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This paper develops the new logarithmic higher-order shear deformation theory (LHSDT) 

incorporating isogeometric method for free and forced vibration analyses of functionally 

graded carbon nanotubes reinforced composite (FG-CNTRC) plates. In this theory, a 

logarithmic function is employed to approximate the distribution of shear strains along the 

plate thickness which satisfies the condition of zero tractions on the top and bottom surfaces 

of the plate. The plate is assumed to be fabricated from a mixture of carbon nanotubes 

(CNTs) and a polymeric matrix. The CNTs are either uniformly distributed or functionally 

graded (FG) along the thickness direction of the plate. The modified rule of mixture scheme 

is applied to estimate the effective mechanical properties of FG-CNTRC plates. The 

governing equations are derived from Hamilton’s principle. Furthermore, the Newmark 

approach is utilized to predict the temporal response of FG-CNTRC plates under different 

transverse dynamical loadings. The applicability and efficiency of the present formulation 

in predicting vibrational characteristics of FG-CNTRC plates are investigated through an 

extensive set of numerical examples considering different configurations of the plate. It is 

revealed that the computed results are in excellent agreement with other solution methods 

extracted by the 3D model and other plate theories. Eventually, a detailed parametric study 

is conducted to explore the influence of related parameters on the natural frequencies and 

temporal response of FG-CNTRC plates. 

1. Introduction

It has always been a demand in science and
engineering to find novel materials with 
improved properties. CNTs have extraordinary 
mechanical, thermal, and electrical properties, 
and therefore, they are an appropriate candidate 
for use as reinforcement in a polymetric matrix 
[1,2]. In recent years, several research papers 
have been published to investigate different 
mechanical behaviors of carbon nanotube-
reinforced composite (CNTRC) structures [3-21]. 
In 2009, Shen [3] combined the concepts of FG 
distribution and CNTRCs and introduced a new 
class of materials known as FG-CNTRCs.  

There is a rich literature on the mechanical 
response of FG-CNTRC plates in bending, 
vibration, and buckling. Especially, the vibration 
problem of FG-CNTRC plate structures has been 
solved by many researchers during the last 

decade. In this regard, they have employed 
different analytical, semi-analytical and 
numerical methods based on three-dimensional 
(3D) elasticity theory or equivalent-single-layer 
(ESL) theories. Depending on whether shear and 
normal deformation effects are taken into 
account, different ESL theories are derived from 
the 3D elasticity theory. In the simplest ESL 
theory, the classical plate theory (CPT), 
transverse shear deformation effects are ignored 
[22]. The CPT provides acceptable results only for 
thin plate structures. The next one is the first-
order shear deformation theory (FSDT) which 
considers constant transverse shear strains. In 
this theory, a shear correction factor is required 
in order to impose the condition of zero-tractions 
at the inner and outer levels. The determination 
of this factor is difficult since it depends on the 
geometry and material of the plate [23]. The 
FSDT generates good results for thin and 
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moderately thick plates; however, it suffers from 
shear locking phenomena [24]. Recently, some 
modifications have been devoted to this theory to 
eliminate the condition above [24-26]. To 
overcome these obstacles, higher-order shear 
deformation theories (HSDTs) are developed. 
During past decades, numerous polynomial [27-
30] and nonpolynomial [31-37] functions have 
been used by many researchers to predict the 
distribution of shear strains along the plate 
thickness. Recently, Zhu et al. [38] proposed a 
new logarithmic shear shape function and 
studied bending, free vibration, and buckling 
behaviors of FG plates via the isogeometric 
method. They showed that the presented LHSDT 
could predict accurate numerical results.  

Isogeometric analysis (IGA) is a relatively 
novel numerical approach which Hughes and his 
co-workers proposed in 2005 [39]. IGA can be 
regarded as the extension of the traditional finite 
element analysis (FEA). In this method, the Non-
Uniform Rational B-Splines (NURBS) are 
employed for the description of geometry as well 
as unknown field variables. As a result, in this 
idea, geometric design and computational 
analysis are linked. The IGA possesses several 
advantages compared to the traditional FEA due 
to the exclusive characteristics of NURBS, 
including smoothness, high-order continuity, and 
reduction of total degree-of-freedom [40-43]. 

Analytical methods provide solutions with 
high accuracy; however, their applications are 
restricted to certain types of plate problems. 
Abdollahzadeh Shahrbabaki and Alibeigloo [44] 
performed a 3D free vibration analysis of FG-
CNTRC rectangular plates using the Ritz method. 
They reported the computed results for several 
combinations of boundary conditions and 
different geometrical and material parameters. 
Zhang et al. [45] employed the state-space Levy 
method to determine the free vibration response 
of FG-CNTRC plates. In their work, it is assumed 
that the plates are subjected to in-plane loads. 
They computed the plates' natural frequencies 
and mode shapes based on the proposed 
approach. By using Navier’s method and in the 
context of the FSDT, Duc et al. [46] analyzed the 
static and free vibration behaviors of FG-CNTRC 
plates resting on elastic foundations. They 
presented several numerical examples to verify 
the accuracy of the results compared to those 
obtained by previous approaches. 

The semi-analytical methods, which are 
neither analytical nor can be classified as 
numerical solutions, are also applied to 
investigate the vibrational behavior of FG-CNTRC 
plates. Malekzadeh and Heydarpour [47] used a 
3D semi-analytical approach for static and free 
vibration analyses of laminated plates with FG-
CNTRC layers. They assumed that each layer is 

fabricated from a single-walled carbon 
nanotubes (SWCNTs) mixture and an isotropic 
matrix. In their investigation, the layerwise-
differential quadrature method (LW-DQM) is 
used to describe the displacement field in the 
thickness direction. Alibeigloo and Emtehani [48] 
obtained a closed-form solution for static and 
free vibration responses of FG-CNTRC plates. 
They used Fourier series expansion and the state 
space technique along the in plane and thickness 
directions, respectively. Wang et al. [49] 
employed the multi-term Kantorovich-Galerkin 
method to investigate free vibration and buckling 
behaviors of FG-CNTRC plates based on the CPT. 
They solved the governing equations with the 
state-space approach. 

