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This paper presents an experimentally validated finite element analysis of the low-velocity 

impact on viscoelastic laminates with consideration of large deflection and higher-order 

shear deformation effects in the time domain. The generalized Maxwell model (Wiechert) 

is incorporated into the FEM procedure to simulate the viscoelastic feature of the 

structure. In a geometrically nonlinear analysis, a displacement field considering higher-

order shear deformation and large deflection of the laminate is assumed, and the finite 

element formulation is extracted. To evaluate the contact force, the modified Hertzian 

contact law is implemented into the finite element program. Numerical results including 

contact force output histories and deflections are then derived and compared with the 

experimental data. The obtained results show that the viscoelasticity effect and large 

deflection have a significant effect on the results, so they must be considered to gain a 

precise description of the low-velocity impact response. This model achieved good 

conformance with experimental results. 

 

1. Introduction  

Advanced composite materials are widely 
used in various industrial applications, such as 
marine, automotive, civil engineering, etc. in the 
last decades, they have become popular due to 
their high specific mechanical properties 
(strength and stiffness) regarding their specific 
weight mass and being more cost-effective 
compared to conventional materials. However, 
their impact resistance is considered as a 
disadvantage, especially under low-velocity 
impact conditions when the damage may remain 
undetected and invisible. These kinds of impact 
loadings can make a significant reduction in the 
mechanical properties of the material. To obtain 
a better mechanical model for the investigation of 
composite materials under impact conditions, the 
actual properties of composite materials must be 
taken into our calculation. Furthermore, based on 
previous studies, it is widely proved that 
viscoelasticity is one of the main intrinsic 
features of materials, which proves the time-
dependency behavior of most materials. 

Viscoelastic features also can be observed for 
polymers, which are the main ingredient of most 
industrial composite structures.  

Many researchers have studied the low-
velocity impact analysis of composite laminates. 
Choi and Hong [1] studied the low-velocity 
impact response of composite laminates 
considering higher-order deformation and large 
deflection. However, viscoelasticity had not been 
considered. Sun et al. [2] implemented a first-
order shear deformation theory that assumes the 
transverse shear strain must be constant. Wu and 
Springer [3] implemented a three-dimensional 
theory, although they did not consider large 
deflection effects. The maximum deflection of the 
plate under impact loading conditions is not 
small compared to the thickness of the composite 
laminate, so the large deflection effect must be 
regarded. Hosseini and Eipakchi [4] investigated 
the dynamic response of a viscoelastic beam with 
moderately large deflection and subjected to 
transverse and axial loads using first-order shear 
deformation theory.  

https://macs.semnan.ac.ir/article_5826.html


Tizfahm et al. / Mechanics of Advanced Composite Structures 8 (2021) 425 – 434 

426 

Cederbaum and Aboudi [5] studied the 
dynamical response of viscoelastic laminates. 
The Fourier transform (FFT) of the Boltzman 
representation of the viscoelastic phases is 
incorporated into a micromechanical analysis. 
The inversion of the response function into the 
time domain is performed by the Fast Fourier 
Transform algorithm. Eshmatov [6] has analyzed 
the nonlinear vibrations and dynamic stability of 
viscoelastic orthotropic plates. The contained 
models are based on the Kirchhoff–Love (K.L.) 
hypothesis and Reissner–Mindlin (R.M.) 
generalized theory. Tsai and Chang [7] developed 
a 2-D analytical model based on Ni-Adams and 
Adams-Maheri models, which were included for 
the calculation of the energy dissipation model. 
Assie et al. [8] studied the behavior of viscoelastic 
composites under transient load. An effective 
algorithm for analyzing the dynamic response of 
orthotropic viscoelastic composite laminates has 
been developed in the time domain and the 
integral form of the constitutive laws is exploited. 
The generalized Wiechert model is adopted to 
model the viscoelastic behavior of the structure. 

According to the statements above, since 
there is a time-dependent behavior for polymers, 
several researchers have investigated the 
viscoelastic characterization of polymeric 
composites.  Papanicolaou et al. [9] investigated 
the viscoelastic characterization of a Glass-Epoxy 
Composite. The goal of their work was to 
investigate the effect of different stress levels on 
the creep and recovery behavior of polymer 
matrix composites. Naik et al. [10] studied the 
micromechanical characterization of fibrous 
composites. An efficient computational algorithm 
is proposed to evaluate the viscoelastic 
properties of fibrous composites. 

