− 𝐷𝑠
11
𝜕4𝑤𝑠
𝜕𝑥4

+ 𝐸31
𝜕2𝜙

𝜕𝑥2

+𝑄31
𝜕2𝜓

𝜕𝑥2
+ 𝑘𝑝𝛻

2(𝑤𝑏 + 𝑤𝑠) − 𝑘𝑤(𝑤𝑏 +𝑤𝑠)]
 
 
 

 

−𝜇 [
(−𝑁𝐸 − 𝑁𝐵) + (𝑁𝑇 + 𝑁𝐻)𝛻2(𝑤𝑏 + 𝑤𝑠)

+𝑘𝑝𝛻
2(𝑤𝑏 +𝑤𝑠) − 𝑘𝑤(𝑤𝑏 +𝑤𝑠)

] =
𝜕2𝑀𝑏

𝜕𝑥2
   

(44) 

[
𝐵11
𝑠
𝜕3𝑢

𝜕𝑥3
− 𝐷11

𝑠
𝜕4𝑤𝑏
𝜕𝑥4

− 𝐷11
𝑠
𝜕4𝑤𝑠
𝜕𝑥4

+ 𝐹11
𝜕2𝜙

𝜕𝑥2
+ 𝑅11

𝜕2𝜓

𝜕𝑥2

+𝑘𝑝𝛻
2(𝑤𝑏 + 𝑤𝑠) + 𝑓13𝛿(𝑤𝑏 + 𝑤𝑠) − 𝑘𝑤(𝑤𝑏 + 𝑤𝑠)

] 
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−𝜇 [
(−𝑁𝐸 − 𝑁𝐵) + (𝑁𝑇 +𝑁𝐻)𝛻2(𝑤𝑏 +𝑤𝑠)

+𝑘𝑝𝛻
2(𝑤𝑏 + 𝑤𝑠) − 𝑘𝑤(𝑤𝑏 +𝑤𝑠)

] =
𝜕2𝑀𝑏

𝜕𝑥2
−
𝜕𝑄

𝜕𝑥
  

     (45) 

𝐴31
𝜕𝑢

𝜕𝑥
− 𝐸31

𝜕2𝑤𝑏
𝜕𝑥2

− 𝑄31
𝜕2𝑤𝑠
𝜕𝑥2

+ 𝐹11
𝜕2𝜙

𝜕𝑥2
+ 𝑅11

𝜕2𝜓

𝜕𝑥2
 

−𝐹33𝜙 − 𝐹33𝜓 = 0                                                      (46) 

𝐴31
𝜕𝑢

𝜕𝑥
− 𝐸31

𝜕2𝑤𝑏
𝜕𝑥2

− 𝑄31
𝜕2𝑤𝑠
𝜕𝑥2

+ 𝜒11
𝜕2𝜙

𝜕𝑥2
+ 𝑅11

𝜕2𝜓

𝜕𝑥2
 

−𝐹33𝜙 − 𝜒33𝜓 = 0                                                      (47) 

4. Solution Procedure  

The displacement quantities are presented in the 
following form to satisfy the boundary conditions 
(given in Table 1) as : 

𝑢 = ∑ 𝑈𝑛
𝜕𝑋𝑛(𝑥)

𝜕𝑥
∞
𝑛=1 𝑒𝑖𝜔𝑛𝑡                                                        (48) 

𝑤𝑏 = ∑ 𝑊𝑏𝑛𝑋𝑛(𝑥)
∞
𝑛=1 𝑒𝑖𝜔𝑛𝑡                                                        (49) 

𝑤𝑠 = ∑ 𝑊𝑠𝑛𝑋𝑛(𝑥)
∞
𝑛=1 𝑒𝑖𝜔𝑛𝑡                                                        (50) 

𝜙 = ∑ 𝜙𝑛𝑋𝑛(𝑥)
∞
𝑛=1 𝑒𝑖𝜔𝑛𝑡                                                             (51) 

𝜓 = ∑ 𝜓𝑛𝑋𝑛(𝑥)
∞
𝑛=1 𝑒𝑖𝜔𝑛𝑡                                                           (52) 

where (𝑈𝑛 ,𝑊𝑏𝑛, 𝑊𝑠𝑛,ϕn, ψn) are the unknown coeffi-
cients and for different boundary conditions (𝛼 =
𝑚𝜋/𝑎, 𝛽 = 𝑛𝜋/𝑏) : 

     [𝐾]

{
 
 

 
 
𝑢𝑛
𝑤𝑏𝑛
𝑤𝑠𝑛
𝜙
𝜓 }
 
 

