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The purpose of this paper is to introduce a simple and novel method for discussing the 

lateral-torsional stability of thin-walled symmetric balanced laminated beams with 

varying I-section. Based on the classic lamination theory and Vlasov‘s model, the total 

potential energy for the flexural displacements and the twist angle is established. The 

variational formulation is then constructed only in terms of the angle of twist using an 

auxiliary function. The buckling loads are finally determined by applying the Ritz method. 

To demonstrate the accuracy of the proposed formulation, the analytical solutions for a 

sample case of tapered I-beam are compared with results obtained from ANSYS's shell 

element. Moreover, this new procedure is very efficient in reducing the computational 

effort. Eventually, based on a selected load, the influences of some parameters such as the 

tapering ratios, transverse load position, and fiber orientation on lateral stability 

resistance of composite tapered I-beams under simply supported end conditions are 

discussed in detail. The results show that the lateral buckling resistance of composite 

beam with tapered I-section decreases significantly as the fiber angle in both flanges is 

rotated off-axis. Also, the maximum lateral buckling load for simply supported web and 

flanges tapered beam under uniformly distributed load is obtained by placing 

fibers±45∘ in the web and 0∘ in both flanges. 

1. Introduction

The use of thin-walled structural components
in the most innovative engineering fields, 
including aircraft wings, helicopters, turbine 
blades, steel frames, and decks of the bridge, has 
become increasingly common throughout the 
years. Although thin-walled open cross-sections 
have some outstanding features, such as the high 
value of stiffness-to-weight and strength-to-
weight ratios, they have some drawbacks, such as 
poor torsion rigidity and low out-of-plane 
bending resistance. As a result of these 
disadvantages, a laterally unbraced thin-walled 
beam subjected to bending around its strong axis 
may suddenly buckle in a flexural–torsional 
mode. This situation hence results in a lower 
stability strength. Moreover, in recent years, the 
application of thin-walled beams with variable 
cross-section has been extensively come into 
vogue in many advanced industries such as 
aeronautical and mechanical installations due to 

the importance of having an optimum 
distribution of weight and strength. With the 
development of fabrication processes, 
specifically pultrusion, thin-walled structural 
components made up of fiber-reinforced 
composite materials in aeronautical and 
mechanical installations have become 
increasingly common throughout the years. The 
main reason for this increase is the desirable 
feature of composites, such as high fatigue 
resistance, durability, corrosion resistance, and 
high stiffness-to-weight and strength-to-weight 
ratios. A review of the literature shows that 
different researchers have conducted several 
investigations to study the mechanical responses 
of thin-walled structural components made up of 
homogenous and/or composite materials. In the 
following, a short description of a few of them is 
presented. 

Rajasekaran and Nalinaa [1] assessed the 
vibrational characteristics and buckling behavior 
of non-prismatic composite spatial members 
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with generic thin-walled sections via the finite 
element method within the context of non-linear 
strain displacement relationship. Based on a 
geometrically non-linear theory and the 
assumptions of large displacements and 
rotations, Machado and Cortinez [2-5] studied 
the free vibrational response and buckling 
behavior of composite beams with doubly-
symmetric thin-walled open cross-section loaded 
by arbitrary external forces. Using the finite 
element methodology, the flexural-torsional 
coupled free vibrational behavior and buckling 
problem of thin-walled composite beams were 
precisely investigated by Vo and Lee [6], 
considering the impacts of axial load on the 
vibration characteristics. Based on linear fracture 
mechanics and the Castigliano theory, the 
influence of edge crack ratio and position on free 
vibration responses and lateral buckling strength 
of laminated composite slender beam was 
studied by Karaagac et al. [7]. To estimate the 
buckling resistance of simply supported thin-
walled structural members made of Fiber 
Reinforced Polymer (FRP) loaded by axial and 
uniformly transverse forces, Ascione et al. [8] 
developed a mechanical model based on the 
assumptions of small strains and moderate 
rotations. In order to exhaustively examine the 
static and dynamic responses of beams made 
from FG piezoelectric materials, an innovative 
and improved three-noded beam element was 
formulated by Lezgy-Nazargah et al. [9]. 
Moreover, the elastic behavior of functionally 
graded piezomagnetic cylinders was studied in 
Refs. [10-13] under thermal, longitudinally non-
uniform pressure, magnetic and mechanical 
loads. Using updated Lagrangian formulation, 
Lanc et al. [14] analyzed the lateral buckling and 
post-buckling behavior of functionally graded 
materials (FGMs), thin-walled beams with mono-
symmetric I and channel sections for various 
boundary conditions based on Vlasov theory for 
thin-walled cross-sections and Euler–Bernoulli 
beam assumptions. Within the framework of 
finite stain theory, Mohandes and Ghasemi [15, 
16] investigated nonlinear free vibrational 
characteristics of laminated beams through 
different shear deformation theories. Based on 
Ritz and Galerkin's methods, Saoula et al. [17] 
studied the stability resistance of laterally 
unrestrained simply supported thin-walled box 
beam elements subjected to combined bending 
and axial forces. Ghasemi and Mohandes [18-20] 
assessed the mechanical response including 
interlaminar normal and shear stresses of 
laminated composite size-dependent beam in the 
thermal and/or subjected to transverse load, 
according to finite strain assumption and a 
modified couple stress theory. To facilitate and 
increase the speed of mathematical computations 

to perform the elasto-plastic analysis of thin-
walled beams, an innovative finite element 
formulation was suggested by Lezgy-Nazargah 
[21] based on the theory of generalized layered 
global-local beam (GLGB). Moreover, Nguyen et 
al. [22, 23] proposed a new finite element 
solution for computing lateral-torsional critical 
loads of FGM thin-walled beams with singly 
symmetric open sections. The precise free 
vibrational behavior of a doubly curved 
piezoelectric nanoshell resting on Pasternak’s 
foundation was completely studied by Arefi [24] 
according to the first-order shear deformation 
theory. In another study, Ahmadi and Rasheed 
[25] employed the generalized semi-analytical 
technique to analyze the lateral-torsional 
buckling of anisotropic laminated beams with the 
rectangular thin-walled cross-section under 
simply supported end supports based on the 
classical laminated plate theory. Within the 
context of first-order shear deformation theory 
and using a semi-analytical solution 
methodology, the mechanical response of thin-
walled laminated beams with constant open 
and/or closed cross-sections was assessed by 
Wackerfuß and Kroker [26]. In addition, Arefi 
and Zenkor [27] applied the higher-order 
sinusoidal shear deformation beam theory to 
extract the governing equations of sandwich 
microbeams with two piezoelectric face-layers 
and a homogeneous core loaded by a transverse 
force along with an electrical one. Using Navier’s 
solution, Ghasemi and Meskini [28] assessed the 
free vibrational response of simply supported 
porous laminated rotating circular cylindrical 
shells within the framework of Love’s shell 
theory. The lateral-torsional stability analysis of 
tapered thin-walled beam with arbitrary open 
cross-section under different boundary 
conditions was completely investigated by 
Soltani et al. [29-33] using different numerical 
methodologies. Ghasemi et al. [34-37] analyzed 
fiber-metal laminate (FML) cylindrical shells 
under different boundary conditions. For further 
numerical techniques-based investigations on 
the static and dynamic analyses, the reader is 
referred to [38-45] for composite beams 
subjected to different loading cases and end 
conditions. 

