
Mechanics of Advanced Composite Structures 9 (2022) 1–10 

Semnan University

Mechanics of Advanced Composite 

Structures 

journal homepage: http://MACS.journals.semnan.ac.ir 

* Corresponding author. Tel.: +918374479212 
E-mail address: ism.abhinav@gmail.com 

DOI: 10.22075/macs.2021.20627.1266 
Received 2020-06-15; Received in revised form 2021-09-05; Accepted 2021-12-13. 
© 2022 Published by Semnan University Press. All rights reserved. 

Analysis of SH-waves Propagating in Multiferroic Structure 
with Interfacial Imperfection  

A. Singhala* , J. Baroia, M. Sultanab , R. Babya 
a School of Sciences, Christ University, Ghaziabad, 201003, India 

b Department of Finance and Economics, Jagdish Sheth School of Management, Bangalore, India 

K E Y W O R D S A B S T R A C T

Mechanical vibrations 

Analytical modeling 

PM (CoFe2O4) material 

Reinforced material 

This article presents the study of wave mechanics in a multiferroic structure having 

imperfection in the structure’s interface. This article reflects the study of shear horizontal 

(SH) wave propagation in a layered cylindrical structure consisting of thin layers of 

different materials (reinforced material and piezomagnetic material) with an imperfect 

interface. The interface considered between both materials is mechanically imperfect. 

Dispersion relations are achieved analytically. Distinct graphs are drawn (numerically) to 

exhibit the influence of parameters like rotation, initial stress, and mechanically imperfect 

parameters on phase velocity. Numerical results are drawn analytically and explained for 

each affecting distinct parameters for materials and interface. Parametric results on the 

phase velocities yield a significant conclusion of which some are: (a) Performance of Piezo 

with reinforcement material have an influential impact on wave velocity. (b) The 

mechanical imperfection affects the significantly on wave velocity (c) The 

Reinforcement/PM stiffening can monotonically up the velocity of phase velocity. 

1. Introduction

Piezomagnetic material is the typical material
that came in the category of multiferroic 
composites. Together with piezoelectric material, 
they possess the magneto-electric effect (ME 
effect). Smart materials are extensively helpful in 
the manufacturing of actuators, rotating sensors, 
acoustic devices, control sensors, transducers, 
etc. The surface acoustic wave (SAW) devices 
work on the basics of wave propagation in an 
elastic body of free surfaces where the 
distribution is localized near the surface area. 
Hence, the surface wave transmission smart 
composite materials have vital importance [1,2]. 
In current years, numbers of research papers are 
available, which depicts that many efforts have 
been taken to determine the magneto-electric 
effect in the Piezo composites [3-7] in the absence 
of rotation. Researchers studied out the elastic 
surface waves propagation in smart composite 
structures [8,9], some in MEE bi-materials 
structures with coupled interfacial imperfections 
[10-12], and through multilayered composite 
structures [13,14]. 

Nowadays many frameworks (e.g., Sensors, 
smart screens, transducers, etc.) consist of at 
least two constituents for better stability. 
Moreover, the combination of materials 
(composite materials structures) has better 
stability, efficiency, and performance with 
respect to those constituents’ materials that work 
solely. The inclusion of piezomagnetic ceramic, in 
any edifice can assist to help for controlling 
structural functioning by the magnetically 
induced strain fields, also employ strain induced 
magnetic field as a feedback driver. Now, several 
studies on transverse seismic wave 
characteristics in piezo-composite structure 
materials have been published recently [15-18]. 
Dispersion characteristics of a dispersive wave 
become important to exhibit the design of the 
signal filtering for surface acoustics waves 
devices. The group of Wu et al. [19] studied the 
surface influence of the SH wave regarding their 
surface spectra in multiferroic nanoplates. 
Moreover, the two researchers Sun and Cheng 
[20] depicted that by altering the framework or 
by the addition of some conducting material 
metallic film with piezo medium, then the desired 
dispersion is achieved. 
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In the present study, the considered structure 
is a piezomagnetic material cylinder enclosed by 
the self-reinforced material with a mechanically 
imperfect interface. Self-reinforced materials are 
developed by the composition of fiber and matrix 
of the same material under specific temperature 
and pressure. Practically the self-reinforced 
material is stiffer, stronger, and discontinuous in 
contrast to the further anisotropic materials. This 
material has huge applications due to its extra 
deformation capacity. Whenever self-reinforced 
anisotropic materials exhibit electro-mechanical 
properties, these materials are applicable in the 
manufacturing of magnetic actuators, artificial 
muscles, etc. [21-24]. Verma and Rana [25] 
studied the influence of rotation on cylindrical 
structure tubes reinforced by fibers along a 
helical path. Moreover, Mahanty et al. [26] also 
studied the dispersion characteristics of shear 
waves in layered cylindrical fiber-reinforced 
media. 