In addition, several numerical techniques 
have already been employed to study the 
vibrational behavior of FG-CNTRC plate 
structures. In this respect, Zhu et al. [5] applied 
the finite element method (FEM) in the context of 
the FSDT to evaluate natural frequencies and 
mode shapes for various patterns of FG-CNTRC 
plates. Using the element-free kp-Ritz method in 
the framework of the FSDT, Lei et al. [50] 
investigated free vibration analysis of laminated 
FG-CNTRC plates in a thermal environment. They 
examined the influences of various parameters 
such as boundary condition, CNTs volume 
fraction, width-to-thickness ratio, aspect ratio, 
and temperature change. Wu and Li [51] examine 
the 3D free vibration analysis of FG-CNTRC 
rectangular plates. They developed a unified 
formulation of finite prism methods (FPMs) 
based on Reissner’s mixed variational theorem 
for FG-CNTRC and fiber-reinforced composite 
(FRC) plates. They assumed two opposite edges 
of the plates to be simply supported and the 
remaining edges to be clamped, simply supported 
or free. In the case of FG-CNTRC plates, they 
verified the solution method with the FSDT based 
FEM and those obtained by ANSYS software. 
Malekzadeh and Zarei [52] performed free 
vibration analysis of quadrilateral laminated FG-
CNTRC plates. They discretized the governing 
equations according to the differential 
quadrature method (DQM). They investigated the 
effects of different related parameters. Zhang et 
al. applied the element-free IMLS-Ritz method to 
study free vibration of various FG-CNTRC plate 
structures with different configurations [53-55]. 
Using the HSDT kinematic model and FEM, Mehar 
et al. [56] investigated the free vibration 
response of FG-CNTRC plates subjected to 
elevated temperature. Phung-Van et al. [57] 
applied the isogeometric method based on the 
third-order shear deformation theory (TSDT) of 
Reddy to study the static and dynamic behaviors 
of FG-CNTRC plates. They compared the 
presented numerical values with those obtained 
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by other numerical approaches. Based on the 
FSDT, Garcia-Macias et al. [58] utilized a shell 
element formulated in the oblique coordinates to 
study the static and free vibration behaviors of 
FG-CNTRC skew plates. They compared the 
computed numerical data with those obtained by 
ANSYS software. The Ritz method is used by Kiani 
[59] in order to evaluate natural frequencies of 
FG-CNTRC moderately thick skew plates 
subjected to different boundary conditions. 
Ansari et al. [60] presented the generalized 
differential quadrature method (GDQM) based on 
the TSDT to analyze free vibration of FG-CNTRC 
thick plates with arbitrary shapes. They showed 
the accuracy of the proposed model through a 
wide range of comparison studies. Using GDQM 
based on FSDT, Majidi et al. [61] performed 
vibration analysis of cantilever FG‑CNTRC 
trapezoidal plates. They presented the numerical 
results for a variety of included geometrical 
parameters. Mohammadi and Setoodeh [62] 
executed the free vibration behavior of 
FG‑CNTRC skew folded plates. They showed that 
the fundamental frequency ratio increases very 
considerably at too high skew angles. 

Heretofore, numerous HSDTs have been 
proposed in the literature. To the best of the 
authors’ knowledge, the new LHSDT has not been 
employed to deal with different mechanical 
behaviors of FG-CNTRC plates. Thus, this paper 
aims to investigate the accuracy and reliability of 
the proposed LHSDT when combined with the 
IGA in studying vibrational behaviors of FG-
CNTRC plates. The remainder of the paper is 
structured as follows. Section 2 provides the 
geometry and material description of FG-CNTRC 
plates. Section 3 contains the kinematic and 
constitutive equations of the plate. In the 
following, the energy formulation of the plate is 
provided. Section 4 represents a brief review of 
the basic concepts of IGA. The isogeometric 
model of the FG-CNTRC plate in free and forced 
vibration analyses is also addressed in this 
section. Then a comprehensive set of results is 
demonstrated in section 5 to show the capability 
and efficiency of the proposed formulation. 
Finally, some concluding remarks are drawn in 
section 6. 

2. Geometry and Material Properties 
of the FG-CNTRC Plate 

Figure 1(a) shows the geometry of an FG-
CNTRC plate with length a, width b, and thickness 
h. The in-plane coordinates (x,y) are also 
displayed in this figure. As depicted in Fig. 1(b), it 
is assumed that the plate is fabricated from a 
polymetric matrix reinforced by SWCNTs with 
uniform distribution (UD) and three linear FG 
patterns. These patterns are denoted by FG-X, FG-

O, and FG-V. The volume fraction of CNTs in the 
cases above are specified by [5,53,54,57,59,62] 

UD: ( )CNT CNTV z V =  (1a) 

FG-X: ( ) 4CNT CNT

z
V z V

h

=  (1b) 

FG-O: 
2

( ) 2 1CNT CNT

z
V z V

h


 

= − 
 

 (1c) 

FG-V: 
2

( ) 1CNT CNT

z
V z V

h

  
= + 

 
 (1d) 

In which z is the thickness coordinate variable. It 
is also notable that all considered patterns have 
the same total volume fraction of CNTs, namely, 

CNTV  , which is given by [5,10,57,59,62] 
CNT

CNT CNT CNT
CNT CNT

m m

w
V

w w
 

 

 =

+ −

 
(2) 

In Eq. (2), CNTw  is the mass fraction of CNTs. 

Moreover, CNT  and m  denote mass densities of 

CNTs and matrix, respectively. 
The modified rule of mixture is adopted in 

order to evaluate the apparent mechanical 
properties of the resulting nanocomposites as 
[5,10,57,59,62,63] 

11 1 11

2

22 22

3

12 12

CNT m

CNT m

CNT m

CNT m

CNT m

CNT m

E V E V E

V V

E E E

V V

G G G







= +

= +

= +

 

(3) 

where , 1,2,3j j =  represent three efficiency 

parameters which are used to consider the size-
dependent effects of CNTRC plates. These 
parameters for three different volume fractions 
of CNTs are given in Table 1 [5,10,57,62]. 

 
(a) 

  

  
(b) 

Fig. 1.  (a) Geometrical model for an FG-CNTRC plate; (b) Typical 
distribution patterns for CNTs along with the plate thickness. 
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Table 1. Efficiency parameters for three different values of 
CNTs volume fractions [5,10,57,62]. 

CNTV   1  2  3  

0.11 0.149 0.934 0.939 

0.14 0.150 0.941 0.941 

0.17 0.149 1.381 1.381 

Furthermore,  11 22 12, ,CNT CNT CNTE E G   and mE  

indicate elastic moduli of the CNTs and Young 
modulus of the matrix, respectively. Finally, the 
volume fraction of CNTs and matrix, which are 
denoted respectively by 

CNTV  and 
mV , satisfy the 

following condition in analogy to the relation 
between volume fractions of matrix and 
reinforcing phase in FRCs 

1CNT mV V+ =  (4) 

The equivalent Poisson’s ratio 
12  and the 

mass density   of the FG-CNTRC plates through 

the thickness are obtained using the conventional 
rule of mixture [5,57,59,62] 

12 12

CNT m

CNT mV V  = +  (5) 

CNT m

CNT mV V  = +  (6) 

where 
12

CNT  and m  represent Poisson’s ratio of 

CNT and matrix, respectively. As reported in [59], 

the equivalent Poisson’s ratio 
12  is weakly 

dependent on the thickness coordinate z and, 

consequently, the distribution of CNTs. 