Due to the application of composite structural 
members with thin-walled cross-sections in the 
design of sensitive and modern structures such as 
aircraft wings, helicopters, and turbine blades, it 
is necessary to study the problem of sandwich 
laminated thin-walled beams with varying cross-
section. For this reason, the main aim of the 
present work is to analyze the lateral stability of 
laminated doubly-symmetric tapered I-beams 
with symmetrical lay-up for all section walls by 
presenting an innovative analytical solution. 
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Within the classic lamination theory framework 
and Vlasov’s model without considering the 
shear deformation, the total potential energy for 
the vertical and lateral deformations and the 
twist angle are determined. Note that bending–
twisting coupling is accounted for in our 
formulation. Based on the method proposed by 
Soltani et al. [31-33] and using an auxiliary 
function, the variational statement is then 
obtained only in terms of the twist angle. The 
acquired formulation can be applied for 
estimating the lateral-buckling load of composite 
I-beam under different boundary conditions. 
However, simply supported beam with free 
warping at both supports is contemplated here. 
The trigonometric function, which satisfies the 
simply supported beam end conditions, is thus 
used to acquire the analytical solutions through 
the Ritz method. The superiority of the proposed 
approach is to simplify and drastically decrease 
the essential computational efforts to calculate 
the lateral buckling load of symmetrically 
laminated thin-walled beams with varying cross-
sections. To check the accuracy and the efficiency 
of the proposed methodology, our results are 
compared with numerical ones from the ANSYS 
code, and a good agreement is observed. For 
measuring the effects of web and flanges non-
uniformity ratios, load height position, and fiber 
angle on lateral-torsional stability of simply 
supported laminated composite web and/or 
flanges tapered I-beams under uniformly 
distributed load, an exhaustive numerical 
example is finally presented.  

2. Derivation of formulation 

2.1. Geometrical description of double tapered 
I-beam 

In the current study, the linear lateral-
torsional buckling analysis is conducted for a 
laminated composite I-beam with a tapered web 
and flanges. The right-hand Cartesian coordinate 
system, with x as the initial longitudinal axis 
measured from the left end of the beam, the y-axis 
in the lateral direction, and the z-axis along the 
vertical direction, are considered as indicated in 
Fig. 1. The origin of these axes (O) is located at the 
centroid of the doubly-symmetric I-section. The 
symmetrically laminated I-beam is initially 
subjected to a laterally distributed load qz in z-
direction along with a line (PP'). The arbitrarily 
distributed force is thus applied on point P 
located on the section contour with the 
eccentricity zP(x) (Fig. 1).  

In this study, Vlasov's model for non-uniform 
torsion is applied for the description of the 
displacement field of a point on the section 
contour. Based on this classical theory, only 
slender and long beams are considered and there 

are no shear deformations in the mean surface of 
the section. It is further admitted that the cross-
section does not change shape during deflection. 
This means that the cross-section is rigid in its 
own plane and consequently no distortional 
deformations occur. From these assumptions, the 
displacement fields for an arbitrary point on the 
beam can be expressed as follows [46]: 

𝑈(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥) − 𝑦
𝑑𝑣(𝑥)

𝑑𝑥
 

−𝑧
𝑑𝑤(𝑥)

𝑑𝑥
− 𝜔(𝑦, 𝑧)

𝑑𝜃(𝑥)

𝑑𝑥
       

(1) 
𝑉(𝑥, 𝑦, 𝑧) = 𝑣(𝑥) − 𝑧𝜃(𝑥) 

𝑊(𝑥, 𝑦, 𝑧) = 𝑤(𝑥) + 𝑦𝜃(𝑥) 

In these equations, U is the axial 
displacement and displacement components V 
and W represent lateral and vertical 
displacements (in direction y and z). Note that 
the axial displacement U is extracted from the 
nullity of shear deformations in the main 
surface. The term 𝜔(𝑦, 𝑧) signifies a cross-
section variable that is called the warping 
function, which can be defined based on 
Vlasov’s torsion theory. u0, v, and w are the 3D 
displacement components of the reference 
point O. Ɵ is twisting angle.  

2.2. Total potential energy for a composite 
beam with tapered I-section 

The equilibrium equations for beam are 
derived from the potential energy condition 
given by:  

𝛿𝛱 = 𝛿(𝑈𝑙 + 𝑈0 −𝑊𝑒) = 0 (2) 

𝛿 illustrates a virtual variation in the last 
formulation. 𝑈𝑙  represents the elastic strain 
energy, 𝑈0 expresses the strain energy due to 
effects of the initial stresses and We is the work 
of the applied loads. According to the applied 
load, 𝛿𝛱 is reduced to the following terms: 

 
Fig. 1. Geometrical scheme for doubly symmetric I-
section beam subjected to an arbitrarily distributed 

external load 
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𝛿𝛱 = ∫ ∫(𝜎𝑥𝑥𝛿휀𝑥𝑥
𝑙 + 𝜎𝑥𝑦𝛿𝛾𝑥𝑦

𝑙

𝐴

𝐿

0

+ 𝜎𝑥𝑧𝛿𝛾𝑥𝑧
𝑙 )𝑑𝐴𝑑𝑥 

+∫ ∫(𝜎𝑥𝑥
0 𝛿휀𝑥𝑥

∗ + 𝜎𝑥𝑦
0 𝛿𝛾𝑥𝑦

∗

𝐴

𝐿

0

+ 𝜎𝑥𝑧
0 𝛿𝛾𝑥𝑧

∗ )𝑑𝐴𝑑𝑥 

−∫ 𝑞𝑧𝛿𝑤𝑝𝑑𝑥
𝐿

0

= 0 

(3) 

in which, L and A express the beam length and the 

cross-sectional area, respectively. 