Two types of interfaces exist i.e., perfect 
interface and imperfect interface. Mostly, the 
composite material structures, the considered 
interface between the distinct materials is not 
perfect. The causes of imperfection may be 
microdefects, corrosion, aging of glue used 
between interfaces, or any accumulated damage. 
Such type of imperfection influences the 
transference behavior of considered waves 
remarkably. Wang et al. [27] and Fang et al. [28] 
displayed clearly the effect of the imperfection of 
the interface on the wave propagation through 
the materials. Moreover, some researchers used 
a linear spring model of the interfacial 
imperfection to exhibit their influence on wave 
propagation through different channels [29-31]. 
Therefore, the consideration of interfacial 
imperfection in the current research article 
brings it near to the real-world scenario. So, this 
research paper fills the gap between previous 
works done by the researchers which were only 
limited to a plain interface, but this paper 
introduced the concept of mechanical imperfect 
interface with different materials (reinforced 
material and piezomagnetic material). 

However, sometimes during the different 
fabrication stages and manufacturing process, 
somehow there is a presence of initial stress in 
the medium. Therefore, it is necessary to 
consider the presence of initial stress in 
piezomagnetic material or structure. [32-34] 
consider the initial stress to make a better 
representation of their results without any error 
in the piezo-composite structures. Necessary 
discussion on composite structures using wave 
transmission through smart material under some 
mechanical stresses is carried out in [35-45]. 

This paper is going to exhibit clearly the SH 
wave vibrations transference in an initially 

stressed piezomagnetic cylinder coated with a 
thin layer of self-reinforced material and the 
interface considered between both materials is 
mechanical damage. The effects of a mechanically 
damaged imperfect interface, thickness ratio, 
reinforcement, initial stress,  and piezomagnetic 
parameters are extensively shown on the phase 
velocity of SH waves. The outcomes of the present 
work will provide references for designing 
engineering PM composites. 

2. Formulation of the problem and 
Equations 

The present study describes a central 
cylindrical model, which is comprised of two 
distinct materials i.e., piezomagnetic and self-
reinforced material as shown in figure 1. It 
consists of a pre-stressed piezomagnetic cylinder 
and a traction free concentric self-reinforced 
material-covering layer. The outer radius is 𝑟𝑆𝑅  
and inner radius 𝑟𝑝𝑚  of the cylinder. The 

cylindrical coordinate system 𝑟, 𝜃, 𝑧is considered. 

2.1. Wave analysis for PM Medium and 
equations 

For SH wave propagation in pre-stressed PM 
composites, an anti-plane shear motion, 
displacement, and magnetic potential in the plane 
are given as Sun et al. [10]. 

𝑢 = 𝑣 = 0, 𝑤 = 𝑤(𝑟, 𝜃, 𝑡), 𝜓 = 𝜓(𝑟, 𝜃, 𝑡) (1) 

where 𝑢, 𝑣, 𝑤 represents mechanical 
displacement, 𝜓 represents magnetic potential, 
respectively. 

(𝐺𝑝𝑚 + 𝑃1)𝛻2𝑢𝑝𝑚 + ℎ15𝛻2𝜓𝑝𝑚 =  

𝜌𝑝𝑚(𝜕𝑢𝑝𝑚/𝜕𝑡2) (2) 

ℎ15𝛻2𝑢𝑝𝑚 − 𝜇𝑝𝑚𝛻2𝜓𝑝𝑚 = 0.  

The consecutive equations for the PM 
materials can be expressed as Sun et al. 