3. The Logarithmic Higher Order 
Shear Deformation Theory 

3.1. Kinematic and Constitutive Equations 

In a general five parameters HSDT, the 

displacement field ( , , )u v w  of an arbitrary 

material point can be written as [64] 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑡) − 𝑧
𝜕𝑤0(𝑥, 𝑦, 𝑡)

𝜕𝑥
+ 𝑓(𝑧)𝜃𝑥(𝑥, 𝑦, 𝑡) 

𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣0(𝑥, 𝑦, 𝑡) − 𝑧
𝜕𝑤0(𝑥, 𝑦, 𝑡)

𝜕𝑦

+ 𝑓(𝑧)𝜃𝑦(𝑥, 𝑦, 𝑡) 

𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑦, 𝑡) 

(7) 

in which 
0 0 0( , , )u v w  and ( , )x y   express 

displacement components and normal rotations 

of a material point in the mid-plane of the plate. 

Besides, ( )f z  is a kinematic function defines the 

distribution of transverse shear strains along the 

thickness of the plate. The function ( )f z  must 

satisfy the tangential stress-free boundary 

conditions at the top and bottom surfaces of the 

plate. According to this condition, various forms 

of transverse shear functions have been 

proposed by many researchers during past 

decades. These functions include polynomial 

functions [27-30], trigonometric functions and 

their inverse [31,32], exponential function 

[33,34], hyperbolic functions [35,36] and 

combination functions [37]. Recently Zhu et al. 

[38] proposed a logarithmic type of function, 

which is used in this study 

1 4
( ) ln

2 3

h z z
f z

h z h

− 
= + 

+ 
 (8) 

For the considered distribution, one can easily 

check that 

  
2

( ) ( ) 0
z h

g z df z dz
=

= =  (9) 

Some proposed transverse shear functions 

are listed in Table 2 and are plotted in Fig. 2(a). 

Moreover, the derivative of these functions is 

displayed in Fig. 2(b), which confirms the 

condition of zero shear stress at the upper and 

lower surfaces of the plate. 

Table 2. Some proposed transverse shear functions in the 
literature. 

Model Transverse shear function 

Reddy [27] 
2

2

4
( ) 1

3

z
f z z

h

 
= − 

 
 

Touratier [31] ( ) sin
h z

f z
h





 
=  

 
 

Soldatos [33] 
1

( ) sinh cosh( )
2

z
f z h z

h

 
= − 

 
 

Karama et al. [35] 
2

2

( ) e

z

hf z z

 
−  
 =   

Mantari et al. [37] 
1

cos
2( ) sin

2

z

hz z
f z e

h h

 
 
 
  

=  + 
 

 

Zhu et al. [38] 
1 4

( ) ln
2 3

h z z
f z

h z h

− 
= + 

+ 
 

 
(a) Shear shape functions 

 
(b) Derivatives of shear shape functions 

Fig. 2.  (a) Some proposed shear shape functions; (b) 
Derivatives of the proposed shear shape functions. 
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The strain tensor components generated by 

the above displacement field are given by [65] 

  𝜀𝑝 = [

𝜀𝑥𝑥

𝜀𝑦𝑦

𝛾𝑥𝑦

] =

[
 
 
 
 

𝜕𝑢0

𝜕𝑥
𝜕𝑣0

𝜕𝑦

𝜕𝑢0

𝜕𝑦
+

𝜕𝑣0

𝜕𝑥 ]
 
 
 
 

+ 𝑧

[
 
 
 
 −

𝜕2𝑤0

𝜕𝑥2

−
𝜕2𝑤0

𝜕𝑦2

−2
𝜕2𝑤0

𝜕𝑥𝜕𝑦]
 
 
 
 

 

+𝑓(𝑧)

[
 
 
 
 
 
 

𝜕𝜃𝑥

𝜕𝑥
𝜕𝜃𝑦

𝜕𝑦

𝜕𝜃𝑥

𝜕𝑦
+

𝜕𝜃𝑦

𝜕𝑥 ]
 
 
 
 
 
 

 

𝛾 = [
𝛾𝑦𝑧

𝛾𝑥𝑧
] = 𝑔(𝑧) [

𝜃𝑦

𝜃𝑥
] 

(10) 

The non-zero strain components are usually 

gathered into a single vector and can be rewritten 

as [38,66,67] 

𝜀 = [𝜀𝑝 𝛾]𝑇 =
[𝜀𝑥𝑥 𝜀𝑦𝑦 𝛾𝑥𝑦 𝛾𝑦𝑧 𝛾𝑥𝑧]𝑇 = 𝑍𝜀̂ 

(11) 

where 

𝑍 =

[
 
 
 
 
 
 
 
 
 
 
 

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
𝑧 0 0 0 0
0 𝑧 0 0 0
0 0 𝑧 0 0

𝑓(𝑧) 0 0 0 0
0 𝑓(𝑧) 0 0 0
0 0 𝑓(𝑧) 0 0
0 0 0 𝑔(𝑧) 0
0 0 0 0 𝑔(𝑧)]

 
 
 
 
 
 
 
 
 
 
 
𝑇

 
(12) 

and 

  𝜀̂ =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜕𝑢0

𝜕𝑥
𝜕𝑣0

𝜕𝑦

𝜕𝑢0

𝜕𝑦
+

𝜕𝑣0

𝜕𝑥

−
𝜕2𝑤0

𝜕𝑥2

−
𝜕2𝑤0

𝜕𝑦2

−2
𝜕2𝑤0

𝜕𝑥𝜕𝑦

𝜕𝜃𝑥

𝜕𝑥
𝜕𝜃𝑦

𝜕𝑦

𝜕𝜃𝑥

𝜕𝑦
+

𝜕𝜃𝑦

𝜕𝑥

𝜃𝑦

𝜃𝑥 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (13) 

The generalized Hook’s law can be expressed 

as [57,68-71] 

=σ Qε  (14) 

in which  

11 12
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55 13
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
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−
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−

=

=

=

 (16) 

3.2. Energy Formulation of the FG-CNTRC 
Plate 

The total potential energy ( )  of the plate 

can be expressed as [38] 

p p FU T U = − −  (17) 

The strain energy pU  of the plate can be 

written as   

0

2

0

2

1 1

2 2

h

T T

p

V h

U dV dzd



−

= =  σ ε σ ε  (18) 

where V  and 
0  denote the volume and mid-

surface area of the plate, respectively. With the 

aid of Eqs. (11) and (14), Eq. (18) can be 

rewritten as 

𝑈𝑝 =
1

2
∫ ∫ (𝑄𝜀)𝑇𝜀𝑑𝑧𝑑𝛺0

ℎ
2

−
ℎ
2

𝛺0

 

=
1

2
∫ ∫ 𝜀𝑇𝑄𝑇𝜀𝑑𝑧𝑑𝛺0

ℎ
2

−
ℎ
2

𝛺0

 

=
1

2
∫ ∫ (𝑍𝜀̂)𝑇𝑄𝑍𝜀̂𝑑𝑧𝑑𝛺0

ℎ
2

−
ℎ
2

𝛺0

 