(𝛿휀𝑥𝑥
𝑙 ,𝛿𝛾𝑥𝑧

𝑙 ,𝛿𝛾𝑥𝑦
𝑙 ) and (𝛿휀𝑥𝑥

∗ ,𝛿𝛾𝑥𝑧
∗ ,𝛿𝛾𝑥𝑦

∗ ) are the 

variation of the linear and the non-linear parts of 

the strain tensor, respectively. 𝜎𝑖𝑗denotes the 

Piola–Kirchhoff stress tensor, and 𝜎𝑖𝑗
0  is the initial 

stress, also called the pre-buckling stress. Based 

on the assumption of Green’s strain-tensor, the 

linear and the non-linear parts of strain-

displacement relations and their first variation 

are [29, 31]: 

휀𝑥𝑥
𝑙 = 𝑢0

′ − 𝑦𝑣″ − 𝑧𝑤″ − 𝜔𝜃″ 

𝛿휀𝑥𝑥
𝑙 = 𝛿𝑢0

′ − 𝑦𝛿𝑣″ − 𝑧𝛿𝑤″ − 𝜔𝛿𝜃″ 

(4) 

휀𝑥𝑥
∗ =

1

2
(𝑣′2 +𝑤′2 + 𝑟2𝜃′2) 

+𝑦𝑤′𝜃′ − 𝑧𝑣′𝜃′ 

𝛿휀𝑥𝑥
∗ = 𝑣′𝛿𝑣′ + 𝑤 ′𝛿𝑤 ′ + 𝑟2𝜃 ′𝛿𝜃 ′ 

  + 𝑦𝜃′𝛿𝑤′ + 𝑦𝑤′𝛿𝜃′ − 𝑧𝜃′𝛿𝑣′ − 𝑧𝑣′𝛿𝜃′ 

with 𝑟2=𝑦2 + 𝑧2 

𝛾𝑥𝑧
𝑙 = 2휀𝑥𝑧

𝑙 = (𝑦 −
𝜕𝜔

𝜕𝑧
) 𝜃′ 

𝛿𝛾𝑥𝑧
𝑙 = (𝑦 −

𝜕𝜔

𝜕𝑧
) 𝛿𝜃′ 

𝛾𝑥𝑧
∗ = −(𝑣′ + 𝜃′𝑧)𝜃 

𝛿𝛾𝑥𝑧
𝑙 = −𝜃𝛿𝑣′ − 𝑣′𝛿𝜃 

             −𝑧𝜃𝛿𝜃′ − 𝑧𝜃′𝛿𝜃 

𝛾𝑥𝑦
𝑙 = 2휀𝑥𝑦

𝑙 = −(𝑧 +
𝜕𝜔

𝜕𝑦
) 𝜃 ′ 

𝛿𝛾𝑥𝑦
𝑙 = −(𝑧 +

𝜕𝜔

𝜕𝑦
) 𝛿𝜃 ′ 

𝛾𝑥𝑦
∗ = (𝑤 ′ + 𝜃 ′𝑦)𝜃 

𝛿𝛾𝑥𝑦
∗ = 𝜃𝛿𝑤 ′ + 𝑤 ′𝛿𝜃 + 𝑦𝜃𝛿𝜃 ′ + 𝑦𝜃 ′𝛿𝜃 

In this study, the applied external loads in the 
z-direction cause the pre-buckling shear force 
(𝑉𝑧

0) and the pre-buckling bending moment (𝑀𝑦
0) 

loading. Both these forces induce the pre-
buckling axial and shear stresses as  

𝜎𝑥𝑥
0 = −

𝑀𝑦
0

𝐼𝑦
𝑧, 𝜎𝑥𝑧

0 =
𝑉𝑧
0

𝐴
= −

𝑀𝑦
0′

𝐴
, 

 𝜎𝑥𝑦
0 = 0   

(5) 

where 𝜎𝑥𝑥
0 and (𝜎𝑥𝑧

0 ,𝜎𝑥𝑦
0 ) are the pre-buckling 

bending stress and shear stress often called the 
initial stresses. In Eq. (3), 𝑤𝑃  is the vertical 
displacement of point P. According to kinematics 
used in Asgarian et al. [29] and by adopting the 
quadratic approximation, the vertical 
displacement of the point P and its first variation 
are as: 

𝑤𝑃 = 𝑤 − 𝑧𝑃
𝜃2

2
→  𝛿𝑤𝑃 = 𝛿𝑤 − 𝑧𝑃𝜃𝛿𝜃 (6) 

In this equation, zP is used to imply the 
eccentricity of the applied loads from the centroid 
of the cross-section. Substituting equations (4) to 
(6) into relation (3), the expression of the virtual 
potential energy can be carried out as: 

𝛿𝛱 = ∫ ∫ 𝜎𝑥𝑥 (
𝛿𝑢0

′ − 𝑦𝛿𝑣″ − 𝑧𝛿𝑤″

−𝜔𝛿𝜃″
) 𝑑𝐴𝑑𝑥

𝐴

𝐿

0

 
 

+∫ ∫ 𝜏𝑥𝑦 (−(𝑧 +
𝜕𝜔

𝜕𝑦
)𝛿𝜃 ′) 𝑑𝐴𝑑𝑥

𝐴

𝐿

0

  

+∫ ∫ 𝜏𝑥𝑧 ((𝑦 −
𝜕𝜔

𝜕𝑧
)𝛿𝜃 ′) 𝑑𝐴𝑑𝑥

𝐴

𝐿

0

 (7) 

+∫ ∫(−
𝑀𝑦
0

𝐼𝑦
𝑧)

(

 

𝑣′𝛿𝑣′ + 𝑤 ′𝛿𝑤 ′

+𝑟2𝜃 ′𝛿𝜃 ′

+𝑦𝜃′𝛿𝑤′ + 𝑦𝑤′𝛿𝜃′

−𝑧𝜃′𝛿𝑣′ − 𝑧𝑣′𝛿𝜃 ′ )

 𝑑𝐴𝑑𝑥
𝐴

𝐿

0

  

+∫ ∫(−
𝑀𝑦
0′

𝐴
) (

−𝜃𝛿𝑣′ − 𝑣′𝛿𝜃
−𝑧𝜃𝛿𝜃′ − 𝑧𝜃′𝛿𝜃

) 𝑑𝐴𝑑𝑥
𝐴

𝐿

0

  

−∫ (𝑞𝑧𝛿𝑤 −𝑀𝑡𝜃𝛿𝜃)𝑑𝑥
𝐿

0

= 0  

in which, 𝑀𝑡 = 𝑞𝑧𝑧𝑃  denotes the second order 
torsion moments due to load eccentricity.  The 
variation of strain energy can be formulated in 
terms of section forces acting on cross-sectional 
contour of the elastic member in the buckled 
configuration. The section stress resultants are 
presented by the following expressions:  

𝑁 = ∫𝜎𝑥𝑥𝑑𝐴
𝐴

 (8a) 