 
 

=

{
 
 

 
 

0

𝑄𝑛(1 + 𝜇
𝑛2𝜋2

𝐿2
)

𝑄𝑛(1 + 𝜇
𝑛2𝜋2

𝐿2
)

0
0 }

 
 

 
 

                               (53)  

where [K], and [F] are the stiffness, loading matrixes 
for nanobeam, respectively. 
𝑘1,1 = 𝐴11𝛼1,     𝑘1,2 = 𝐵11𝛼2,    𝑘1,3 = 𝐵11

𝑠 𝛼2,     

𝑘1,4 = 𝐴31𝛼3,    𝑘1,5 = 𝐺31𝛼3      (54)    

𝑘2,1 = 𝐵11𝛼11,     

𝑘2,2 = −𝐷11𝛼7 + 𝑘𝑤𝛼5 − 𝑘𝑝𝛼6 

        +𝜇[((−𝑁𝐸 − 𝑁𝐵) + (𝑁𝑇 +𝑁𝐻) + 𝑘𝑝)𝛼6

− 𝑘𝑤𝛼5],   

𝑘2,3 = −𝐷11
𝑠 𝛼7 + 𝑘𝑤𝛼5 − 𝑘𝑝𝛼6 

        +𝜇[((−𝑁𝐸 − 𝑁𝐵) + (𝑁𝑇 +𝑁𝐻) + 𝑘𝑝)𝛼6 −

𝑘𝑤𝛼5]k2,4 = E31α6,     k2,5 = Q31α6,    

3,1 11 11

3,2 11 7

6 5

3,3 11 7 5 6

6

31
13 5

33

,

(( ) ( ) ) ,

(( ) ( ) )

( )
2

s

s

E B T H

p w

s

w p

E B T H

p

w

k B

k D

N N N N k k

k H k k

N N N N k

e
k f

k





  

  






=

= −

 + − − + + + − 

= − + −

 − − + + +
 

+  − +
 
 

𝑘3,4 = 𝐹11𝛼6,     𝑘2,5 = 𝑅11𝛼6,    

𝑘4,1 = 𝐴31𝛼3,     𝑘4,2 = −𝐸31𝛼6,    𝑘4,3 = −𝑄31𝛼6,     

𝑘4,4 = 𝐹11𝛼6 − 𝐹33𝛼5,      𝑘4,5 = 𝑅11𝛼6 − 𝑅33𝛼5 

𝑘5,1 = 𝐴31𝛼3,     𝑘5,2 = −𝐸31𝛼6,    𝑘5,3 = −𝑄31𝛼6,     

𝑘5,4 = 𝐹11𝛼6 − 𝐹33𝛼5,      𝑘5,5 = 𝜒11𝛼6 − 𝜒33𝛼5 

𝐹1,1 = 𝑁𝛼3,      

𝐹2,2 = 𝑀𝑏(1 − 𝜇𝛼6),      

𝐹3,3 = 𝑀𝑠(1 − 𝜇𝛼6) − 𝑄(1 − 𝜇𝛼3),      

in which: 

𝛼1 = ∫ 𝑋′(𝑥)𝑋′′(𝑥)𝑑𝑥
𝑎

0

,   𝛼2 = ∫ 𝑋(𝑥)𝑋′′′(𝑥)𝑑𝑥
𝑎

0

,   

 𝛼7 = ∫ 𝑋(𝑥)𝑋′′′′(𝑥)𝑑𝑥
𝑎

0

𝛼5 = ∫ 𝑋(𝑥)𝑋(𝑥)𝑑𝑥
𝑎

0

,   

𝛼3 = ∫ 𝑋(𝑥)𝑋′(𝑥)𝑑𝑥
𝑎

0

,     𝛼11 = ∫ 𝑋′(𝑥)𝑋′′′′(𝑥)𝑑𝑥
𝑎

0

,    

 𝛼6 = ∫ 𝑋(𝑥)𝑋′′(𝑥)𝑑𝑥
𝑎

0
           (55) 

Table 1. The admissible functions Xm(x) Sobhy [38] 

 Boundary conditions The functions Xn 

 At x=0, a 𝑋𝑛(𝑥) 

SS 𝑋𝑛 = 0, 𝑋𝑛
′′ = 0 𝑠𝑖𝑛( 𝛼𝑥) 

 𝑋𝑛(𝑎) = 0, 𝑋𝑛
′′(𝑎) = 0  

The uniform load is supposed that lead to bending 
and is expressed by the following form:    