=
1

2
∫ ∫ 𝜀̂𝑇𝑍𝑇𝑄𝑍𝜀̂𝑑𝑧𝑑𝛺0

ℎ
2

−
ℎ
2

𝛺0

 

=
1

2
∫ 𝜀̂𝑇𝐶
𝛺0

𝜀̂𝑑𝛺0 

(19) 
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where C is the matrix of elastic constants, which 

is defined by 

𝐶 = ∫ 𝑍𝑇𝑄𝑍𝑑𝑧
ℎ

2

−
ℎ

2

 (20) 

By substituting of Eqs. (12) and (15), one can 

obtain 

𝐶 = [

𝐴 𝐵 𝐸 0
𝐵 𝐷 𝐹 0
𝐸 𝐹 𝐻 0
0 0 0 𝐴𝑠

] (21) 

with 

( )

( )
2

2 2

2

2

2

2

, , , , ,

1, , , ( ), ( ), ( ) ( ) ,

, 1, 2,6

( ) ( ) ,

, 4,5

ij ij ij ij ij ij

h

ij

h

h

s
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The kinetic energy pT  is given by [38] 

0

2
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h
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p

V h

T dV dzd


  
−

= =  U U U U  (23) 

In which U  is the global displacement vector 

defined by 

 𝑈 = 𝛩𝑢̄ (24) 

with 

0
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By substituting Eq. (24) into Eq. (23), one can 

write 

𝑇𝑝 =
1

2
∫ ∫ (𝛩𝑢̇̄)𝑇𝜌(𝛩𝑢̇̄)𝑑𝑧𝑑𝛺0

ℎ
2

−
ℎ
2

𝛺0

 

=
1

2
∫ ∫ 𝑢̇̄𝑇𝛩𝑇𝜌𝛩𝑢̇̄𝑑𝑧𝑑𝛺0

ℎ

2

−
ℎ

2
𝛺0

 

(26) 

Therefore, the kinetic energy of the plate can be 

expressed by 

𝑇𝑝 =
1

2
∫ 𝑢̇̄𝑇𝑚𝑢̇̄𝑑𝑧𝑑𝛺0𝛺0

 (27) 

where 

𝑚 = [

𝑚1 𝑚2 𝑚4

𝑚2 𝑚3 𝑚5

𝑚4 𝑚5 𝑚6

] (28) 

with 

(𝑚1, 𝑚2, 𝑚3, 𝑚4, 𝑚5, 𝑚6) = 

𝐼 ∫ (1, 𝑧, 𝑧2, 𝑓(𝑧), 𝑧𝑓(𝑧), 𝑓2(𝑧))
ℎ

2
−ℎ

2

𝜌(𝑧)𝑑𝑧 
(29) 

in which I is the identity matrix of order 3 3 .  

Finally, the work generated by the external 

transverse load p̂  is calculated by 

0

0 0

1
ˆ

2
FU w pd



=   (30) 

4. Isogeometric Model of FG-CNTRC 
Plates 

In this section, the isogeometric model for 
studying the vibrational behavior of FG-CNTRC 
plates is demonstrated. 

4.1. Basic Definitions 

In this sub-section, some fundamental 

concepts of the IGA are reviewed. To have a 

detailed study, one can refer to [39,72]. In order 

to generate B-splines and NURBS basis functions, 

a knot vector must be defined, which is a non-

decreasing set of numbers, represented as 

 1 2 1, ,..., n p   + +=Ξ . In this definition, 
i  is the i-

th knot, n denotes the number of basis functions, 

and p stands for the polynomial order. This study 

uses open and uniform knot vectors, which 

means that the knots are equally spaced. 

Moreover, the first and last knots are repeated 

p+1 times. The univariate B-spline basis 

functions ,i pN  are produced by inserting knot 

values into the well-known Cox-de Boor 

recursion formula, starting with the zeroth-order 

(p=0) basis function as [73,74] 

1
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1 if
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It should be indicated that for p=0, 1, the 
generated polynomials are identical to those 
considered in the standard FEM. However, they 
are different for higher-order basis functions. 

A B-Spline curve of degree p is defined as 

follows 

𝐶(𝜉) = ∑ 𝑁𝑖,𝑝(𝜉)𝑃𝑖
𝑛
𝑖=1  (32) 

where  ,
T

ix iyP P=
i

P  are coordinate positions of 

the i-th control point.  

A B-spline surface is easily obtained by the 
tensor product of two univariate basis functions 
of order p and q, respectively constructed on two-

knot vectors of  1 2 1, ,..., n p   + +=Ξ  and 

 1 2 1, ,..., m q   + +=Η . This definition is 

mathematically expressed by 

, ,

1 1

( , ) ( ) ( )
n m

i p j q i, j

i j

N M   
= =

=S P  (33) 

where , ( )i pN  and , ( )j qM   are two univariate B-

spline basis functions in ξ and η directions, 
respectively. Also, i, jP  is a n m  net of control 

points. 
Equation (33) is typically rewritten in the 

familiar notation which is used in finite element 

1

( , ) ( , )
n m

I I

I

N   


=

=S P  (34) 

where , ,( , ) ( ) ( )I i p j qN N M   =  is the basis 

function corresponding to the control point I. 
To exactly describe the geometric model of 

various objects such as conic sections, NURBS are 
defined. In two-dimensional space, a NURBS 
surface is defined as 

1

( , ) ( , )
n m

I I

I

R   


=

=S P  with 

1

( , )
( , )
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I n m

I I

I

N w
R

N w

 
 

 


=

=


 

(35) 

in which 
Iw  is the weighting coefficient 

associated with the I-th control point. These 

numerical values control the flexibility of the 

surface at the control point location. 

4.2. Discretization of Field Equations 

The field equations are discretized using 

NURBS basis functions as follows 

𝑢(𝜉, 𝜂) = ∑ 𝑅𝐼(𝜉, 𝜂)
𝑛𝐶𝑃
𝐼=1 𝑞𝐼 (36) 

where CPn  is the number of control points for 

the whole plate and [ ]T

I I I I xI yIu v w  =q  

is the vector of nodal displacements associated 
with the control point I.  