𝑀𝑦 = ∫𝜎𝑥𝑥𝑧𝑑𝐴
𝐴

 (8b) 

𝑀𝑧 = −∫𝜎𝑥𝑥𝑦𝑑𝐴
𝐴

 (8c) 

𝐵𝜔 = −∫𝜎𝑥𝑥𝜔𝑑𝐴
𝐴

 (8d) 

𝑀𝑠𝑣 = ∫ (𝜏𝑥𝑧 (𝑦 −
𝜕𝜔

𝜕𝑧
) − 𝜏𝑥𝑦(𝑧

𝐴

+
𝜕𝜔

𝜕𝑦
)) 𝑑𝐴 

(8e) 
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where N is the axial force applied at end member. 
My and Mz denote the bending moments about 
major and minor axes, respectively. B is the bi-
moment. Msv is the St-Venant torsion moment. In 
this stage, by integrating Eq. (7) over the cross-
section area of the beam and using relations (8a)–
(8e), the final form of the variation of total 
potential energy () is acquired as: 

𝛿𝛱 = ∫ (
𝑁𝛿𝑢0

′ +𝑀𝑧𝛿𝑣
″

−𝑀𝑦𝛿𝑤
″ + 𝐵𝜔𝛿𝜃

″) 𝑑𝑥
𝐿

 

+∫ (𝑀𝑠𝑣𝛿𝜃
′)

𝐿

0

𝑑𝑥 

+∫ (𝑀𝑦
0(𝜃′𝛿𝑣′ + 𝑣′𝛿𝜃′))𝑑𝑥

𝐿

0

 

+∫ (𝑀𝑦
0′(𝜃𝛿𝑣′ + 𝑣′𝛿𝜃))𝑑𝑥

𝐿

0

 

−∫ (𝑞𝑧𝛿𝑤 − 𝑞𝑧𝑧𝑃𝜃𝛿𝜃)𝑑𝑥
𝐿

0

= 0 

(9) 

or  

𝛿𝛱 = 

∫ (
𝑁𝛿𝑢0

′ +𝑀𝑧𝛿𝑣
″

−𝑀𝑦𝛿𝑤
″ + 𝐵𝜔𝛿𝜃

″ +𝑀𝑠𝑣𝛿𝜃
′) 𝑑𝑥

𝐿

 

+∫ (−𝑀𝑦
0𝑣″𝛿𝜃 −𝑀𝑦

0𝜃𝛿𝑣″)
𝐿

0

𝑑𝑥 

−∫ (𝑞𝑧𝛿𝑤 − 𝑞𝑧𝑧𝑃𝜃𝛿𝜃)𝑑𝑥
𝐿

0

= 0 

(10) 

The present model is applied in the case of 
balanced and symmetrical lay-ups of the web and 
both flanges. In the context of classical laminated 
plate theory and substitution Eq. (4) into Eq. (8), 
the stress resultants of symmetrically balanced 
laminates are derived in terms of displacement 
components as [47] 

𝑁 = (𝐸𝐴)𝑐𝑜𝑚𝑢0
′  (11a) 

𝑀𝑧 = (𝐸𝐼𝑧)𝑐𝑜𝑚𝑣
″ (11b) 

𝑀𝑦 = −(𝐸𝐼𝑦)𝑐𝑜𝑚𝑤
″ (11c) 

𝐵𝜔 = (𝐸𝐼𝜔)𝑐𝑜𝑚𝜃
″ (11d) 

𝑀𝑠𝑣 = (𝐺𝐽)𝑐𝑜𝑚𝜃
′ (11e) 

where (𝐸𝐴)𝑐𝑜𝑚denotes axial rigidity. 
(𝐸𝐼𝑦)𝑐𝑜𝑚and (𝐸𝐼𝑧)𝑐𝑜𝑚  represent the flexural 

rigidities of the y- and z-axes, respectively. 
(𝐸𝐼𝜔)𝑐𝑜𝑚and (𝐺𝐽)𝑐𝑜𝑚are, respectively, warping 
and torsional rigidities of composite thin-walled 
beams with doubly symmetric I-section, defined 
by [47]: 

(𝐸𝐴)𝑐𝑜𝑚 = 2𝑏𝐴11
𝑓
+ 𝑑𝐴11

𝑤  (12a) 

(𝐸𝐼𝑦)𝑐𝑜𝑚 = 2𝑏𝐷11
𝑓
+
𝑑2

2
𝑏𝐴11

𝑓
 

+
𝑑3

12
𝐴11
𝑤  

(12b) 

(𝐸𝐼𝑧)𝑐𝑜𝑚 =
𝑏3

6
𝐴11
𝑓
+ 𝑑𝐷11

𝑤  (12c) 

(𝐸𝐼𝜔)𝑐𝑜𝑚 = (
𝑑2

4
𝐴11
𝑓
+ 𝐷11

𝑓
)
𝑏3

6

+
𝑑3

12
𝐷11
𝑤  

(12d) 

(𝐺𝐽)𝑐𝑜𝑚 = 4(2𝑏𝐷66
𝑓
+ 𝑑𝐷66

𝑤 ) (12e) 

That indexes f and w refer to the web and the 
flange of the beam cross-section, respectively. 

𝐴11
𝑓
, 𝐴11
𝑤 and 𝐷11

𝑓
, 𝐷11

𝑤 , 𝐷66
𝑓
, 𝐷66

𝑤  are the matrices of 
extensional and bending stiffness of both flanges 
and web, respectively, which are calculated as 

(𝐴𝑖𝑗
𝑓
, 𝐷𝑖𝑗

𝑓
) = ∫𝑄𝑖𝑗

𝑓
(1, 𝑧2)𝑑𝑧 

(13) 

(𝐴𝑖𝑗
𝑤 , 𝐷𝑖𝑗

𝑤) = ∫𝑄𝑖𝑗
𝑤(1, 𝑦2)𝑑𝑦 

where 𝑄𝑖𝑗
𝑓

and 𝑄𝑖𝑗
𝑤are the transformed reduced 

stiffness related to the flanges and web, 
respectively. Since the breadth of the flanges and 
the height of the web are assumed to vary linearly 
along the length of the beam, the above stiffness 
terms Eq. (12) are not constant. 
Substituting Eq. (11) into (10), one gets the 
variation of the total potential is then a function 
of the virtual displacements 𝛿𝑢0, 𝛿𝑣, 𝛿𝑤and 𝛿𝜃, 
and of their derivatives as 