 

𝜎𝑟𝑧
𝑝𝑚

= 𝐺𝑝𝑚(𝑢𝑝𝑚)
,𝑟

+ ℎ15(𝜙𝑝𝑚)
,𝑟

,  

𝜎𝜃𝑧
𝑝𝑚

=
1

𝑟
(𝐺𝑝𝑚(𝑢𝑝𝑚)

,𝜃
+ ℎ15(𝜙𝑝𝑒)

,𝜃
), 

(3) 

𝐵𝑟
𝑝𝑚

= ℎ15(𝑢𝑝𝑚)
,𝑟

− 𝜇𝑝𝑚(𝜓𝑝𝑚)
,𝑟

, 

𝐵𝜃
𝑝𝑚

=
1

𝑟
(ℎ15(𝑢𝑝𝑚)

,𝜃
− 𝜇𝑝𝑚(𝜓𝑝𝑚)

,𝜃
),  

In Eq. (2) and (3), 𝐺𝑝𝑚  and ℎ15represents the 

elastic, and PM coefficients, respectively; 𝜇𝑝𝑚 

denotes magnetic permeability 𝜌𝑝𝑚 and 𝑃1 

symbolizes the mass density and initial stress of 
the Piezo-material layer. The subscripts and 
superscript “𝑝𝑚” represent the quantities for the 
PM cylinder and the superimposed dot 
symbolizes the time derivative. 

 



Singhal et al. / Mechanics of Advanced Composite Structures 9 (2022) 1-10 

3 

 
Fig. 1. A schematic of stratified multiferroic structure 

𝛻2 =
𝜕2

𝜕𝑟2 +
1

𝑟

𝜕

𝜕𝑟
+

1

𝑟2

𝜕2

𝜕𝜃2 is Laplacian operator 

in polar coordinates. 
In Eq. (4) and (5), 𝜎𝑖𝑧 , and 𝐵𝑖(𝑖 = 𝑟, 𝜃) 

represents anti-plane stress and magnetic 
induction respectively. The subscript comma 
represents a partial derivative with respect to 
coordinates. 

Now we assume new auxiliary functions �̄�𝑝𝑚 

in the following form 

�̄�𝑝𝑚 = 𝜓𝑝𝑚 −
ℎ15

𝜇11

𝑢𝑝𝑚 (4) 

Introducing Eq. (4) into Eqs. (2), we get the 
decoupled equations 

 

(𝐺𝑝𝑚 + 𝑃1)𝛻2𝑢𝑝𝑚 − 𝜌𝑝𝑚

𝜕2𝑢𝑝𝑚

𝜕𝑡2
= 0, 𝛻2�̄�𝑝𝑚 = 0, (5) 

 

where 𝐺𝑝𝑚 = 𝐺𝑝𝑚 +
(ℎ15)2

𝜇11
 

 

Consider the solution of Eq. (4) as 
 

𝑢𝑝𝑚 = 𝑈𝑝𝑚(𝑟)𝑒𝑖(𝑛𝜃−𝜔𝑡), 
(6) 

𝜓
𝑝𝑚

= 𝛹𝑝𝑚(𝑟)𝑒𝑖(𝑛𝜃−𝜔𝑡) 

 

where 𝑈𝑝𝑚(𝑟), 𝛹𝑝𝑚(𝑟) are the unknown 

functions. 𝑛 and 𝜔 represent wave number and 
angular frequency respectively. Substituting Eq. 
(6) into Eq. (5), yields the general solution in the 
following form. 

 

𝑢𝑝𝑚(𝑟) = [𝐴1𝐽𝑛(𝜆1𝑟) +]𝑒𝑖(𝑛𝜃−𝜔𝑡), 

(7) 
𝜓

𝑝𝑚
(𝑟) = (𝐴2𝑟𝑛 + 𝐴1

ℎ15

𝜇11
𝐽𝑛(𝜆1𝑟)) 𝑒𝑖(𝑛𝜃−𝜔𝑡) 

where 𝜆1 =
𝜔𝜌𝑝𝑚

𝐺𝑝𝑚+𝑃1
and 𝐴1, 𝐴2  are unknown 

constants. 𝐽𝑛 is Bessel functions of 𝑛th order of 
the first kind respectively. 