Unfortunately, few researchers have 
considered both the viscoelastic feature and 
geometrical nonlinearities of a structure. 
Vinogradov [11] investigated the creep 
phenomenon of a viscoelastic column showed 
that geometrically nonlinear analysis presents no 
infinite increase in deflection after creep 
buckling, which is not the case in a linear analysis. 
Shalev and Aboudi [12] analyzed the post-
buckling behavior of viscoelastic laminated 
plates. The time-dependent post-buckling 
behavior was presented, and results based on 
different theories of plates were compared with 
one another. Marques and Creus [13] dealt with 
the nonlinear finite element analysis of 
viscoelastic composite structures considering the 
effect of moisture and temperature. Results show 
the time-dependent deflection under mechanical 
and hygrothermal loads. Fung et al. [14] studied 
the dynamic stability of a viscoelastic beam 
subjected to harmonic and parametric 
excitations simultaneously and showed a 

variation of stability boundaries when the 
nonlinear effect of deformation is included in the 
analysis. Ghabussi et al. [15] determined 
frequency characteristics of a viscoelastic 
graphene nanoplatelet-reinforced composite 
circular microplate. They presented a numerical 
solution for the frequency analysis of a 
viscoelastic GPLRC circular microplate within the 
framework of NSGT. Governing differential 
motion equations were solved using Hamilton’s 
principle. Their results show that outer to inner 
radius ratio (𝑅𝑜/𝑅𝑖), ratios of length scale and 
nonlocal to thickness (𝑙/ℎ 𝑎𝑛𝑑 𝜇 = ℎ), and 
graphene nanoplatelet weight fraction (𝑔𝐺𝑃𝐿) 
have a significant influence on the frequency 
characteristics of the graphene nanoplatelet 
composite circular microplate. Al-Furjan et al. 
[16] dealt with the vibrational characteristics of a 
laminated composite annular microplate using a 
non-classical continuum theory called modified 
couple stress theory (MCST). The structure is 
covered with a viscoelastic foundation that is 
simulated via the Kelvin-Voight model. the most 
impressive point of their result is that when the 
material length scale factor increases, the effect 
of 𝐶𝑑 factor on the dynamics of the system 
declines. Fan and Wang [17] investigated the low-
velocity impact response of a shear deformable 
beam laminated by carbon nanotube-reinforced 
composite, which is auxetic. They have shown 
that an auxetic beam leads to reduced elastic 
deformation and increased impact force than 
nonauxetic beams. In another research, Fan et al. 
[18] dealt studied the Nonlinear forced vibration 
of FG-GRC laminated plates resting on visco-
Pasternak foundatios. They have also 
implemented viscosity in their analysis and 
observed a significance impact on the final 
results. 

In the present study, a finite element 
formulation has been used to analyze the low-
velocity impact response considering higher-
order shear deformation theory, large deflection, 
and the viscoelastic effect of the laminate. 
Governing equations are derived from Hamilton’s 
principle using von Karman’s nonlinear theory of 
plates and Boltzmann’s superposition principle 
for linear viscoelastic constitutive law. Also, the 
higher-order shear deformation is considered in 
the displacement fields. To express the 
viscoelastic material properties, the Wiechert 
model is employed for approximation. The 
nonlinear and hereditary type governing 
equations are treated with the finite element 
method and method of multiple scales. The 
verification and limitation of the present 
approach are discussed by comparing results 
with those of nonlinear elastic and linear 
viscoelastic analysis. The hereditary 
characteristics of the equations make it difficult 
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to decouple the flexure motion. Numerical 
illustrations including contact force and 
deflection states are shown and discussed in 
different. 

The remainder of the paper is outlined as follows. 
First, a brief review of the viscoelastic model and 

higher order shear deformation theory finite element 

formulations for geometrically nonlinear analysis is 

introduced in Section 2. In Section 3, the solving 
procedure and the related flow chart are 
described. The results are provided in Section 4 
discussed in detail to show the nonlinearities and 
viscoelastic effects. Finally, some conclusions are 
made in Section 5. 

2. Mathematical Model 

2.1. Viscoelastic model 

Viscoelasticity is a common property of 
materials exhibiting both viscous and elastic 
characteristics when undergoing deformation. 
Purely elastic materials do not dissipate energy 
when an external load is removed. On the other 
hand, viscoelastic materials lose energy when a 
load is applied. The behavior of viscoelastic 
materials can be expressed by arranging springs 
and dampers. Some proposed models that are 
capable of modeling viscoelasticity, such as 
Kelvin, Maxwell, Standard linear solid (SLS), etc. 
Here, the generalized Maxwell model or Wiechert 
model is used (Fig. 1). In this model, 
relaxation does not occur at a single time. 
Although an increasing number of Maxwell 
elements leads to the real behavior of the 
material, three Maxwell elements were 
considered here [8]. 