Substitution of Eq. (36) respectively into Eqs. 
(18), (23) and (30), then the resulting 
expressions into Eq. (17), and finally using 
Hamilton’s principle, the vibrational behavior is 
described by the following matrix form  

𝑀𝑞̈ + 𝐾𝑞 = 𝐹 (37) 

where K  is the stiffness matrix, M  is the mass 

matrix, and F  is the load vector. They are 

respectively expressed by 

𝐾 = ∫ 𝐵𝑘
𝑇𝐶𝐵𝑘𝑑𝛺0

𝛺0

 

𝑀 = ∫ 𝐵𝑚
𝑇 𝑚𝐵𝑚𝑑𝛺0

𝛺0

 

𝐹 = ∫ 𝑝̂𝑁𝑑𝛺0𝛺0
 

(38) 
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(39) 

4.3. Time Marching 

The time-dependent part of the problem is 

solved using the Newmark scheme. In this 

approach, it is assumed that the initial state 
0t t=  

is known as 
0 0 0( , , )q q q . Knowing the 

predetermined initial state, the dynamic 

responses at the time 
1 0t t t= + , i.e., 

1 1 1( , , )q q q  

are obtained as [75] 

𝐾̂𝑞1 = 𝐹̂ 

𝑞̈1 = 𝑎0(𝑞1 − 𝑞0) − 𝑎1𝑞̇0 − 𝑎2𝑞̈0 

𝑞̇1 = 𝑞̇0 + 𝑎3𝑞̈0 + 𝑎4𝑞̈1 

(40) 
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where 

𝐾̂ = 𝑎0𝑀 + 𝐾 (41) 

and 

𝐹̂ = 𝐹1 + 𝑀(𝑎0𝑞0 + 𝑎1𝑞̇0 + 𝑎2𝑞̈0) (42) 

with 

0 1 0 22

3 4

1 1
; ; 1;

2

(1 ) ;

a a a t a
t

a t a t



 

= =  = −


= −  = 

 (43) 

The existing coefficients in Eq. (43) are 
assumed to be 0.25 =  and 0.5 = . 

5. Numerical Results 

In this section, the current numerical 

approach is verified. For this purpose, several 

numerical examples are presented to investigate 

the vibrational behavior of FG-CNTRC plates. The 

results are separately presented in two sub-

sections, respectively, for the free and forced 

vibration analyses. In all the examples, quartic 

order ( 4)p q= =  NURBS basis functions are used 

for the geometric description of the plate. Several 

combinations of simply supported (S), clamped 

(C), and free (F) boundaries are considered for 

the FG-CNTRC plate. For simply supported and 

clamped edges, we have [38] 
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(44) 

It should be noted that the condition 

0 0w n  =  is implied by fixing the adjacent 

control points of the corresponding boundary. 
In this study, the poly{(m-phenylenevinylene) 

- co - [ (2,5-dioctoxy-p-phenylene) vinylene]} 
referred to PmPV is considered as the matrix and 
the (10,10) SWCNTs are chosen as the 
reinforcement of FG-CNTRC plates. The material 
properties of these constituents at room 
temperature (T=300K) are listed in Table 3 
[5,10,57,62]. Moreover, it is assumed that 

13 23 12G G G= =  [5,57,62]. In addition, the non-

dimensional frequency parameter and central 
deflections are defined as 

2

3 3 4
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c c
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w w Eh p b

w w E h p b

w w E h p b

  =

=

=

=

 (45) 

where 
0p̂  is the intensity of the applied 

transverse loading. 

5.1. Free Vibration Analysis 

Firstly, it is necessary to investigate the 
convergence and stability of the proposed 
formulation by performing the convergence 
study and comparing the results with those 
available in the open literature. The fundamental 
frequency parameter for various types of 
supported FG-CNTRC plates with CNT volume 

fraction   0.11CNTV  =  are listed in Table 4. It can 

be observed that the convergence behavior is 
very excellent, and the converged values are 
obtained by considering only five elements in 
each direction of the parametric coordinate. 
Besides, the computed results for different with-
to-thickness ratios are simultaneously compared 
with those extracted by other solution methods; 
analytical methods [46], semi-analytical methods 
[48], and numerical techniques [5,50,51,57,62]. 
The present solution is very close to the semi-
analytical method conducted by Alibeigloo and 
Emtehani [48] and the 3D-based FPM reported by 
Wu and Li [51]. 

Moreover, the computed results are in good 
agreement with those obtained by other 
approaches based on different plate models 
[5,46,50,57,62]. In another comparison study, 
Table 5 provides natural frequencies 
corresponding to the first three modes of 
vibration for UD, FG-X, and FG-O CNTRC plates 
having different types of boundary conditions. 
The parameters of the plates are taken to be 

1 100, 0.11CNTa b b h V = = = . The computed 

data are compared with the results obtained by 
Wang et al. [49] via the Kantorovich-Galerkin 
method in the context of the CPT. Again, the 
accuracy and effectiveness of the method are 
evident by considering the fact that the present 
solution generates the lower bounds in all the 
considered modes. 

Table 3. Material properties of (10,10) SWCNTs and PmPV 
matrix at the room temperature (300 K) [5,10,57,62]. 

(10, 10) SWCNTs (PmPV) matrix 

11 5.6466 TPaCNTE = 2.1 GPamE = 

22 7.0800 TPaCNTE = 0.34m = 

12 1.9445 TPaCNTG = 31150 kg mm = 

31400 kg mCNT =  

12 0.175CNT =  
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Table 4. Convergence and comparison study of fundamental frequency parameter ( )2( ) m mb h E  =  for various types 

of simply supported FG-CNTRC plates with different CNT volume fractions ( )1, 0.11CNTa b V = = . 

b h  Method N N =  
Distribution pattern 

UD  FG-X  FG-O  FG-V 

10 Present 1 13.5505  14.6702  11.3785  12.4563 

  3 13.5487  14.6687  11.3766  12.4544 

  5 13.5486  14.6685  11.3765  12.4542 

  7 13.5486  14.6685  11.3765  12.4542 

  9 13.5486  14.6685  11.3765  12.4542 

 
Analytical [46]  ---  14.064  10.779  11.732 

 
Semi-analytical [48]  13.555  14.668  11.332  12.263 

 
FEM (FSDT) [5]  13.532  14.616  11.550  12.452 

 Element-free kp-Ritz method (FSDT) 

[50] 
 13.495  14.578  11.514  12.416 

 
IGA (TSDT) [57]  14.024  15.254  11.773  12.755 

20  1 17.3158  19.9069  13.4256  15.0749 

  3 17.3122  19.9031  13.4226  15.0717 

  5 17.3120  19.9029  13.4224  15.0714 

  7 17.3120  19.9029  13.4224  15.0714 

  9 17.3120  19.9029  13.4224  15.0714 

 
Analytical [46]  ---  18.571  12.316  13.855 

 
FEM (FSDT) [5]  17.355  19.939  13.523  15.110 

 
IGA (TSDT) [57]  17.503  20.241  13.500  15.127 

50 Present 1 19.1597  22.9026  14.2548  16.2047 

  3 19.1548  22.8968  14.2512  16.2007 

  5 19.1545  22.8964  14.2510  16.2003 

  7 19.1545  22.8964  14.2510  16.2003 

  9 19.1545  22.8964  14.2510  16.2003 

 
Analytical [46]  ---  20.959  12.895  14.716 

 
Semi-analytical [48]  19.168  22.898  14.280  16.208 

 
IGA (CPT) [62]  19.5813  23.6446  14.2484  16.4471 

 
FEM (FSDT) [5]  19.223  22.984  14.302  16.252 

 
IGA (TSDT) [57]  19.093  22.880  14.153  16.093 

 
FPM (3D solution) [51]  19.1547  22.9020  14.2370  16.1758 
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Table 5. Comparison study of first three frequency parameters ( )2( ) m mb h E  =  for UD, FG-X, and FG-O 

CNTRC plates with different boundary conditions ( )1 100, 0.11CNTa b b h V = = = . 