2.2. Wave analysis for Self-Reinforced Medium 
and equations 

Let 𝑢𝑖 , 𝑣𝑖  and 𝑤𝑖  presents the mechanical 
displacement in 𝑟, 𝜃, and  𝑧   directions 
respectively. On the assumption that for 

propagating SH wave  𝜃 direction the composite 
is under axial shear deformation, we consider 

 

𝑢𝑖 = 𝑣𝑖 = 0, 𝑤𝑖 = 𝑤𝑖(𝑟, 𝜃, 𝑡),
𝜕

𝜕𝑧
≡ 0 (8) 

The fundamental governing equation for the 
self-reinforced material is 

𝜕𝑇𝑟𝑧
𝑆𝑅

𝜕𝑟
+

1

𝑟

𝜕𝑇𝜃𝑧
𝑆𝑅

𝜕𝜃
+

𝜕𝑇𝑧𝑧
𝑆𝑅

𝜕𝑧
+

𝑇𝑟𝑧
𝑆𝑅

𝑟
= 𝜌𝑆𝑅

𝜕2𝑤𝑆𝑅

𝜕𝑡2
 (9) 

where 𝑇𝑖𝑗
𝑆𝑅, 𝜌𝑆𝑅 , 𝑤𝑆𝑅  symbolizes the stress, 

density, and mechanical displacement along 
𝑧 direction, respectively. 

The constitutive relations with directions of 
reinforcement along with unit vector �⃗� is given by 
[22]. 

𝑇𝑙𝑚
𝑆𝑅 = 𝛾𝑒𝑖𝑖𝛿𝑙𝑚 + 2𝜇𝑇𝑒𝑙𝑚   

          +𝛼(𝑎𝑖𝑎𝑗𝑒𝑖𝑗𝛿𝑙𝑚 + 𝑒𝑖𝑖𝑎𝑙𝑎𝑚) 
(10) 

          +2(𝜇𝐿 − 𝜇𝑇)(𝑎𝑙𝑎𝑖𝑒𝑖𝑚 + 𝑎𝑚𝑎𝑖𝑒𝑖𝑚) 

         +𝛽𝑎𝑖𝑎𝑗𝑒𝑖𝑗𝑎𝑙𝑎𝑚, (𝑖, 𝑗, 𝑙, 𝑚 = 𝑟, 𝜃, 𝑧)  

Now, in the present work assumption of 
reinforcement direction is �⃗� = (0,1,0) From Eq. 
(10). 

 

𝑇𝑟𝑧
𝑆𝑅 = 2𝜇𝑇𝑒𝑟𝑧,      𝑇𝜃𝑧

𝑆𝑅 = 2𝜇𝐿𝑒𝜃𝑧 , 
(11) 

𝑇𝑧𝑧
𝑆𝑅 = 𝛾𝑒𝑟𝑟 + (𝛾 + 𝛼)𝑒𝜃𝜃 + (𝛾 + 2𝜇𝑇)𝑒𝑧𝑧 

 

Strain and displacement components 
relations, which are useful in considered study, 
are as followed: 

 

𝑒𝑟𝑟 =
𝜕𝑢𝑆𝑅

𝜕𝑟
,  

𝑒𝑟𝜃 =
1

2
(

𝜕𝑣𝑆𝑅

𝜕𝑟
−

𝑣𝑆𝑅

𝑟
+

1

𝑟

𝜕𝑢𝑆𝑅

𝜕𝜃
),  

𝑒𝑟𝑧 =
1

2
(

𝜕𝑤𝑆𝑅

𝜕𝑟
+

𝜕𝑤𝑆𝑅

𝜕𝑧
), (12) 

𝑒𝜃𝜃 =
1

𝑟
(𝑢𝑆𝑅 +

𝜕𝑣𝑆𝑅

𝜕𝜃
),  

𝑒𝜃𝑧 =
1

2
(

1

𝑟

𝜕𝑤𝑆𝑅

𝜕𝜃
+

𝜕𝑣𝑆𝑅

𝜕𝜃
) , 𝑒𝑟𝑧 =

𝜕𝑤𝑆𝑅

𝜕𝑧
  

where 𝑢𝑆𝑅,  𝑣𝑆𝑅 , and 𝑤𝑆𝑅  symbolizes the 
displacement components in 𝑟, 𝜃, and 𝑧 direction 
respectively. 