𝛿𝛱 = 

∫(

(𝐸𝐴)𝑐𝑜𝑚𝑢0
′ 𝛿𝑢0

′ + (𝐸𝐼𝑧)𝑐𝑜𝑚𝑣
″𝛿𝑣″

+(𝐸𝐼𝑦)𝑐𝑜𝑚𝑤
″𝛿𝑤″

+(𝐸𝐼𝜔)𝑐𝑜𝑚𝜃
″𝛿𝜃″ + (𝐺𝐽)𝑐𝑜𝑚𝜃

′𝛿𝜃 ′

)𝑑𝑥
𝐿

 
 

+∫ (−𝑀𝑦
0𝑣″𝛿𝜃 −𝑀𝑦

0𝜃𝛿𝑣″)
𝐿

0

𝑑𝑥 
(14) 

−∫ (𝑞𝑧𝛿𝑤 − 𝑞𝑧𝑧𝑃𝜃𝛿𝜃)𝑑𝑥
𝐿

0

= 0  

or equivalently 

∫((𝐸𝐴)𝑐𝑜𝑚𝑢0
′ 𝛿𝑢0

′ )𝑑𝑥
𝐿

= 0 (15a) 

∫((𝐸𝐼𝑦)𝑐𝑜𝑚𝑤
″𝛿𝑤″ − 𝑞𝑧𝛿𝑤)𝑑𝑥 = 0

𝐿

 (15b) 

∫((𝐸𝐼𝑧)𝑐𝑜𝑚𝑣
″ −𝑀𝑦

0𝜃)𝛿𝑣″𝑑𝑥 = 0
𝐿

 (15c) 

∫(
(𝐸𝐼𝜔)𝑐𝑜𝑚𝜃

″𝛿𝜃″ + (𝐺𝐽)𝑐𝑜𝑚𝜃
′𝛿𝜃 ′

−𝑀𝑦
0𝑣″𝛿𝜃 − 𝑧𝑃𝑞𝑧𝜃𝛿𝜃

) 𝑑𝑥
𝐿

 

= 0 
(15d) 

Based on the straightforward methodology 
presented by Soltani et al. [29-33], Eq. (15c) can 
be rewritten in the following form for any 
acceptable lateral buckled configuration: 

𝑣″ =
𝑀𝑦
0

(𝐸𝐼𝑧)𝑐𝑜𝑚
𝜃 (16) 
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whose substitution in Eq. (15d) enables its 
redefinition in an uncoupled form just dependent 
on the twist angle 𝜃, independently from the 
lateral displacement 𝑣, i.e. 

∫(

(𝐸𝐼𝜔)𝑐𝑜𝑚𝜃
″𝛿𝜃″ + (𝐺𝐽)𝑐𝑜𝑚𝜃

′𝛿𝜃 ′

−
𝑀𝑦
02

(𝐸𝐼𝑧)𝑐𝑜𝑚
𝜃𝛿𝜃 − 𝑧𝑃𝑞𝑧𝜃𝛿𝜃

)𝑑𝑥
𝐿

= 0 

(17) 

One of the most convenient methodologies to 
precisely estimate the lateral-torsional stability 
limit state of different types of continuous 
structural elements is the Rayleigh-Ritz method. 
Additionally, the main advantage of the present 
approach is that the Central Processing Unit 
(CPU) requires less time to acquire the solution 
with excellent precision [30, 31]. In the following, 
the Rayleigh-Ritz method is thus employed to 
obtain buckling load of non-prismatic columns. 
Based on the assumptions of this classical 
technique, it is essential to replace buckled shape 
of the elastic beam with appropriate deformation 
shapes of the element after lateral buckling 
satisfying both geometrical and natural boundary 
conditions of the system. Since the resulting weak 
form of lateral equilibrium equations is only in 
terms of the twisting angle, the approximate 
buckled shape of the beam must satisfy all the 
essential boundary conditions for torsional 
rotation. 

In the case of cantilevers, the left end (fixed 
one) of the beam is prevented from freely 
warping (𝜃(0) = 𝜃′(0) = 0), while, the right end 

of the I-section is free to warp (𝜃″(𝐿) = 0). Thus, 
the first displacement mode in torsion can be 
approximated by trigonometric functions as [48, 
49] 

𝜃(𝑥) = 𝜃1 (1 − 𝑐𝑜𝑠 (
𝜋𝑥

2𝐿
)) 

(18) +𝜃2 (1 − 𝑐𝑜𝑠 (
3𝜋𝑥

2𝐿
)) 

+𝜃3(1 − 𝑐𝑜𝑠 (
5𝜋𝑥

2𝐿
)) 

For simply supported beams, the twist angle 
equals zero at both ends (𝜃(0) = 𝜃(𝐿) = 0). 
Further, the ends of the I-shape beam are free to 

warp (𝜃″(0) = 𝜃″(𝐿) = 0). Therefore, the 
torsional rotation mode shape becomes [48, 49]: 

𝜃(𝑥) = 𝜃1 𝑠𝑖𝑛 (
𝜋𝑥

𝐿
) (19) 

For fixed-fixed cases, both end supports are 
prevented from freely warping. This means that 
the twist angle and the rate of twist at the fixed 

support are null (𝜃(0) = 𝜃(𝐿) = 𝜃 ′(0) = 𝜃 ′(𝐿) =
0). The expression for the angle of twist can be 
approximated as [48, 49] 

𝜃(𝑥) = 𝜃1(1 − 𝑐𝑜𝑠 (
2𝜋𝑥

𝐿
)) 

(20) +𝜃2(1 − 𝑐𝑜𝑠 (
3𝜋𝑥

𝐿
)) 

+𝜃3(1 − 𝑐𝑜𝑠 (
5𝜋𝑥

𝐿
)) 

In the above equations, 𝜃𝑖(𝑖 = 1,2,3) are the 
Ritz coefficients. It is important to note that the 
final variational formulation (Eq. (17)) is 
applicable for lateral stability analysis of 
composited tapered I-beam under various end 
conditions [29, 30, 33, 48], but, in the next 
section, only simply supported beam is 
considered for implementation of the Ritz 
method. 

2.3.  Lateral buckling analysis 

To demonstrate the application of Eq. (17), 
simply supported beam subjected to uniformly 
distributed load is considered, as shown in Fig. 2. 
For this loading condition, the bending moment 
distribution through the x-axis is given by: 

𝑀𝑦
0 = 𝑞𝑧

𝐿2

2
(
𝑥

𝐿
−
𝑥2

𝐿2
) (21) 

The substitution of the expression of the 
internal bending moment, the corresponding 
buckled shape function of the simply supported 
beam Eq. (19), and its derivatives into Eq. (17) 
yields. 