𝐸(𝑡) = 𝐸0 +∑𝐸𝑖𝑒
−𝑡
𝜆𝑖

𝑛

𝑖=1

 (1) 

Here, 𝑡 is time, 𝐸0 is the spring parallel to the 
Maxwell elements and 𝜆𝑖 is relaxation time for the 
ith Maxwell element and defined as [8] 

𝜆𝑖 =
휂𝑖
𝐸𝑖

 (2) 

 

 
Fig. 1. Generalized Maxwell model with n Maxwell elements 

(Wiechert model [8]) 

2.1.1. Kinematics of the Maxwell model 

The overall stress 𝜎 acting on the generalized 
model is equal to the summation of the stresses 
acting on the Hookean spring and the parallel 
Maxwell elements. Adopting the generalized 
Maxwell model, the stress of the material is 
expressed as [8] 

𝜎(𝑡) = 𝐸0휀(0) +∑𝐸𝑖𝑒
−𝑡
𝜆𝑖 휀(0)

𝑛

𝑖=1

= 𝐸(𝑡)휀(0) (3) 

where 휀(0) is the initial strain of the Maxwell 
element in its relaxation test. The stress-strain 
curve of the relaxation test for a Maxwell element 
is shown in Fig. 2. 

2.1.2. Mathematical formulation 

Figure 3 shows the geometric configuration of 
a lamina under the low-velocity impact. In this 
study, a higher-order displacement field is 
adopted to consider both membrane effects and 
large deflections of the lamina. Supposedly, the x-
y plane coincides with the neutral plane of 
composite lamina whose thickness direction is 
oriented along the z-axis. The displacement 
components of the lamina are described as [1] 

𝑢𝑥(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢(𝑥, 𝑦, 𝑡) + 𝑧𝜓𝑥(𝑥, 𝑦, 𝑡)
+ 𝑧3휁𝑥(𝑥, 𝑦, 𝑡) 

 

𝑢𝑦(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣(𝑥, 𝑦, 𝑡) + 𝑧𝜓𝑦(𝑥, 𝑦, 𝑡)
+ 𝑧3휁𝑦(𝑥, 𝑦, 𝑡) 

(4) 

𝑢𝑧(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤(𝑥, 𝑦, 𝑡)  

 
Fig. 2. Relaxation test of a Maxwell element [19] 

 
Fig. 3. The geometric configuration of a composite laminate 
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Here 𝑢𝑥, 𝑢𝑦, 𝑢𝑧are the displacement in the 
x,y,z direction, respectively; 𝑢, 𝑣, 𝑤 are the 
displacements of the neutral plane; 𝜓𝑥,𝜓𝑦 and 
휁𝑥,휁𝑦 are the first- and third-order rotations of 
the cross-sections normal to the x, y-axis, 
respectively. The strain-displacement relations 
developed by von Karman’s large deflection 
theory relation to include geometric 
nonlinearities can be written as [1]  

휀1 =
𝜕𝑢𝑥

𝜕𝑥
+
1

2
(
𝜕𝑢𝑧

𝜕𝑥
)
2

=
𝜕𝑢

𝜕𝑥
+
1

2
(
𝜕𝑤

𝜕𝑥
)
2

+ 𝑧 (
𝜕𝜓𝑥

𝜕𝑥
+ 𝑧2

𝜕휁𝑥

𝜕𝑥
) 

 

휀2 =
𝜕𝑢𝑦

𝜕𝑦
+
1

2
(
𝜕𝑢𝑧

𝜕𝑦
)
2

=
𝜕𝑣

𝜕𝑦
+
1

2
(
𝜕𝑤

𝜕𝑦
)
2

+ 𝑧 (
𝜕𝜓𝑦

𝜕𝑦
+ 𝑧2

𝜕휁𝑦

𝜕𝑦
) 

 

휀3 =
𝜕𝑢𝑥

𝜕𝑦
+
𝜕𝑢𝑦

𝜕𝑥
+ (
𝜕𝑢𝑧

𝜕𝑥

𝜕𝑢𝑧

𝜕𝑦
)

=
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
+ (
𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦
) + 

      + 𝑧 {
𝜕𝜓𝑥

𝜕𝑦
+
𝜕𝜓𝑦

𝜕𝑥
+ 𝑧2 (

𝜕휁𝑥

𝜕𝑦
+
𝜕휁𝑦

𝜕𝑥
)} 

 휀4 =
𝜕𝑢𝑧

𝜕𝑦
+
𝜕𝑢𝑦

𝜕𝑧
=
𝜕𝑤

𝜕𝑦
+ 𝜓𝑦 + 3𝑧2휁𝑦 

(5) 

휀5 =
𝜕𝑢𝑧

𝜕𝑥
+
𝜕𝑢𝑥

𝜕𝑧
=
𝜕𝑤

𝜕𝑥
+ 𝜓𝑥 + 3𝑧2휁𝑥  

where contracted notations are used for 
engineering strains. As the viscoelastic 
constitutive law, Boltzmann’s superposition 
principle for linear viscoelastic behavior is 
employed. The stress-strain relation at the kth 
layer, which has the orientation angle of kth, is 
given in the hereditary type form as follows [20]: 