Together Eq.s (8-12) yield 
 

𝑟2
𝜕2𝑤𝑆𝑅

𝜕𝑟2
+

𝜇𝐿

𝜇𝑇

𝜕2𝑤𝑆𝑅

𝜕𝜃2
+ 𝑟

𝜕𝑤𝑆𝑅

𝜕𝑟
 

(13) 

  = 𝑟2
𝜌𝑆𝑅

𝜇𝑇

𝜕2𝑤𝑆𝑅

𝜕𝑡2
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Consider the solution of the equation in 
harmonic form as 

𝑤𝑆𝑅(𝑟, 𝜃, 𝑧) = 𝑊𝑆𝑅(𝑟)𝑒𝑖(𝑛𝜃−𝜔𝑡) (14) 

 

where 𝑊𝑆𝑅 is an unknown function. 
Solving Eq.s (13) and (14), the obtained 

equation is 
 

𝑑2𝑊𝑆𝑅

𝑑𝑟2
+

1

𝑟

𝑑𝑊𝑆𝑅

𝑑𝑟
+ (

𝜔2

𝛽2
2 −

𝑛2𝑓2

𝑟2
) 𝑊𝑆𝑅 = 0 (15) 

 

where 𝑓2 =
𝜇𝐿

𝜇𝑇
, 𝛽2

2 =
𝜇𝐿

𝜌𝑆𝑅 . 

Eq. (15) having modified Bessel equation of 
order 𝑛𝑓, whose solution is given by 

 

𝑊𝑆𝑅 = 𝐵1𝐽𝑛𝑓(𝜆2𝑟) + 𝐵2𝑌𝑛𝑓(𝜆2𝑟) (16) 

 

where 𝐵1, 𝐵2  are unknown constants, and 𝐽𝑛𝑓 ,𝑌𝑛𝑓 

are first and second kind Bessel functions 
respectively. 

Substituting Eq. (16) in Eq. (14), which yields 
the final solution 

 

𝑊𝑆𝑅 = (𝐵1𝐽𝑛𝑓(𝜆2𝑟) + 𝐵2𝑌𝑛𝑓(𝜆2𝑟))𝑒𝑖(𝑛𝜃−𝜔𝑡) (17) 

2.3.  Boundary Conditions and equations 

1. At 𝑟 = 𝑟𝑆𝑅  
     (a) 𝑇𝑟𝑧

𝑆𝑅 = 0 
 

2. At 𝑟 = 𝑟𝑝𝑚     

     (a) 𝜓𝑝𝑚 = 0 

     (b) 𝑇𝑟𝑧
𝑝𝑚

= 𝑇𝑟𝑧
𝑆𝑅 

     (c) 𝑇𝑟𝑧
𝑝𝑚

= 𝛼𝑖𝑚(𝑤𝑆𝑅 − 𝑢𝑝𝑚) 
 

where 𝛼𝑖𝑚 is a parameter, which represents the 
interface property, such that 𝛼𝑖𝑚 → ∞ represents 
the perfectly bonded interface. The dimension of 
𝛼𝑖𝑚 is stress/length. 

Significance of boundary conditions: the 
expression of physical laws in differential forms 
or any form is one of the most fundamental 
features of theoretical physics, and a discussion 
of the meaning of this process should always form 
an important part of the foundation of the topic. 

Here the boundary conditions explain that at 
the outer edge of the figure the boundaries are 
traction free. At, the interface the stresses are 
equal following the stress analysis theory. 

In the current work, it is assumed that the 
interface is imperfect mechanically so that the 
stress component is continuous but the 
displacement component along the z-direction is 
discontinuous across the interface. 