Boundary 
condition 

Method Mode 
Distribution pattern 

UD  FG-X  FG-O 

FSFS Present 1 2.8839  2.9813  2.8123 

  2 4.8353  4.9974  4.7056 

  3 11.5308  11.9190  11.2471 

 Wang et al. [49] 1 2.885  2.982  2.812 

  2 4.840  5.003  4.709 

  3 11.537  11.926  11.248 

SSFS Present 1 3.4781  3.5946  3.3897 

  2 12.1730  12.5797  11.8758 

  3 26.5833  27.4691  22.1269 

 Wang et al. [49] 1 3.480  3.597  3.390 

  2 12.181  12.589  11.877 

  3 26.616  27.507  22.203 

CSFS Present 1 7.6637  9.0278  6.0065 

  2 14.1117  15.2166  13.0183 

  3 27.6422  28.8974  26.5876 

 Wang et al. [49] 1 7.684  9.061  6.015 

  2 14.135  15.251  13.029 

  3 27.688  28.955  26.613 

FCFC Present 1 6.5380  6.7567  6.3803 

  2 7.8299  8.0913  7.6327 

  3 18.0045  18.6062  17.5700 

 Wang et al. [49] 1 6.543  6.762  6.382 

  2 7.840  8.103  7.639 

  3 18.031  18.636  17.585 

CCCC Present 1 42.5275  50.9762  31.2851 

  2 46.4807  54.5031  36.2900 

  3 56.4779  63.7455  47.9855 

 Wang et al. [49] 1 43.656  52.969  31.738 

  2 47.576  56.451  36.716 

  3 57.497  65.564  48.383 

CCSC Present 1 30.2226  36.2246  22.4526 

  2 35.5394  41.0252  28.9664 

  3 47.8413  52.6696  42.6551 

 Wang et al. [49] 1 30.662  37.011  22.623 

  2 35.961  41.786  29.121 

  3 48.253  53.389  42.820 
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After successively validating the proposed 

formulation, the effects of various geometrical 

and material parameters on the non-dimensional 

frequency parameters of FG-CNTRC plates are 

studied. Table 6 investigates the influences of 

CNTs distribution and their volume fraction on 

the fundamental frequency parameter of FG-

CNTRC plates. The results are prepared for 

square moderately thick plates ( 1, 10)a b b h= =  

subjected to different types of boundary 

conditions. It can be seen that by increasing the 

CNT volume fraction, the fundamental natural 

frequency changes significantly. This is possibly 

due to an increase in the stiffness of the FG-

CNTRC plate when more CNTs are dispersed into 

the background phase. 

Moreover, one can observe that, for all cases 

under consideration, the FG-X and FG-O 

distributions of CNTs give the greatest and lowest 

natural frequencies, respectively. Accordingly, it 

can be deduced that when the regions near the 

top and bottom surfaces of the plate are enriched 

with more CNTs, the flexural rigidity and, 

consequently, the natural frequency of the plate 

increases. In addition, the effect of boundary 

conditions is examined in this table. The 

presented data reveals that the CFFF and CCCC 

plates possess the lowest and highest vibration 

frequency. Thus, it can be stated that when all 

other geometrical and material parameters are 

kept constant, plates with more constrained 

edges have higher natural frequencies. Finally, it 

can be concluded that, compared with the effects 

of CNTs distribution, CNTs volume fraction, and 

boundary condition, the CNTs distribution has a 

lower influence on the fundamental frequency 

parameter of the plate. 

It will be substantial to consider the effect of 
the width-to-thickness ratio on the frequency 
parameters of CNTRC plates having different FG 
patterns. In this study, five relative width-to-

thickness ratios ( 5, 10, 20, 50, 100)b h =  are 

considered. The first six frequency parameters 
for SSSS and CCCC plates with CNT volume 

fraction 0.17CNTV  =  are exhibited in Table 7. It 

can be observed that when we move from thin 
( 100)b h =  to thick ( 5)b h =  plates, remarkable 

drops occur in the frequency parameters. It can 
also be seen that for 5b h = , the frequency 

parameters are close to each other for all the 
CNTs distribution. Thus, it can be deduced that 
the effect of CNTs distribution is insignificant 
when the plate is comparably thick. These 
conclusions are true for two considered 
boundary conditions.  

   

Table 6. The fundamental frequency parameter ( )2( ) m mb h E  =  for various patterns of FG-CNTRC plates 

with different CNT volume fractions subjected to different types of boundary conditions ( )1, 10a b b h= = . 

Boundary condition CNTV   
Distribution pattern 

UD  FG-X  FG-O  FG-V 

SSSS 0.11 13.5486  14.6685  11.3765  12.4542 

 0.14 14.3513  15.3895  12.1732  13.2774 

 0.17 16.8297  18.1733  14.1343  15.4474 

CCCC 0.11 18.6139  19.3399  16.7479  18.0751 

 0.14 19.3053  19.9684  17.4754  18.8295 

 0.17 23.2131  24.0150  21.0217  22.5522 

CSCC 0.11 16.4770  17.3325  14.6043  15.7524 

 0.14 17.1816  17.9815  15.3267  16.5020 

 0.17 20.5269  21.5398  18.2500  19.6260 

CSSS 0.11 13.9654  15.0702  11.8619  12.9187 

 0.14 14.7570  15.7918  12.6352  13.7273 

 0.17 17.3552  18.7014  14.7320  16.0384 

CCFF 0.11 5.6700  6.3689  4.5126  5.0379 

 0.14 6.1226  6.8180  4.9032  5.4645 

 0.17 7.0225  7.8801  5.5778  6.2246 

CFCF 0.11 6.1376  6.3092  6.0164  6.1714 

 0.14 6.2466  6.4839  6.0783  6.2879 

 0.17 7.6793  8.0582  7.4295  7.7550 

CFFF 0.11 1.0197  1.0534  0.9952  1.0256 

 0.14 1.0378  1.0843  1.0041  1.0450 

 0.17 1.2758  1.3501  1.2256  1.2889 
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It is also worthwhile to investigate the 
variation of frequency parameters as the plate 
aspect ratio ( )a b  is varied. Table 8 contains the 

first six frequency parameters for different 
configurations of simply supported and fully 

clamped FG-CNTRC plates with 10b h =  and 

0.17CNTV  =  having different aspect ratios 

( 1, 1.5, 2)a b = . It can be seen that for all 

considered patterns of CNTs and certain values of 
width-to-thickness ratio and volume fraction, the 
frequency parameters drop remarkably as the 
aspect ratio increases. 

5.2. Forced Vibration Analysis 

In this section, the transient response of FG-
CNTRC plates subjected to a distributed 
transverse load is demonstrated.   