∫((
1

4
𝑞𝑧
2
(𝐿𝑥 − 𝑥2)2

(𝐸𝐼𝑧)𝑐𝑜𝑚𝐿

+ 𝑧𝑃𝑞𝑧)(𝑠𝑖𝑛(
𝜋𝑥

𝐿
))2)𝑑𝑥 

(22) 
 

= (
𝜋

𝐿
)2∫(

(
𝜋

𝐿
)2(𝐸𝐼𝜔)𝑐𝑜𝑚(𝑠𝑖𝑛(

𝜋𝑥

𝐿
))2

+(𝐺𝐽)𝑐𝑜𝑚(𝑐𝑜𝑠(
𝜋𝑥

𝐿
))2

)𝑑𝑥
𝐿

 

Again remind that in the present study, the 
height of the web and the width of both flanges 
are varying linearly such as 

𝑑(𝑥) = 𝑑0(1 + 𝛼)(
𝑥

𝐿
) + 𝑑0 

0 ≤ 𝛼, 𝛽 (23) 
𝑏(𝑥) = 𝑏0(1 + 𝛽)(

𝑥

𝐿
) + 𝑏0 

The terms𝛽and𝛼are the flanges and web 
tapering ratios, respectively, which are defined as 
𝛽 = 𝑏𝐿/𝑏0 − 1 and 𝛼 = 𝑑𝐿/𝑑0 − 1. The subscripts 
0 and L indicate dimensions at x=0 and x=L. Note 
that the prismatic cross-sections case is achieved 
by equating these two parameters (𝛽and𝛼) to 
zero.  

 
Fig. 2. Simply supported beam with uniformly  

distributed load. 
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The three stiffness quantities required for 
lateral-torsional stability of double tapered I-
beam subjected to transverse loading are finally 
determined by substitution Eq. (23) into Eq. (12). 

(𝐸𝐼𝑧)𝑐𝑜𝑚 =
1

6
(𝑏𝐿(1 + 𝛽) (

𝑥

𝐿
) + 𝑏𝐿) 𝐴11

𝑓
 

+(𝑑𝐿(1 + 𝛼)(
𝑥

𝐿
) + 𝑑𝐿)𝐷11

𝑤  

(24a) 

(𝐸𝐼𝜔)𝑐𝑜𝑚 =
1

6
(𝑏𝐿(1 + 𝛽) (

𝑥

𝐿
) + 𝑏𝐿)

3

𝐷11
𝑓

 

+
1

24
(𝑑𝐿(1 + 𝛼) (

𝑥

𝐿
) + 𝑑𝐿)

2

⨯ 

(𝑏𝐿(1 + 𝛽) (
𝑥

𝐿
) + 𝑏𝐿)

3

𝐴11
𝑓

 

+
1

12
(𝑑𝐿(1 + 𝛼)(

𝑥

𝐿
) + 𝑑𝐿)

3

𝐷11
𝑤  

(24b) 

(𝐺𝐽)𝑐𝑜𝑚 = 8(𝑏𝐿(1 + 𝛽) (
𝑥

𝐿
) + 𝑏𝐿)𝐷66

𝑓
 

+4(𝑑𝐿(1 + 𝛼)(
𝑥

𝐿
) + 𝑑𝐿)𝐷66

𝑤  

(24c) 

In this study, it is supposed that uniformly 
transverse load can be applied at three different 
positions: the top flange, the centroid (shear 
center), and the bottom flange and, therefore 

𝑧𝑃(𝑥) = 𝑧𝑃0(1 + 𝛼)(
𝑥

𝐿
) + 𝑧𝑃0 

(25) 

𝑧𝑃0 = −
𝑑0
2
, 0,
𝑑0
2

 

By inserting the equation presented above 
Eq.s (24 and 25) into Eq. (22) and after 
appropriate integrations over the beam’s length, 
as well as some calculations, the critical values of 
qz can be obtained. 

3.  Numerical Example 

In the preceding section, an analytical 
methodology has been formulated to calculate 
the lateral-torsional buckling loads of thin-walled 
laminated composite beam with varying I-
section. In this section, a comprehensive example 
is conducted to show the effects of significant 
parameters such as fiber angle orientation, 
loading position, and non-uniformity ratios (𝛽, 𝛼) 
on the lateral buckling capacity of multi-layered 
composite tapered I-beam. To that end, a simply 
supported laminated double-tapered I-beam 
with symmetric lamination with a span of 8m 
subjected to uniformly distributed load is 
considered. At the left end section, both flanges 
are assumed to be 100mm wide (bL), and the web 
of the I-shape is 200mm deep (dL).  All section 
walls (flanges and web) are assumed to be 
laminated symmetrically concerning its mid-

plane and made of 16 plies, each 0.25mm thick 
(total thickness: tw=tf=4 mm). All the layers are 
made of glass/epoxy (S2) with the following 
elastic properties [2-5]:  

𝐸1 = 48.3(𝐺𝑃𝑎),        𝐸2 = 19.8(𝐺𝑃𝑎),  

𝐺12 = 8.96(𝐺𝑃𝑎),      𝐺13 = 8.96(𝐺𝑃𝑎), 

 𝐺23 = 6.19(𝐺𝑃𝑎),     𝜈12 = 0.27, 

𝜈13 = 0.27,                   𝜈23 = 0.6. 

where directions parallel and perpendicular to 
fibers are presented by subscripts ‘1’ and ‘2’, 
respectively. The main features of this type of 
glass epoxy composite are its high tensile 
strength, high resistance to damage, and 
improved impact resistance. Therefore, S-glass is 
widely used in the aerospace and building 
industries. 

To have a better understanding of the 
numerical outcomes, the evaluated lateral-
torsional buckling load is presented in the non-
dimensional form as  

𝑞𝑛𝑜𝑟 =
𝑞𝑐𝑟𝐿

3

𝐸𝑦𝑡𝑤𝑑𝐿
3  (26) 

The current section is divided into two 
different subsections: the first one for verification 
of the formulation proposed herein, and the 
second one is for studying the influence of the 
above-mentioned factors on the linear lateral 
buckling behavior of the considered member.  