2.4.  Dispersion Relation and equations 

Using boundary condition (1) with Eqs. (11), 
(12), and (17) yields 

 

𝐵1 (
𝑛𝑓

𝜆2𝑟𝑆𝑅

𝐽𝑛𝑓(𝜆2𝑟𝑆𝑅) − 𝐽𝑛𝑓+1(𝜆2𝑟𝑆𝑅)) + 

(18) 

𝐵2 (
𝑛𝑓

𝜆2𝑟𝑆𝑅

𝑌𝑛𝑓(𝜆2𝑟𝑆𝑅) − 𝑌𝑛𝑓+1(𝜆2𝑟𝑆𝑅)) = 0 

Now, using the magnetic potential of Eq. (7) 
with 2(a) boundary conditions, yields 

𝐴2𝑟𝑝𝑚
𝑛 + 𝐴1

ℎ15

𝜇11

𝐽𝑛(𝜆1𝑟𝑝𝑚) = 0 (19) 

Using boundary condition 2(b) with (11), 
(12), (17), (3), and (7), we have 

𝐴2(ℎ15𝑛𝑟𝑝𝑚
𝑛−1) =  

𝐴1𝜆1𝐺𝑝𝑚 (−
𝑛

𝜆1𝑟𝑝𝑚
𝐽𝑛(𝜆1𝑟𝑝𝑚) − 𝐽𝑛+1(𝜆1𝑟𝑝𝑚)) 

(20) 

+𝐵1 [𝜇𝑇𝜆2 (

𝑛𝑓

𝜆2𝑟𝑆𝑅

𝐽𝑛𝑓(𝜆2𝑟𝑆𝑅) −

𝐽𝑛𝑓+1(𝜆2𝑟𝑆𝑅)
)] 

+𝐵2 [𝜇𝑇𝜆2 (
𝑛𝑓

𝜆2𝑟𝑆𝑅

𝑌𝑛𝑓(𝜆2𝑟𝑆𝑅) − 𝑌𝑛𝑓+1(𝜆2𝑟𝑆𝑅))] 

Using boundary condition 2(c) with (11), 
(12), (17), (3), and (7), we have 

𝐴2(ℎ15𝑛𝑟𝑝𝑚
𝑛−1) = 𝐵1𝛼𝑖𝑚𝐽𝑛𝑓(𝜆2𝑟𝑆𝑅) +  

𝐵2𝛼𝑖𝑚𝑌𝑛𝑓(𝜆2𝑟𝑆𝑅) − (21) 

𝐴1 [
 𝜆1𝐺𝑝𝑚 (

𝑛

𝜆1𝑟𝑝𝑚

𝐽𝑛(𝜆1𝑟𝑝𝑚) − 𝐽𝑛+1(𝜆1𝑟𝑝𝑚))

 +𝛼𝑖𝑚𝐽𝑛(𝜆1𝑟𝑝𝑚)

] 

For the sake of convenience, the following 
non-dimensional parameters and variables are 
considered as 

𝛺1 = 𝜆1𝑟𝑝𝑚, 𝛼1𝛺1 = 𝜆2𝑟𝑝𝑚 , 𝛽1𝛺1 = 𝜆2𝑟𝑆𝑅 , 

(22) 
𝛼1 =

𝜆2

𝜆1

, 𝛽1 =
𝛼1𝑟𝑆𝑅

𝑟𝑝𝑚

, 𝛾1 =
𝛼1𝜇𝑇

𝐺𝑝𝑚

, 

𝑘2 =
(ℎ15)2

𝐺𝑝𝑚𝜇11

,         𝛬 =
𝐺𝑝𝑚

𝛼𝑖𝑚𝑟𝑝𝑚

 

Now, from the Eqs. (22) and (19), Eqs. (18), 
(20) and (22) results in system of equations 
involving three arbitrary constants𝐴1, 𝐵1and𝐵2. 
For nontrivial solutions the determinant of 
coefficient matrix should vanish, which leads to 
the dispersion relation for SH-wave propagation 
in the considered geometry as 

|

𝑓11 𝑓12 𝑓13

𝑓21 𝑓22 𝑓23

0 𝑓32 𝑓33

| = 0 (23) 
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where 

𝑓11 =
𝑛

𝛺
(1 − 𝑘2)𝐽𝑛(𝛺) − 𝐽𝑛+1(𝛺)  

𝑓12 = −𝛾1 (
𝑛𝑓

𝛼1𝛺
(1 − 𝑘2)𝐽𝑛𝑓(𝛼1𝛺) − 𝐽𝑛𝑓+1(𝛼1𝛺)) 