𝑞𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠 = ∑ 𝑄𝑛 𝑠𝑖𝑛[
𝑛𝜋

𝐿
𝑥] 𝑠𝑖𝑛𝜔 𝑡∞

𝑛=1                          (56) 
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Qn =
2

L
∫ sin[

nπ

L
x]qxdx

x0+c

x0-c
                                                 (57)   

Qn is the Fourier coefficient, q(x) = q0 is the uniform 
load density, and x0 is the centroid coordinate. Also, in 
the case of concentrated point load, the following ex-
pression for the harmonic load intensity can be writ-
ten:   
q(x) = pδ(x-x0) sinω t                                                   (58) 

Qn =
2p

L
sin[

nπ

L
x0]                                                             (59) 

in which δ is the Dirac delta.  

5.  Numerical Results and Discussions 

The bending of hygro magneto thermos piezoelec-
tric nanobeam is analyzed in this section. The material 
properties are shown in Table 2 (Ramirez et al. [42]). 
The validity of the present study is proved by compar-
ing the bending of this model with those of Arefi and 
Zenkour [31]. Arefi and Zenkour [31] for various non-
local parameters as presented in Table 3. The role of 

multiple parameters like magnetic potential ( ), 

electric voltage ( ), moisture constant (ΔH), and non-
local parameter ( ) on the non-dimensional frequen-

cies of the supported higher-order magneto-electro-
elastic nanobeams at L/h=20 and L/h=30 are exposed 
in Tables 4 and Table 5. Here, it is noticeable that with 
the rise of nonlocal parameters, the natural frequen-
cies of hygro magneto-electro-elastic nanobeam re-
duce for all magnetic potentials and external voltages 
due to the existence of nonlocality weakens the beam. 
Also, it is referred that when the moisture constant 
arose, the non-dimensional frequencies of hygro mag-
neto-electro-elastic nanobeam decreased, especially 
for lower moisture constant. Moreover, it is concluded 
that negative values of magnetic potential and external 
electric voltage produce lower/higher frequencies 
than positive ones. 

The length of the nanobeam is considered to be L = 
10 nm.  

Also, the dimensionless deflection is adopted as 

𝑊 = 100
𝐶11𝐼

𝑞0𝐿
4                                                                     (60) 

Figures 2 and 3 are investigated for the effect of 
nonlocal parameters on a dimensionless deflection 
through various magnetic potentials. The increasing 
value of nonlocal parameter caused an increase of di-
mensionless deflection, but positive electric voltage 
leads to a reduction in deflection and negative poten-
tial rise the dimensionless deflection. We understand 
from this subject that magnetic potential has a signifi-

cant role under dimensionless deflection and dimen-
sionless deflection null effect during zero electric volt-
age. It must be mentioned that the nonlocal parameter 
weakens the nanobeam structure. The impact of humid 
is observed in Fig.3 through the rise in dimensionless 
deflection. 

Dimensionless deflection of the nanobeam con-
cerning slenderness ratio through various electric 
voltages are presented in Figs. 4 and 5. It is found that 
the external electric voltage caused that softening de-
flection of nanobeam for positive values and external 
voltage for negative values of nanobeam demonstrated 
a hardening effect. From this, the axial tensile and com-
pressive forces are exposed in the nanobeams via the 
constructed positive and negative voltages, respec-
tively. In addition, it is lightly observed that the dimen-
sionless deflection is approximately independent of 

the slenderness ratio for zero electric voltages ( ). 
The increase in magnetic potential hardens the deflec-
tion. 

Table 2.  Material properties of BiTiO3-CoFe2O4 
composite material 

Properties                                  BiTiO3-CoFe2O4 

Elastic (GPa)           

c11 = 226, c12 = 125, c13 = 124, c33 = 216, c44 = 
44.2, c66 = 50.5 

Piezoelectric/(C・m−2)   e31 = −2.2, e33 = 9.3, e15 = 5.8 

Dielectric/(10−9C・V−1・m−1)        k11 = 5.64, k33 = 6.35 

Piezomagnetic/(N・A−1・m−1)  

q15 = 275, q31 = 290.1, q33 = 349.9 

Magnetoelectric/(10−12Ns・V−1・C−1)   

s11 = 5.367, s33 = 2 737.5 

Magnetic (10−6 𝑁𝑠2 𝑐−2/2)      -ϰ11 =297, ϰ33 = 83.5 

Mass density (Kg/m3)                     ρ=5.55 

Hygrothermal(/K)      