𝜎𝑖
𝑘(𝑡) = ∫ �̄�

𝑖𝑗

𝑘(𝑡 − 𝑠)휀̇𝑗
𝑘(𝑠)𝑑𝑠

𝑡

0−
       

𝑖 = 1,2,3,4,5 

(6) 

Here, the repeated index stands for the 
summation rule and �̄�𝑖𝑗

𝑘 (𝑡) is the relaxation 

function at the kth layer referred to x-y 
coordinates, which are obtained from the axis 
transformation of the relaxation modulus 𝑄𝑖𝑗(𝑡) 

referred to the principal material axes. In terms 
of generalized displacements and forces, 
constitutive relations are written in the following 
form as in Cederbaum et al. [21] 

{
  
 

  
 
𝑁𝑥𝑥
𝑁𝑦𝑦
𝑁𝑥𝑦
𝑀𝑥𝑥
𝑀𝑦𝑦
𝑀𝑥𝑦}

  
 

  
 

=

[
 
 
 
 
 
 
𝐴11 𝐴12 𝐴13 𝐵11 𝐵12 𝐵13

𝐴22 𝐴23 𝐵12 𝐵22 𝐵23
𝐴33 𝐵13 𝐵23 𝐵33

𝐷11 𝐷12 𝐷13
𝑆𝑦𝑚. 𝐷22 𝐷23

𝐷33]
 
 
 
 
 
 

∗

{
 
 
 

 
 
 

�̇�,𝑥 +𝑤,𝑥�̇�,𝑥
�̇�,𝑦 +𝑤,𝑦�̇�,𝑦

�̇�,𝑦 + �̇�,𝑥 + �̇�,𝑥𝑤,𝑦 + 𝑤,𝑥�̇�,𝑦

�̇�𝑥,𝑥

�̇�𝑦,𝑦

�̇�𝑥,𝑦 + �̇�𝑦,𝑥 }
 
 
 

 
 
 

 

(7) 

and 

{
𝑄𝑦𝑦
𝑄𝑥𝑥

} = [
𝐴44 𝐴45
𝐴45 𝐴55

] ∗ {
�̇�𝑦 + �̇�,𝑦

�̇�𝑥 + �̇�,𝑥
}  

In this formula, overdot stands for the time 
derivative, * denotes the convention operator. 

Time-dependent functions 𝐴𝑖𝑗(𝑡), 𝐵𝑖𝑗(𝑡) and 

𝐷𝑖𝑗(𝑡) are defined by 

(𝐴𝑖𝑗(𝑡), 𝐵𝑖𝑗(𝑡), 𝐷𝑖𝑗(𝑡))

= ∫ �̄�𝑖𝑗
𝑘 (𝑡)(1, 𝑧, 𝑧2)𝑑𝑧

ℎ/2

−ℎ/2

          𝑖, 𝑗 = 1,2,3 
(8) 

𝐴𝑖𝑗(𝑡) = ∫ �̄�𝑖𝑗
𝑘 (𝑡)𝑑𝑧

ℎ/2

−ℎ/2

          𝑖, 𝑗 = 4,5  

The equations of motion are derived from the 
extended Hamilton’s principle for the non-
conservative system: 

∫ 𝛿𝐾 − (𝛿𝑈 − 𝛿𝑉)𝑑𝑡 = 0
𝑡2

𝑡1

 (9) 

where 𝛿𝐾 is the virtual kinetic energy, 𝛿𝑈 
denotes the virtual strain energy and 𝛿𝑉 
expresses the virtual work done by external 
forces respectively as are given by 

𝛿𝐾 = ∫ {𝐼0(�̇�𝛿�̇� + �̇�𝛿�̇� + �̇�𝛿�̇�)
𝐴𝑟𝑒𝑎

+ 𝐼2(�̇�𝑥𝛿�̇�𝑥
+ �̇�𝑦𝛿�̇�𝑦}𝑑𝑥𝑑𝑦 

 

𝛿𝑈 = ∫ 𝑁𝑥𝑥(𝛿𝑢,𝑥 + 𝑤,𝑥𝛿𝑤,𝑥)
𝐴𝑟𝑒𝑎

+𝑀𝑥𝑥𝛿𝜓𝑥,𝑥
+ 𝑁𝑦𝑦(𝛿𝜈,𝑦 +𝑤,𝑦𝛿𝑤,𝑦)

+ 𝑀𝑦𝑦𝛿𝜓𝑦𝑦 

          + 𝑁𝑥𝑦(𝛿𝑢,𝑦 + 𝛿𝜈,𝑥 + 𝑤,𝑥𝛿𝑤,𝑦
+ 𝑤,𝑦𝛿𝑤,𝑥)