Firstly, the comparison study is performed for 
two examples. In the first one, we consider a 
homogeneous plate which is simply supported all 
around and subjected to a uniformly distributed 
step load of intensity 

0p̂ . The parameters of the 

plate are given by 

 
3

0.25m, 10, 21GPa,

0.25, 800kg m

a b b h E

 

= = = =

= =
 

Figure 3 shows the variation of non-
dimensional central deflection ( )cw  versus time. 

The computed results are simultaneously 
compared with the FEM solution executed by 
Reddy [76]. An excellent agreement is revealed 
between both sets of results which demonstrates 
the capability of the proposed numerical 
approach to capture the temporal response of the 
plate. 

 
Table 7. The first six non-dimensional frequency parameters ( )2( ) m mb h E  =  for various patterns of simply supported and 

fully clamped FG-CNTRC plates have a different width-to-thickness ratio ( )1, 0.17CNTa b V = = . 

b h  Mode 
SSSS 

 
CCCC 

UD FG-X FG-O FG-V UD FG-X FG-O FG-V 

5 1 10.9189 11.2557 10.0091 10.6149  14.2568 14.6841 13.1082 14.1829 

 2 12.1538 12.2406 12.2406 12.2382  19.8667 20.3033 19.1084 19.9120 

 3 12.1538 12.2406 12.2406 12.2382  23.3180 23.5147 23.5147 23.4976 

 4 15.9014 16.3453 15.3050 15.8541  27.4858 28.6501 24.1766 27.3102 

 5 23.2366 23.4323 21.5729 23.2719  28.6429 29.0588 28.1268 28.7991 

 6 23.4920 24.0826 23.4323 23.3866  30.8184 31.6067 28.2331 30.7553 

10 1 16.8297 18.1733 14.1343 15.4474  23.2131 24.0150 21.0217 22.5522 

 2 22.0023 23.3221 19.9756 21.2329  29.6686 30.6881 27.8499 29.3387 

 3 24.3076 24.4812 24.4812 24.4800  42.2209 43.5286 40.7311 42.2372 

 4 24.3076 24.4812 24.4812 24.4800  45.7487 47.0295 41.3607 44.7372 

 5 33.9269 35.4487 32.3595 33.7498  46.6360 47.1994 45.7015 47.0122 

 6 41.0828 42.4255 36.9195 39.5148  49.6034 51.1210 47.0295 48.8709 

20 1 21.3979 24.6024 16.5379 18.5837  35.9828 38.7426 30.1754 33.0916 

 2 26.5680 29.5479 22.6224 24.6132  41.7247 44.5474 36.6482 39.5135 

 3 39.6898 42.7031 36.5340 38.7809  55.1716 58.3193 50.8844 53.9061 

 4 48.6152 48.9623 48.9623 48.9617  76.2045 79.9479 66.3736   71.9371 

 5 48.6152 48.9623 48.9623 48.9617  76.2706 80.2275 70.3103 75.7489 

 6 60.3951 63.9225 53.2979 58.7331  79.6238 83.5865 72.3239 75.7675 

50 1 23.6068 28.2655 17.4918 19.9179  48.9376 57.0414 36.9501 41.8914 

 2 28.8077 33.1633 23.6808 26.0667  54.0493 61.8894 43.1638 47.9762 

 3 42.3600 46.6015 38.1759 40.8859  66.8718 74.4535 57.5791 62.4560 

 4 64.7746 69.6027 60.7219 64.2905  88.9765 96.7396 80.8206 86.2492 

 5 86.3863 101.2261 64.2266 73.1467  119.9988 128.5968 93.7105 105.4651   

 6 89.0474 101.5366 67.7032 76.4772  121.0650 137.2946 97.4892 109.0781 

100 1 23.9853 28.9422 17.6431   20.1351  52.4004 62.8907 38.3994 43.9303 

 2 29.1946 33.8388 23.8495 26.3049  57.4093 67.5611   44.5783 49.9683 

 3 42.8158 47.3199 38.4370 41.2292  70.0416 79.7311 59.0046 64.4312   

 4 65.5165 70.6188 61.2604 64.9589  92.1967 101.8170 82.5360 88.5229 

 5 91.6894 102.9894 66.4282 76.2611  123.8361 134.1504 101.5261 116.1646 

 6 94.4276 110.5898 69.9674 79.6720  138.3135 164.4419 105.3397 119.8165 
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Table 8. The first six non-dimensional frequency parameters ( )2( ) m mb h E  =  for various patterns of simply supported and 

fully clamped FG-CNTRC plates have a different aspect ratio ( )10, 0.17CNTb h V = = . 

a b  Mode 
SSSS 

 
CCCC 

UD FG-X FG-O FG-V UD FG-X FG-O FG-V 

1.0 1 16.8297 18.1733 14.1343 15.4474  23.2131 24.0150 21.0217 22.5522 

 2 22.0023 23.3221 19.9756 21.2329  29.6686 30.6881 27.8499 29.3387 

 3 24.3076 24.4812 24.4812 24.4800  42.2209 43.5286 40.7311 42.2372 

 4 24.3076 24.4812 24.4812 24.4800  45.7487 47.0295 41.3607 44.7372 

 5 33.9269 35.4487 32.3595 33.7498  46.6360 47.1994 45.7015 47.0122 

 6 41.0828 42.4255 36.9195 39.5148  49.6034 51.1210 47.0295 48.8709 

1.5 1 9.5878 10.6265 7.9529 8.7255  15.2301 16.0076 13.6379 14.6173 

 2 16.2051 16.3208 15.6637 16.3204  23.8975 24.8936 22.6756 23.7110 

 3 16.7919 17.8521 16.3208 16.5258  28.5707 29.6788 25.6880 27.5779 

 4 24.3076 24.4812 21.3922 23.1620  34.2701 35.4971 31.8794 33.6662 

 5 24.7563 26.1551 24.4812 24.4800  38.3499 39.6338 37.2924   38.4841 

 6 28.6662 30.0548 25.9300 27.5850  42.9736 43.3461 40.3894 43.3316 

2.0 1 6.6420 7.3870 5.6556 6.1533  11.7567 12.4949 10.5690 11.2948   

 2 12.1538 12.2406 12.2406 12.2404  20.6276 21.6457 18.3472 19.7098 

 3 15.0954 15.9771 14.1343 15.0597  21.8099 22.7694 20.8897 21.7587 

 4 16.8298 18.1734 14.3465 15.4474  27.8821 29.0346 26.1123 27.4354 

 5 22.0024 23.3222   19.9756   21.2330  31.8836 33.1207 28.5903 30.6853 

 6 24.3076 24.4812 24.4812 24.4800  37.0588 38.3190 34.3944 36.3522 

 

 

In the next example, a laminated plate with 

0.25m, 0.01ma b h= = =  which is subjected to 

suddenly applied step load is considered. It is 
assumed that each lamina has the following 
material properties 

2 1 2 12 13 2

3

23 2 12

21GPa, 25 , 0.5 ,

0.2 , 0.25, 800kg m

E E E G G E

G E  

= = = =

= = =
 

Figure 4 plots non-dimensional central 
deflection ( )cw  for CCFF and CFFF laminated 

square plates with the ply arrangement of 

0 / 90    against time. The transient solutions 

are compared with those obtained by Maleki et al. 
[77]. They employed the GDQM according to the 
FSDT to generate their results. Again, it can be 
observed that a very good agreement exists 
between the present solution and those reported 
in Ref. [77]. 