Table 3. Comparison of dimensionless deflections of nanobeam for 

electric voltage and magnetic potential. 
L/h    µ              𝜓 = 0.001         L/h     µ                   𝜙 = 0.001 
         (nm2 )                                              (nm2 )     

 Arefi Present and 
Zenkour (2016) 

  Arefi Present  and 
Zenkour (2016) 

   
10 

1     3.68     3.5781 
2     3.71     3.6482    
3     3.77     3.7302      
4     3.84    3.79011 
5     3.94     3.8952 

       0         3.68       3.59892 
10     1       1.3333      .66921 

      2       1.3645    3.74018 
      3     1.3958     3.80234 
      4     1.4270     3.92011 



V



0V =

61.6 10eff −=  426 10eff −= 



Selvamani et al. / Mechanics of Advanced Composite Structures 8 (2021) 401-414 

 

408 

 

 
Fig. 2. Effect of nonlocal parameters on dimensionless deflection 

via Ω = 0.5 (L/h=10,,Kw= Kp=20,ΔH=1.5). 

  
Fig. 3.  Effect of nonlocal parameters on dimensionless deflection 

via Ω = 1.5 (L/h=10,,Kw= Kp=20,ΔH=1.5). 

 
 Fig. 4.  Effect of slenderness ratio on dimensionless deflection via Ω =

0.5 (L/h=10,,Kw= Kp=20,ΔH=1.5). 

 
Fig. 5.  Effect of slenderness ratio on dimensionless deflection via Ω =

1.5 (L/h=10,,Kw= Kp=20,ΔH=1.5). 

Table 4. Variation of dimensionless frequency of FG nanobeam for the various nonlocal parameter, magnetic potentials, and 

electric voltages ( =20). 

µ                 Ω=-0.05                      Ω=0           Ω=+0.05 

     ΔH =0.2 ΔH =1 ΔH =5 ΔH =0.2 ΔH =1 ΔH =5 ΔH =0.2 ΔH =1 ΔH =5 

           
0 V=-5 35.6083 32.9563 31.4249 36.477 33.5046 31.6119 37.3256 34.044 31.7979 

 V=0 35.4747 32.5345 30.7053 36.3466 33.0897 30.8967 37.1982 33.6358 31.0870 

 V=+5 35.3406 32.1071 29.9685 36.2158 32.6696 30.1646 37.0703 33.2226 30.3594 

           1 V=-5 29.9003 27.8605 26.7829 30.9298 28.5069 27.0022 31.9261 29.1390 27.2197 

 V=0 29.7411 27.3602 25.9349 30.7759 28.0182 26.1613 31.7771 28.6610 26.3857 

 V=+5 29.5810 26.8506 25.0582 30.6212 27.5207 25.2924 31.6273 28.1749 25.5245 

           2 V=-5 26.1741 24.5567 23.7980 27.3442 25.2877 24.0444 28.4663 25.9981 24.2884 

 V=0 25.9920 23.9876 22.8394 27.1700 24.7354 23.0961 28.2990 25.4613 23.3500 

 V=+5 25.8087 23.4046 21.8388 26.9947 24.1705 22.1071 28.1307 24.9128 22.3722 
           3 V=-5 23.4875 22.1912 21.6780 24.7848 22.9976 21.9483 26.0176 23.7765 22.2153 

 V=0 23.2845 21.5598 20.6211 24.5925 22.3889 20.9050 25.8344 23.1883 21.1852 

 V=+5 23.0796 20.9093 19.5070 24.3987 21.7631 19.8069 25.6500 22.5847 20.1024 

/L h
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Table 5. Dispersion of dimensionless frequency of nanobeam for the various nonlocal parameter, magnetic potentials, and 

electric voltages ( =30). 