3.1.  Verification  

The absence of numerical studies on the thin-
walled laminated composite beams with varying 
cross-sections, herein, and the accuracy of the 
predicted results based on the present 
formulation are checked with those acquired via 
SHELL281 of ANSYS code [50]. To this end, the 
lowest values of the non-dimensional lateral 
buckling parameter (𝑞𝑛𝑜𝑟) of the contemplated 
beam with variable thin-walled I-section for two 
different loading positions and various values of 
tapering ratios (𝛽 = 𝛼 = 0, 0.2, and 0.5) are 
evaluated and depicted in Table 1. In this section, 
six different stacking sequences are considered 
for the web and flanges. Fig. 3 schematically 
shows two different lay-up arrangements of both 
flanges of the I-section. Additionally, the relative 
errors () associated with the current approach 
are given by the following expression: 

𝛥 =
|𝑞𝑛𝑜𝑟
𝑅𝑖𝑡𝑧 − 𝑞𝑛𝑜𝑟

𝐴𝑁𝑆𝑌𝑆|

𝑞𝑛𝑜𝑟
𝐴𝑁𝑆𝑌𝑆

× 100 (27) 

One observes a good agreement between the 
present analytical methodology and ANSYS 
simulations. The error between the Ritz method 
and ANSYS is below 10%. 
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Fig. 3: Ply stack of top and bottom flanges, 

 (a) [0/90]4𝑠 , (b) [(03/90)2]𝑠. 

 

 

 

Fig. 4. Variation of the lateral buckling parameter with 
respect to fiber angle change in both flanges for 

different tapering ratios, (a) load applied at the top 
flange, (b) load applied at the centroid. 

 

Table 1. Comparative evaluation of the lateral buckling response for a simply supported composite web and 
 flanges tapered beam under distributed load. 

Tapering 

parameter 

Lay-up 
Loading position 

Top flange Centroid 

Flanges web Present ANSYS 𝛥(%) Present ANSYS 𝛥(%) 

𝛽𝑓 = 𝛽𝑤 = 0 

[0]16 [0]16 0.069 0.068 2.361 0.093 0.090 2.623 

[0/90]4𝑠 [±45]8 0.064 0.060 5.742 0.081 0.077 5.223 

[(03/90)2]𝑠 [±45]8 0.071 0.067 5.675 0.091 0.087 5.163 

[0/90]4𝑠 [0/90]4𝑠 0.056 0.055 1.974 0.073 0.071 2.186 

[0/90]4𝑠 [(0/±45/90)2]𝑠 0.060 0.058 2.939 0.077 0.075 2.953 

[(03/90)2]𝑠 [(0/±45/90)2]𝑠 0.067 0.065 2.990 0.087 0.084 3.015 

𝛽𝑓 = 𝛽𝑤 = 0.2 

[0]16 [0]16 0.089 0.086 3.610 0.122 0.117 4.478 

[0/90]4𝑠 [±45]8 0.079 0.074 6.413 0.103 0.097 6.548 

[(03/90)2]𝑠 [±45]8 0.089 0.083 6.373 0.118 0.110 6.520 

[0/90]4𝑠 [0/90]4𝑠 0.071 0.069 3.058 0.095 0.091 3.886 

[0/90]4𝑠 [(0/±45/90)2]𝑠 0.075 0.072 3.889 0.099 0.095 4.539 

[(03/90)2]𝑠 [(0/±45/90)2]𝑠 0.084 0.081 3.994 0.113 0.108 4.654 

𝛽𝑓 = 𝛽𝑤 = 0.5 

[0]16 [0]16 0.129 0.120 8.153 0.183 0.168 8.904 

[0/90]4𝑠 [±45]8 0.110 0.100 9.301 0.148 0.135 9.569 

[(03/90)2]𝑠 [±45]8 0.125 0.114 9.594 0.171 0.156 9.829 

[0/90]4𝑠 [0/90]4𝑠 0.100 0.094 6.844 0.138 0.128 7.684 

[0/90]4𝑠 [(0/±45/90)2]𝑠 0.105 0.098 7.323 0.143 0.132 8.047 

[(03/90)2]𝑠 [(0/±45/90)2]𝑠 0.120 0.111 7.788 0.166 0.153 8.454 

 

3.2. Parametric Study 

In this section, to assess the effect of fiber 
angle orientation, load height parameter, and 
web and flanges non-uniformity ratios, three 
cases are considered. It is necessary to note that 

the laminated non-uniform I-beam with equal 
web height and flanges width tapering ratios 
(𝛽 = 𝛼) under a uniform loading distribution 
applied on the top flange and the shear center is 
studied.  

(a) 

(b) 
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The first case is that the web and flanges 
plates are made of 16 plies with unidirectional 
[0]16lay-up for the web, while the top and bottom 
flanges are assumed to have symmetrical 
[±𝜃]4𝑆lay-ups. In this case, Fig. 4 exhibits the 
effect of the non-uniformity ratio (𝛽 = 𝛼) on the 
variation of the lateral buckling load parameters 
of laminated composite tapered I-beam 
considering the fiber angle () of its flanges. It is 
seen that the lateral stability capacity decreases 
monotonically with an increase in fiber angle (), 
where the effect of fiber angle change increases 
when  varies between 20 and 60. In the first 
lateral buckling mode, the laminated thin-walled 
beam becomes weaker and more unstable as the 
angle of orientation increases. The maximum 
lateral stability strength is thus obtained with 
unidirectional [0]16lay-up for both flanges. In the 
case of a prismatic member, these results are 
confirmed in [47]. 

The next section is the same as before, except 
that the top and bottom flanges are considered 
unidirectional, [0]16whereas the web laminate is 
assumed to have symmetric angle-ply 
laminations [±𝜃]4𝑆. Now, to study the influence 
of fiber angle orientation in the web of doubly-
symmetric I-section, the variation of lateral 
buckling parameters for a simply supported 
laminated tapered beam with various tapering 
ratios versus fiber angle change is presented in 
Fig. 5. As the fiber angle is rotated off axis, the 
lateral buckling capacity is maximized at  = 45° 
and then sharply minimized at  = 90°. The higher 
lateral stability strength for prismatic and 
tapered I-beam is thus obtained by aligning the 
fiber orientation in the web around 45°. Similar 
behavior can also be observed for the two 
different loading positions. 

The third case is that all section walls, 
including flanges and the web, are sixteen-
layered symmetric angle-ply laminate 
[±𝜃]4𝑆with equal thickness. For this lay-up, Fig. 6 
displays the variation of the lowest lateral 
buckling parameter of simply supported 
composite I-beam considering the change in fiber 
orientation in the flanges and web for six 
different tapering parameters (𝛽 = 𝛼 = 0, 0.2, 0.4, 
0.6, 0.8, and 1). Fig. 5 shows that the lateral 
stability decreased steadily with increasing fiber 
angle. In addition, as shown in Fig. 6, the 
magnitude of critical parameters relating to the 
first lateral buckling mode decreases sharply for 
20 ≤ 𝜃 ≤ 60 whereas, the lateral buckling 
resistance decreases slightly and reaches the 
minimum magnitude for𝜃 > 60. Similar trends in 
the results are also observed. 