+ 𝑀𝑥𝑦(𝛿𝜓𝑥,𝑦 + 𝛿𝜓𝑦,𝑥) 

          + 𝑉𝑥(𝛿𝜓𝑥 + 𝛿𝑤,𝑥)

+ 𝑉𝑦(𝛿𝜓𝑦 + 𝛿𝑤,𝑦)𝑑𝑥𝑑𝑦 

(10) 

𝛿𝑉 = ∫ 𝐹
𝐴𝑟𝑒𝑎

𝛿𝛼𝑑𝐴 
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with inertial terms 𝐼0, 𝐼2, resultant forces 𝑁𝑖𝑗 , 𝑉𝑖 

and moments 𝑀𝑖𝑗  for 𝑖, 𝑗 = 𝑥, 𝑦 being defined as  

(𝐼0, 𝐼2) = ∫ 𝜌(1, 𝑧2)𝑑𝑧
ℎ/2

−ℎ/2

  

(𝑁𝑥𝑥, 𝑁𝑦𝑦, 𝑁𝑥𝑦, 𝑉𝑦, 𝑉𝑥)

= ∫ (𝜎1
𝑘, 𝜎2

𝑘, 𝜎3
𝑘, 𝜎4

𝑘, 𝜎5
𝑘)𝑑𝑧

ℎ/2

−ℎ/2

 
(11) 

(𝑀𝑥𝑥, 𝑀𝑦𝑦, 𝑀𝑥𝑦) = ∫ 𝑧(𝜎1
𝑘, 𝜎2

𝑘, 𝜎3
𝑘)𝑑𝑧

ℎ/2

−ℎ/2

  

Contracted notations are utilized for stress as 
in the case of strain. Interpolating displacement 
and rotation fields in terms of nodal values and 
substituting them into Eqs. (5), (6), and (9), one 
can obtain the following discretized non-linear 
governing equations 

𝑀�̈� +∑∫ 𝑄𝑖(𝑡 − 𝑠)𝐾𝑖�̇�𝑑𝑠
𝑡

0−

𝑁

𝑖=1

= 𝐹𝑖 (12) 

Here, 𝐹 is the constant force between the 
laminate and the projectile. x is the global nodal 
vector, 𝑀 is the mass matrix, and 𝐾𝑖 are the 
matrices that have stiffness 𝑄𝑖 as coefficients. 
Besides, contracted indices are used for 
relaxation moduli referred to the principal axes 
of the material 𝑄1 = 𝑄11, 𝑄2 = 𝑄12, 𝑄3 =
𝑄22, 𝑄4 = 𝑄33, 𝑄5 = 𝑄44 and 𝑄6 = 𝑄55. Also, 
𝐾1, . . . , 𝐾4 are transverse displacement dependent 
matrices, while shear deformation dependent 
matrices 𝐾5 and 𝐾6 are constant. They can be 
written as 

𝐾𝑖 = 𝐾𝑖
0 + 𝐾𝑖

1 + 𝐾𝑖
2          𝑖 = 1, . . . ,4 

𝐾𝑖 = 𝐾𝑖
0          𝑖 = 5,6 

(13) 

where 𝐾𝑖
0 is constant and 𝐾𝑖

1, 𝐾𝑖
2 are the linear 

and quadratic functions of transverse 
displacement 𝑤,  respectively. 

The relaxation moduli 𝑄𝑖𝑗 referred to the 

principal axes of material, are expressed in terms 
of the Prony–Dirichlet series, which is one of the 
most widely used models for approximating the 
viscoelastic behavior of a material. Hence, 
neglecting the variation of temperature and 
moisture, any relaxation modulus can be 
assumed as 

𝑄𝑖(𝑡) = 𝑄𝑖
∞ +∑𝑄𝑖

𝑗

𝑁𝑖

𝑗=1

𝑒𝑥𝑝( − 𝑑𝑖
𝑗
𝑡)

= 𝑄𝑖(0)𝑓𝑖(𝑡)   𝑓𝑜𝑟  𝑖
= 1,2, . . . ,6 

(14) 

Here, 𝑁𝑖 is the number of exponential terms 
required for approximation, 𝑄𝑖

∞ the final stiffness 

of 𝑄𝑖(𝑡), 𝑄𝑖
𝑗
 constant coefficients, 𝑑𝑖

𝑗
 (>0) 

relaxation parameters, and 𝑓𝑖(𝑡) is the time 
function that yields unity at = 0 and 
characterizes the relaxation phenomenon. 