µ                 Ω=-0.05                      Ω=0           Ω=+0.05 

     ΔH =0.2 ΔH =1 ΔH =5 ΔH =0.2 ΔH =1 ΔH =5 ΔH =0.2 ΔH =1 ΔH =5 

           0 V=-5 35.5080 32.1523 30.4349 36.376 33.11246 31.534 37.2222 33.144 30.7779 

 V=0 34.4347 32.345 30.234 36.1466 32.0997 30.5967 36.0982 33.445 30.8870 

 V=+5 35.3406 32.0061 29.0685 36.0158 32.6096 30.0646 36.0703 33.0226 29.3294 

           1 V=-5 29.789 27.456 26.657 30.567 28.2349 26.4022 31.0261 29.0290 27.123 

 V=0 29.5411 27.3002 25.7249 30.6559 27.8182 26.0613 31.6771 28.5610 26.4857 

 V=+5 29.423 26.6506 24.7582 30.3212 27.0007 25.134 31.5273 28.0549 25.235 

           2 V=-5 26.0241 24.327 23.5680 27.1242 25.0877 23.8444 28.0663 25.7781 24.145 

 V=0 25.754 23.4876 22.344 27.0500 24.524 22.5961 28.0990 25.0613 23.0500 

 V=+5 25.567 23.3046 21.728 26.337 24.0705 22.0071 28.0307 24.7128 22.0722 

           3 V=-5 23.0875 22.0912 21.210 24.6248 22.3476 21.6483 25.0176 23.5765 22.1153 

 V=0 23.0845 21.2398 20.5211 24.4325 22.2889 20.6050 25.6344 23.0883 21.0852 

 V=+5 22.0796 20.723 19.3070 24.2787 21.7001 19.4069 25.5500 22.4847 20.0024 

In Figs. 6 and 7, the demonstration for the variation 
of dimensionless deflection of nanobeam with the 
moisture constant with different electric voltage via 
various magnetic potentials is given. From this, it is ob-
tained that the rise in moisture constants weakens the 
value of deflection. Also, it is referred that the positive 
voltage values increase the stiffness than negative volt-
age. The obtained results of these figures indicate that 
the maximum deflection increases with increasing the 
magnetic potential of the nanobeam. Figures 8 and 9 
expose the effect of critical temperature on the dimen-
sionless deflection via moisture coefficient rise with 
different electric voltage values. It can be noticed that 
the increase in critical temperature drives to reduce 
the dimensionless deflection. Also, the moisture coeffi-
cient rise exposes the less magnitude rise in dimen-
sionless deflection while increasing temperature val-
ues. The results reveal the truth that the moisture co-
efficient variations soften the variant values via critical 
temperature.  

The variations of the dimensionless deflection of 
nanobeams versus the Winkler and Pasternak param-
eters for various electric voltages are shown in Fig.10 
and 11, respectively. It is found from this figure that re-
gardless of the sign and magnitude of electric voltage, 
the dimensionless deflection increases with the in-
crease of Winkler and Pasternak parameters, So the in-
crement in stiffens of the nanobeam. At a constant elec-
tric voltage, the growth of dimensionless defection 
with Pasternak parameter measurement has a higher 
rate than the Winkler parameter.  

 
Fig. 6. Effect of moisture constant versus dimensionless deflection 

via , Ω = 0.5 (L/h=10, Kp =Kw=20) . 

 
Fig. 7.  Effect of moisture constant versus dimensionless deflection 

via  Ω = 1.5 (L/h=10, Kp =Kw=20) . 

/L h
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Fig. 8. Effect of critical temperature versus dimensionless deflection 

via ΔH=0.5 (L/h=10, Kp =Kw=20, Ω = 0). 

 
Fig. 9. Effect of critical temperature versus dimensionless deflec-

tion via ΔH=1.5 (L/h=10, Kp =Kw=20, Ω = 0). 

 
Fig. 10. Effect of the Pasternak foundation versus dimensionless 

deflection (L/h=10, Ω = 0  ,μ = 2, ΔH = 1.5). 

 
Fig. 11. Effect of the Winkler foundation versus dimensionless de-

flection (L/h=10, Ω = 0 ,μ = 2, ΔH = 1.5). 

6. Conclusion  

External electric voltages on the deflection of Hy-
gro-magneto-electro-elastic (HMEE) embedded nano-
beams are studied in this article. The governing equa-
tions of nonlocal nanobeams based on higher-order re-
fined beam theory are obtained using Hamilton's prin-
ciple and solved by an analytical solution. A parametric 
study is presented to observe the effect of the nonlocal 
parameter, slenderness, moisture constant, critical 
temperature, and the foundation constants on the de-
flection characteristics of nanobeam via different ap-
plied electric voltages. Some of the bolded highlights of 
this research are as follows. 

1. The dimensionless deflection can be amplified 
using a higher nonlocal parameter. 

2. The maximum dynamic response can be arrived 
at by choosing higher magnetic intensity. 

3. The system's dimensionless deflection can be 
gradually amplified when the electric voltage is 
negative. 

4. The moisture values soften the dimensionless de-
flection in the presence of magnetic potential. 

5. The dimensionless deflection may be weakened 
by bigger values of critical temperature in a hu-
mid environment. 

6. The Pasternak parameters propose a higher de-
flection than the Winkler parameter when the ap-
plied electric voltage is constant. 

7. The compressive and tensile nature is proven to 
deflect nanobeams via positive and negative volt-
age generation. 
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