𝑓13 = −𝛾1 (
𝑛𝑓

𝛼1𝛺
(1 − 𝑘2)𝑌𝑛𝑓(𝛼1𝛺) − 𝑌𝑛𝑓+1(𝛼1𝛺)) 

𝑓21 = {𝑛𝛬(1 − 𝑘2) + 1}𝐽𝑛(𝛺) − 𝛺𝛬𝐽𝑛+1(𝛺)  

𝑓22 = −𝐽𝑛𝑓(𝛼1𝛺) (24) 

𝑓22 = −𝑌𝑛𝑓(𝛼1𝛺)  

𝑓32 =
𝑛𝑓

𝛽1𝛺
𝐽𝑛𝑓(𝛽1𝛺) − 𝐽𝑛𝑓+1(𝛽1𝛺)  

𝑓33 =
𝑛𝑓

𝛽1𝛺
𝑌𝑛𝑓(𝛽1𝛺) − 𝑌𝑛𝑓+1(𝛽1𝛺)  

3. Numerical results and discussions 

Few numerical examples are considered to 
illustrate the composite material model. The 
material properties for the PM plate at the 
surfaces are considered the same as those of the 
Cobalt Iron Oxide are listed below and for  
self-reinforcement material also. 

Material coefficients for the piezomagnetic 
layer (Ezzin et al. [13]): 

• Chosen Material: 𝐶𝑜𝐹𝑒2𝑂4 

• 45.3 Gpm (109N/m2) 

• 5.3 ρpm (103kg/m3) 

• 157 μ11 (10−6Ns2/C2) 

• 550 h15(N/Am) 

Material coefficients for self-reinforcement   
material (Singh. B [23]): 

• μL5.66 × 1010N/m2, μT 2.46 ×

1010N/m2, ρSR 2660kg/m3 

Figures (2-12) depict the disparity in 
dimensionless phase velocity of surface wave 
(𝑐𝑑 = 𝑐/𝛽2)along with dimensionless wave 

number (𝑛𝑑 = 𝑛𝑟𝑝𝑚) for a variety of affecting 

parameters. Now, in this research article, a study 
of the dispersion curve is carried out for the first 
mode of the considered surface wave. Moreover, 
there is a significant outcome from the present 
study is that the considered wave phase velocity 
for the first mode is always decreasing 
monotonically with a slight increment in the 
wave number. 

Figure 2 depicts the influence of alteration in 
thickness ratio on the dimensionless phase 
velocity against the dimensionless wave number. 
It is noticed that as the width of the overlay 
increases monotonically keeping the radius of the 

PM cylinder tube constant, the phase velocity 
decreases remarkably. Thus, from the result, it is 
concluded that to optimize the phase velocity of 
SH surface wave the coating of the self-reinforced 
layer should be thin. The significant effect of the 
reinforcement parameter is shown in Fig. 3. For 
the SH surface wave, the phase velocity rises 
remarkably with an increment of 0.2 in the 
considered reinforcement parameter. It is 
noticeable from figure 3 that the reinforcement 
affects the phase velocity of SH wave 
considerably, which governs selecting the exact 
reinforced material for a thin coating of the MP 
cylindrical tube to optimize the phase velocity of 
SH surface wave. 

Figures 4 and 5 show the influence of the 
piezomagnetic coefficient (𝒉𝟏𝟓) and magnetic 
permeability(𝝁𝟏𝟏), respectively on the phase 
velocity of SH surface traveling wave. 
Observation of these two figures (Figs. 4 and 5) 
indicates that the higher values of the 
piezomagnetic coefficient (𝒉𝟏𝟓) the phase 
velocity increases whereas the higher values of 
magnetic permeability(𝝁𝟏𝟏) the phase velocity 
decreases. So, according to need both types of 
conditions to occur for increasing and decreasing 
velocity. Moreover, this vice versa condition of 
piezomagnetic coefficient (𝒉𝟏𝟓) and magnetic 
permeability (𝝁𝟏𝟏) on phase velocity helps to 
improve the efficiency of magnetic sensors. 