2.2. Contact law 

𝐹 is the contact force at the impacted point 
which can be determined by Hertzian contact law 
as below: 

𝐿𝑜𝑎𝑑𝑖𝑛𝑔: 𝐹 = 𝑘𝛼1.5 (15) 

𝑈𝑛𝑙𝑜𝑎𝑑𝑖𝑛𝑔: 𝐹 = 𝐹𝑚 (
𝛼 − 𝛼0
𝛼𝑚 − 𝛼0

)
2.5

 (16) 

𝑘 is the constant coefficient in the same 
direction as impact loading 

𝑘 =
4

3
√𝑅

1

(
1 − 𝜈2

𝐸
) +

1
𝐸𝑦𝑦

 
(17) 

In this formula, 𝑅 is the radius of the 
projectile, 𝜈, and 𝐸 are the Poisson's ratio and 
Young’s modulus of the projectile, respectively. 
𝐸𝑦𝑦  is the modulus of elasticity of the uppermost 

composite ply in the transverse direction of the 
fibers, i.e. 𝐸2 which is given in Table 2. Assuming 
the projectile is rigid, 𝐸 quantity is considered to 
be infinite. 𝐹𝑚 is maximum contact force; 𝛼, 𝛼0and 
𝛼𝑚 are the indentation, the permanent 
indentation, and the maximum indentation, 
respectively. 𝛼0 can be evaluated by the following 
equations 

𝛼0 = 0     when     𝛼𝑚 < 𝛼𝑐𝑟  (18) 

𝛼0 = 𝛼𝑚 [1 − (
𝛼𝑐𝑟

𝛼𝑚
)
0.4

]   when   𝛼𝑚 ≥ 𝛼𝑐𝑟  (19) 

Here 𝛼𝑐𝑟 is the critical indentation and is 
about 0.08 mm for Glass-Epoxy composites.  

To determine the contact force using Eqs. 15 
and 16, the indentation, 𝛼 should be computed 
from the displacements of the plate and the 
projectile.  

3. Solving Procedure 

The response of the projectile is assumed to 
be a rigid body motion. Hence its governing 
equation may be determined as follows 

𝑚�̈�𝐼 + 𝐹 = 0 (20) 

Here, 𝑚 and 𝑤𝐼  are the mass and the 
displacement of the projectile, respectively. 𝐹 is 
the contact force as mentioned before. To analyze 
the projectile response, three equations are 
solved simultaneously; i.e., the finite element 
equation of the laminate, the governing equation 
of the projectile, and the contact law. Hence, an 
iteration is needed to solve equations 12, 20, 15, 
and 16 for each time step. Furthermore, since 
equation 12 is a non-linear equation, another 
iteration is needed as shown in the flowchart of 
Fig. 4. As considerable computational effort is 
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needed in the non-linear impact response 
analysis, Akay's constant coefficient scheme is 
used for efficient analysis. In this scheme, the 
non-linear stiffness matrix in equation (12) is 
moved to the right-hand side of the equation and 
is considered as an additional equivalent force 
vector. Newmarks' constant acceleration method 
is used to solve the time-dependent equations 
and successive iterations have to be continued 
until a desired accuracy is obtained for each time 
step. 

Since a considerable computational effort is 
needed in the non-linear impact response 
analysis, Akay’s constant-coefficient [22] scheme 
is used for efficient analysis. Newmark’s constant 
acceleration method is used to solve the time-
dependent equations and successive iterations 
have to be continued until the desired accuracy is 
obtained for each time step. 

 
Fig. 4. Flow chart of the solving procedure 

4. Results and Discussion 

Two different composite laminates were 
opted to consider and analyze various effects on 
dynamical response. The first one is a 16-ply 
laminated Glass-Epoxy composite, and the other 
one is a sandwich laminate composite with 6 plies 
and an isotropic elastic core (Fig. 5). These two 
composites are subjected to a low-velocity 
impact with 32J initial energy (equivalent to the 
initial velocity of 2.83 m/s). The projectile is a 
semi-spherical rigid body with a diameter of 
14mm and a total weight of 8kg. Geometrical 
dimensions and mechanical properties of 
composite laminates are shown in Table 1 and 
the relaxation test results for the determination 
of relaxation coefficients of Glass-Epoxy 
laminates in 0° and 90° orientations are shown in 
Table 2. Both composites have a fixed boundary 
condition at the upper and lower edges of 
surfaces. To validate the presented method used 
in this paper, the contact force of the presented 
model is compared to experimental results [23]  
According to the details of their experiments, 
composite laminates are composed of glass fiber, 
and epoxy resin, which is prepared by a vacuum-
assisted resin injection (VARI) process. The 
lamina is a unidirectional glass fiber (EDW800) 
with a layer thickness of 0.2 mm, and a mass 
surface density of 200 𝑔/𝑚2 . It was provided by 
Jiangsu Jiuding New Material Co., Ltd., Nantong, 
Jiangsu, P.R. China. The selected resin is an epoxy 
vinyl ester (VER) 411, in which the matching 
curing agent and accelerating agent are methyl 
ethyl ketone peroxide (MEKP) and 
dimethylaniline. It was bought from Harbin 
Akihito composite material Co., Ltd., Nantong, 
Jiangsu, P.R. China. 