According to the illustrations, it is found out 
that for any value of fiber angle orientation, the 
stability of prismatic beam (𝛽 = 𝛼 = 0) and 
double tapered one with 𝛽 = 𝛼 = 1 is the 

minimum and maximum, respectively. Hence, the 
lateral buckling parameter increases significantly 
with an increase in web and/or flange non-
uniformity ratios ( and ) due to the 
enhancement of all geometrical characteristics of 
cross-section and, consequently, flexural stiffness 
and torsional rigidity of the elastic member.  

 

 

Fig. 5. Variation of the lateral buckling parameter with 
respect to fiber angle change in the web for different 

tapering ratios, (a) load applied at the top flange, (b) load 
applied at the centroid. 

 

 

 

Fig. 6. Variation of the lateral buckling parameter with 
respect to fiber angle change in the web and both flanges 

for different tapering ratios, (a) load applied at the top 
flange, (b) load applied at the centroid. 
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Based on the results presented in Figs. 4-6, it 
can be concluded that the optimum fiber angles 
for achieving the highest lateral buckling 
resistance of simply supported web and flanges 
tapered beam under distributed load are ±45∘ in 
the web and 0∘in both flanges. This statement is 
reasonable since the flexural stiffness 
(𝐸𝐼𝑧)𝑐𝑜𝑚and the warping rigidity(𝐸𝐼𝜔)𝑐𝑜𝑚 , which 
are expressed in terms of unidirectional stiffness 
A11 and D11 (Eq. (24)), achieved their maximum 
magnitude by aligning the fibers at 0∘ in both 
flanges and web. As these two stiffness quantities 
((𝐸𝐼𝑧)𝑐𝑜𝑚  and (𝐸𝐼𝜔)𝑐𝑜𝑚) are mostly controlled by 
the fiber angle on the top and bottom flanges, 
hence the fiber orientation should be placed at 
0∘in both flanges to improve the lateral stability 
strength. Based on Eq. (24), the laminate 
torsional stiffness (𝐺𝐽)𝑐𝑜𝑚is presented in terms 

of twisting stiffness in both flanges 𝐷66
𝑓

 and the 
web𝐷66

𝑤 , which are often maximum for fiber 
orientation around45∘. Therefore, the linear 
lateral-torsional capacity becomes higher by 
placing the web fiber angle at ±45∘. 

In the following sections, the optimal stacking 
sequence is adopted. In order to investigate the 
influence of high load parameter (zP) on the 
lateral stability behavior, the variations of the 
lateral buckling load parameters (𝑞𝑛𝑜𝑟) of the 
thin-walled laminated beam with varying I-
section versus tapering ratios (varying from 0 to 
1) is plotted in Fig. 7 for the three loading 
positions. 

The magnitude of the non-dimensional 
lateral-torsional buckling parameter (𝑞𝑛𝑜𝑟) for 
various combinations of web height and flange 
width tapering ratios, with different loading 
positions are listed in Table 2. 

Fig. 6 and Table 2 show that the uniformly 
transverse load position has a significant effect 
on the stability strength of composite beams with 
varying doubly-symmetric I-section, especially 
for larger tapering ratios. Regarding these load 
cases, the lateral buckling strength will become 
best when the distributed load location is on the 
bottom flange due to the reduction of the rotation 
of the I-section from its origin, and the lower 
values are obtained when the load is applied on 
the top flange position. 

 
Fig. 7. Variation of the lateral buckling parameter versus 

the non-uniformity ratio for three different transverse 
loading positions 

 

Table 2: Lateral buckling parameter for laminated tapered I-
beam with different tapering ratios and loading position (top 

and bottom flanges: [0]16, web: [±45]4𝑠) 

Loading 

position 
𝛽 

Web tapering ratio (𝛼) 

0 0.3 0.6 0.9 

Top 

flange 

0 0.078 0.083 0.088 0.093 

0.3 0.102 0.110 0.118 0.127 

0.6 0.132 0.144 0.157 0.170 

0.9 0.168 0.186 0.204 0.223 

Centroid 

0 0.101 0.109 0.118 0.127 

0.3 0.137 0.150 0.163 0.176 

0.6 0.181 0.200 0.219 0.239 

0.9 0.233 0.260 0.288 0.317 

Bottom 

flange 

0 0.131 0.144 0.157 0.169 

0.3 0.182 0.199 0.217 0.234 

0.6 0.241 0.264 0.287 0.310 

0.9 0.308 0.338 0.368 0.397 

Moreover, the effect of the rate of flanges 
width tapering parameter () is seen to be higher 
than the effect of the web non-uniformity ratio 
(). The reason is that the lateral-torsional 
buckling phenomenon occurs concerning the 
minor axis moment of inertia. 

4. Conclusions 

In this paper, the lateral stability of a tapered 
thin-walled balanced laminated beam with an I-
section is investigated by presenting an 
innovative analytical technique. It is assumed 
that all section walls (the web and both flanges) 
are laminated symmetrically concerning its mid-
plane. Considering the bending–twisting 
coupling, the total potential energy is determined 
based on the assumptions of Vlasov’s model and 
the classic lamentation theory. The resulting 
formulation is thus obtained in terms of the 
vertical and lateral deformations and the twist 
angle. By presenting an auxiliary function, the 
variational statement is established only in terms 
of the twist angle. The Ritz method is finally 
employed to estimate the lateral buckling load. It 
is believed that the methodology proposed herein 
facilitates lateral stability analysis of 
symmetrically laminated thin-walled beams with 
varying cross-sections. Therefore, this new 
procedure is very efficient in reducing 
computational effort and also saving computing 
time. After verification, the impact of web and/or 
flanges tapering ratios, fiber angle, and 
transverse loading position on lateral-torsional 
stability of simply supported composite tapered 
I-beam is exhaustively surveyed. According to the 
numerical outcomes, it is concluded that the 
mentioned parameters play significant roles in 
the stability strength of laminated tapered I-
beam. For all transverse loading positions, it was 
found that the lateral buckling parameter of 
composite beam with tapered I-section decreases 
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as the fiber orientation in both flanges is rotated 
off axis, whereas the lateral-torsional buckling 
resistance increases as the web and/or flanges 
tapering ratios increase. It is also illustrated that 
the effect of the flange tapering parameter (𝛽) on 
the buckling capacity is higher than that of the 
web one (𝛼). 

Additionally, it is observed that the buckling 
capacity of a simply supported laminated beam 
with doubly-symmetric I-section will become 
best when the uniformly distributed load is 
applied on the bottom flange. Also, it can be 
interpreted that the effect of fiber angle change in 
both flanges on lateral buckling strength is 
significant. Finally, it can be concluded that the 
maximum lateral buckling load for simply 
supported web and flanges tapered beam under 
uniformly distributed load is obtained by placing 
fibers at ±45∘ in the web and 0∘in both flanges. 
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