In the following, the dynamical load p̂  is 

defined as 

0
ˆ ˆ( , , ) sin( )sin( ) ( )

x y
p x y t p t

a b

 
=  (46) 

 

 

Fig. 3. Non-dimensional central deflection (𝑤̄𝑐) of the simply 
supported homogeneous plate under step uniform load 

( )30.25m, 0.025m, 21GPa, 0.25, 800kg ma b h E  = = = = = =
. 
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Fig. 4. Non-dimensional central deflection (𝑤̃𝑐) of CCFF and CFFF 

0 / 90    laminated square plates under step uniform load 

2 1 2

3

12 13 2 23 2 12

0.25m, 0.01m, 21GPa, 25 ,

0.5 , 0.2 , 0.25, 800kg m

a b h E E E

G G E G E  

 = = = = =
 
 = = = = = 

. 

where ( )t  is a function of the time variable t as 

Step 

loading: 

1

1

1 0
( )

0

t t
t

t t


 
= 


 (47a) 

Triangular 

loading: 
1 1

1

1 0
( )

0

t t t t
t

t t


−  
= 



 (47b) 

Sinusoidal 

loading: 

( )1 1

1

sin 0
( )

0

t t t t
t

t t




 
= 


 (47c) 

Explosive 

blast 

loading: 

ˆ
( ) tt e  −=  (47d) 

with 1

1 0
ˆ ˆ0.002s, 330s , 0.1MPat p −= = = .  

It is worth noting that, for the step, triangular 
and sinusoidal loadings, it is assumed that the 
plates are subjected to the aforementioned 
dynamical loads in the interval of 0 to 

1t . After 

that, the load is eliminated, and the plates vibrate 
freely. However, in the case of explosive blast 
loading, it is assumed that the load is 
continuously applied to the plate. 

Figures 5-8 investigate the influences of 
different FG patterns of CNTs on the non-
dimensional central deflection ˆ( )cw  of the plates 

when they are subjected to dynamical step, 
triangular, sinusoidal, and explosive blast 
loadings. The plates are characterized by 

0.25m, 10a b b h= = = . It can be deduced that 

plates with FG-X and FG-O shapes have the upper 
and lower bounds for the central deflections and 
period of vibration, which is considered as a 
superior result in engineering design. As 
expected, the dynamic response of UD plates lies 
between the FG-X and FG-O ones. Thus, it can be 
concluded that the distribution of CNTs at the top 
and bottom surfaces of the plate is more 
beneficial than the dispersion of CNTs at the mid-
surface.  

Another study assumed that plates with the 
same geometrical configuration and different 
CNTs volume fraction are subjected to loading the 
above types. Moreover, the distribution pattern 
of FG-X is considered for the plates to account for 
the lower bound of deflection. Subsequently, the 
time histories of non-dimensional central 
deflection of plates ˆ( )cw  are plotted in Figs. 9-12. 

It can be observed that for a given pattern when 
CNTs volume fraction increases, the amplitude of 
vibration decreases noticeably. As a result, it can 
be expressed that the appropriate selection of FG 

patterns for CNTs and their volume fraction can 
improve the passive vibrational behavior of FG-
CNTRC plates. 

 

Fig. 5. Non-dimensional central deflection ˆ( )cw  of the simply 

supported FG-CNTRC plates with various patterns subjected to 

the step loading ( )0.25m, 10, 0.11CNTa b b h V = = = = . 

 

Fig. 6. Non-dimensional central deflection ˆ( )cw  of the simply 

supported FG-CNTRC plates with various patterns subjected to 

the triangular loading ( )0.25m, 10, 0.11CNTa b b h V = = = = . 

 

Fig. 7. Non-dimensional central deflection ˆ( )cw  of the simply 

supported FG-CNTRC plates with various patterns subjected to 

the sine loading ( )0.25m, 10, 0.11CNTa b b h V = = = = . 

 

Fig. 8. Non-dimensional central deflection ˆ( )cw  of the simply 

supported FG-CNTRC plates with various patterns subjected to 
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the explosive blast loading 

( )0.25m, 10, 0.11CNTa b b h V = = = = . 

 

Fig. 9. Non-dimensional central deflection ˆ( )cw  of the simply 

supported FGX-CNTRC plates with different CNTs volume 
fractions subjected to the step loading 

( )0.25m, 10a b b h= = = . 

 

Fig. 10. Non-dimensional central deflection ˆ( )cw  of the simply 

supported FGX-CNTRC plates with different CNTs volume 
fractions subjected to the triangular loading 

( )0.25m, 10a b b h= = = . 

 

Fig. 11. Non-dimensional central deflection ˆ( )cw  of the simply 

supported FGX-CNTRC plates with different CNTs volume 
fractions subjected to the sine loading 

( )0.25m, 10a b b h= = = . 

 

Fig. 12. Non-dimensional central deflection ˆ( )cw  of the simply 

supported FGX-CNTRC plates with different CNTs volume 
fractions subjected to the explosive blast loading 

( )0.25m, 10a b b h= = = . 

6. Conclusion 

In the present research, an efficient HSDT 
based isogeometric formulation is developed for 
free and forced vibration analyses of FG-CNTRC 
plates. The transverse shear deformation along 
the plate thickness is estimated via a logarithmic 
function recently proposed by Zhu et al. [38]. It is 
shown that in the present solution, the 
convergence of the results is very fast. Besides, 
the computed data are in very close agreement 
with the semi-analytical and 3D solutions. It can 
be concluded that the present LHSDT, when 
combined with the IGA, can predict very accurate 
natural frequencies and transient responses for 
FG-CNTRC plates. In addition, a detailed 
parametric study is executed. It is demonstrated 
that    
• The largest values for natural frequencies of 

the CNTRC plates occur when the FG-X 
pattern is considered. 

• The natural frequencies of the plate increase 
when more CNTs are dispersed into the 
polymetric matrix. 

• For a certain value of CNT volume fraction, 
the natural frequencies of the FG-CNTRC 
plates decrease as the plates become thicker. 

• When the plate is comparably thick, the 
influence of CNTs distribution on the natural 
frequencies of FG-CNTRC plates is very low. 

• With a preassigned value for CNT volume 
fraction and width-to-thickness ratio, 
frequency parameters drop when the aspect 
ratio increases.  

• The distribution pattern and volume fraction 
of CNTs have strong impacts on the dynamic 
response of FG-CNTRC plates. 
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