 

 
Fig. 5. (a) 16-ply Glass-Epoxy composite laminate (type 1) 

and (b) sandwich laminate (type 2) 
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Table 1. Geometrical properties of composites 

 Type 1 Type 2 

Length (mm) 100 100 

Width (mm) 100 100 

Height (mm) 3.2 13.9 

Number of layers 16 6 

The thickness of each 

ply (mm) 

0.2 0.2 

The thickness of the 

core (mm) 

- 12.7 

Stacking sequence [0/90]8 [0/90/0/C]s 

The density of core 

(kg/m3) 

- 110 

Young’s modulus of 

core (MPa) 

- 180 

Poisson's ratio of 

core 

- 0.286 

Table 2. Wiechert model coefficients determined by the 
relaxation test of a Glass-Epoxy composite [24] 

Relaxation modulus 

(GPa) 

0° lamina 90° lamina 

𝐸0 21.138 6.796 

𝐸1 0.673 0.237 

𝐸2 0.263 0.471 

𝐸3 0.257 0.357 

𝐸4 0.654 0.714 

Relaxation time (s)   

𝜆1 30 9.6 

𝜆1 96 96 

𝜆1 996 996 

𝜆1 8400 8400 

4.1. Representation of results for composite 
type 1 

4.1.1. Viscoelasticity effect 

A comparison between elastic and viscoelastic 
contact force and deflection curves is illustrated 
in Figs. 6 and 7, respectively. Also, the large 
deflection effects are considered in the results. As 
it can be observed, the viscoelastic response has 
a greater maximum contact force and is closer to 
the experimental results (1.3% error for 
viscoelastic response and 14.5% error for elastic 
response at the maximum contact force point), 
and also contact time is less than elastic response. 
The time of the maximum contact force is 4.5 ms 
in the elastic state and 4 ms in the viscoelastic 
state, which is very close to the experiment. This 
happens because Maxwell elements of the 
Wiechert model are parallel to the elastic spring 
and cause a reduction in deflection (Fig. 7). 
Therefore, more rigidity of the composite 
laminate leads to a higher contact force and 
smaller contact time. 

 
Fig. 6. Contact force versus time curves for observation of 

the viscoelasticity effect. Experiment (dashed), Elastic 
(dotted), Viscoelastic and large deflection (solid)    

 
Fig. 7. Deflection versus time curves for observation of 

viscoelasticity effect. Elastic (dotted), Viscoelastic and large 
deflection (solid)   

The little difference between the experiment 
and nonlinear and viscoelastic analytical results 
could be due to the following reasons: reduced 
composite stiffness due to impact damage and the 
imperfect boundary conditions in the 
experiment. Also, in the impact experiment, some 
of the impact energy is dissipated in the form of 
acoustic emission and damage. This type of 
energy dissipation has been neglected in this 
analysis. So, the difference between the two 
results is possible. 

4.1.2. Large deflection effects 

To show the geometry nonlinearity, large 
deflection effects, contact force, and deflection 
output histories are shown in Figs. 8 and 9, 
respectively. Geometrical linearity is affected by 
the large deflections of the composite plate. The 
results of Fig. 8 show, geometrical nonlinearity 
has a great influence on the composite impact 
response. So, geometrical non-linearity must be 
considered in the FEM analysis procedure (71% 
Error for a geometrically linear model). 

 
Fig. 8. Contact force versus time curves for consideration of 

geometrical non-linearity. Experiment (dashed), Large 
deflection and viscoelastic (solid), Linear geometry (dash-

dotted) 
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Figure 9 shows the deflection histories at the 
impact point in two linear and nonlinear 
geometry. Because of large deflection effects, the 
non-linear deflection history is estimated to be 
smaller than the corresponding linear result. 

4.1.3. First-order and higher-order shear 
deformation (FSDT and HSDT) effects 

Using the two plate theories, FSDT and HSDT, 
consideration effects are shown in Figs. 10 and 
11. It can be observed, results are not affected by 
considering higher-order shear deformation and 
they’re approximately similar and there is no 
significant difference between the two non-linear 
results using the two plate theories (FSDT and 
HSDT) 

4.1.4. Damping of vibration 

In contrast to purely elastic materials, the 
deflection of viscoelastic materials will be 
damped when they are subjected to an impact 
loading. The damping time is affected by material 
characteristics that are determined by the 
relaxation test (table 2). This damping effect is 
illustrated for composite type 1 in Fig. 12. It can 
be observed that 0.015 seconds after getting 
impact, the vibration of the composite has 
vanished. Similar results are found in Assie's 
paper [8]. 

4.2. Representation of results for composite 
type 2 

Since the FEM is validated in the previous 
section, a sandwich laminated composite is also 
considered to emphasize the same results. The 
geometrical and mechanical properties of 
composite type 2 are shown in tables 1 and 2, 
respectively. In this model, the interaction 
between layers and the core is ignored. Similar to 
composite type 1, the same factors are 
determined for composite type 1 (Figs. 13 and 
14). Also, the damping of vibrations is shown in 
Fig. 15. Alternatively, it can be deduced from 
these figures that viscoelasticity tends to 
decrease the contact time and increase the peak 
of the contact force. It is worth mentioning that 
the core of the sandwich laminate is an ideal 
elastic foam. 

 
Fig. 9. Deflection versus time curves for consideration of 

geometrical non-linearity. Large deflection and viscoelastic 
(solid), Linear geometry (dash-dotted) 

 
Fig. 10. Contact force versus time curves for HSDT and FSDT 

consideration effect. Experiment (dashed), FSDT (solid), 
HSDT (dash-dotted) 

 
Fig. 11. Deflection versus time curves for HSDT and FSDT 

consideration effect. FSDT (solid), HSDT (dash-dotted) 

 
Fig. 12. The damping effect of Glass-Epoxy composite type 1 

 
Fig. 13. Contact force versus time curves for observation of 
viscoelasticity, Large deflection, HSDT, and FSDT effects of 

sandwich laminated composite. Elastic (dotted), Viscoelastic, 
large deflection and FSDT (solid), Viscoelastic, large 
deflection and HSDT (dash-dotted), Linear geometry 

(dashed) 

 
Fig. 14. Deflection versus time curves for observation of 

viscoelasticity, geometrical linearity, HSDT, and FSDT effects 
of sandwich laminated composite. Elastic (dotted), 

Viscoelastic, large deflection and FSDT (solid), Viscoelastic, 
large deflection and HSDT (dash-dotted), Linear geometry 

(dashed) 
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Fig. 15. The damping effect of the Glass-Epoxy sandwich 

composite structure type 2 

Besides, these results show that in both linear 
and non-linear results there is barely a visible 
difference between the impact force histories for 
FSDT and HSDT responses. Consequently, 
considering higher-order shear deformation 
does not affect the global response of the 
sandwich, whereas considering large deflection 
and viscoelastic effects have a dominant 
influence on the impact response of the 
sandwich. 

5. Conclusion 

Due to the importance of the response of the 

viscoelastic composite plates under low velocity, 

this problem is here investigated. In this paper, the 
viscoelastic response of the polymeric 
composites was considered in geometrically 
nonlinear analysis of the low-velocity impact 
using two different theories, FSDT and HSDT. To 
obtain an accurate FEM modeling of laminated 
composites and sandwich structures, subjected 
to low-velocity impact conditions, three effects 
were investigated. As the results show, the 
viscoelasticity effect, besides considering large 
deflection, is the main feature of polymeric 
composites and sandwich structures and has a 
prominent influence on dynamical outputs. It is 
thoroughly demonstrated that taking these 
factors into account brings the final results closer 
to experimental ones. To sum up, the obtained 
conclusions include 

(1) Viscoelastic behavior of a polymeric 
composite, besides large deflection, is the 
main feature that must be considered in the 
FEM procedure. Results depict that the 
viscoelastic response seems to regard a 
composite substantially tougher than the 
elastic one. 

(2)  The Wiechert model is very efficient to 
describe the viscoelastic behavior of 

composite plates. 
(3) There is a considerable difference between 

geometrically linear and non-linear analysis 
(71% Error), which cannot be negligible.  

(4) It is illustrated that considering higher-
order shear deformation seems not to be 
noticeably effective on the final results. 

All in all, it can be concluded that the 
viscoelasticity and large deflection effects must 
be taken into account simultaneously to have an 
accurate description of the global response of the 
composite laminates subjected to low-velocity 
impact. 

Nomenclature 

𝑡 Time (s) 

𝐸 Young’s modulus 

𝜆𝑖 relaxation time 

𝜎 Stress 

휀 Strain 

𝜐 Poisson’s ratio 

𝜌 Density 

휂 Damper coefficient 

𝑢 displacement 

𝜓 
First-order rotation of the 

cross-section 

휁 
Higher-order rotation of the 

cross-section 

𝑄𝑖𝑗 Relaxation moduli 

𝐾𝑖
0 , 𝐾𝑖

1 𝑎𝑛𝑑 𝐾𝑖
2 

Linear and quadratic 

functions of the transverse 

displacement 𝑤 

𝐼 Moment of inertia 

𝑀 Mass 

𝑅 The radius of the projectile 

𝐹 Force 

𝛼 indentation 

𝛼𝑐𝑟 Critical indentation 

𝑤𝐼 
Displacement of the 

projectile 
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