 
Fig. 2. Variation of dimensionless phase velocity with 

respect to dimensionless wave number for values to depict 
the dispersion curves for various values of thickness ratio 𝛿. 

 
Fig. 3. Variation of dimensionless phase velocity with 

respect to dimensionless wave number for values to show 
the dispersion curves for distinct values of reinforcement 

parameters (
𝝁𝑳

𝝁𝑻
). 
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Fig. 4. Variation of dimensionless phase velocity with 
respect to dimensionless wave number for values to show 
the dispersion curves for distinct values of piezomagnetic 

coefficient (𝒉𝟏𝟓). 

 
 Fig. 5. Variation of dimensionless phase velocity with 

respect to dimensionless wave number for values to show 
the dispersion curves for distinct values of magnetic 

permeability(𝝁𝟏𝟏). 

Figure 6, governs the influence of initial stress 
on the phase velocity of SH surface wave. Curve 1 
represents the absence of initial stress while 
curves 2 and 3 are traced out for monotonically 
increasing values of the radial component of 
initial stress. From the curves, it is concluded that 
with the slight increment in the initial stress 
parameter, the phase velocity increases 
significantly. The variation in phase velocity 
against wave number is carved out in Fig. 7 for 
the presence and absence of imperfection in the 
interface. In the figure, curve 1 shows the case of 
perfectly bonded and curve 2 shows the case of 
the imperfectly bonded interface. It is clearly 
visible that the phase velocity decreases 
remarkably in the case of an imperfect interface. 
This suggests us for optimization of SH-wave 
phase velocity the bonding of two media (out of 
which one is PM) should be perfect. 

In Fig. 8, it is traced out to depict the 
dispersion curves for distinct modes of traveling 
SH surface wave in the considered composite 
lamina structure. The obtained curves reveal that 
the dimensionless phase velocity (𝒄𝒅 = 𝒄/
𝜷𝟐) decreases gradually with monotonically 
increment in the values of the dimensionless 

wave number (𝒏𝒅 = 𝒏𝒓𝒑𝒎) for each distinct 

mode.  

 
Fig. 6. Variation of dimensionless phase velocity with 

respect to dimensionless wave number for values to show 
the dispersion curves for distinct values of the radial 

component of initial stress (𝑷𝟏) 

 
 Fig. 7. Variation of dimensionless phase velocity with 

respect to dimensionless wave number for values to show 
the dispersion curves for the perfect and imperfect interface. 

 
Fig. 8. Variation of dimensionless phase velocity with 

respect to dimensionless wave number for values to show 
the dispersion curves for distinct modes. 

Moreover, the Figs. 9-11 are developed out to 
present the influence of mechanical imperfection 
parameter, reinforcement parameter, and initial 
stress parameter on phase velocity dispersion 
curves for regarding higher-order modes. 
Furthermore, from Fig. 9, it is clearly observed 
that the surface phase velocity decreases 
monotonically in presence of mechanical 
imperfect interface parameters for both second 
and third modes. Fig. 10 shows that the 
increment in the value of the initial stress 
parameter is highly important for the second 
mode and also, it is significant for the third mode. 
Fig. 11 delineates the remarkable influence of the 
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reinforcement parameter on the surface phase 
velocity for both the second and the third modes. 
For the considered wave, the surface phase 
velocity increases monotonically with the 
gradual increment in the reinforcement 
parameter. Moreover, Figure 12 represents the 

dimensionless group velocity (𝒄𝒈/𝜷𝟐) against 

dimensionless wave number (𝒏𝒅). 
Figure 12 shows that the obtained group 

velocity decreases with the monotonic increase 
in the wave number. All the figures give valuable 
information for the choice of PM plate to increase 
the efficiency of seismic devices and PM sensors. 

 
Fig. 9. Variation of dimensionless phase velocity with 

respect to dimensionless wave number for values to show 
the dispersion curves for perfect and imperfect interface in 

higher modes. 

 
Fig. 10. Variation of dimensionless phase velocity with 

respect to dimensionless wave number for values to show 
the dispersion curves for different values of the radial 

component (𝑷𝟏) in higher modes. 

 
Fig. 11. Variation of dimensionless phase velocity with 

respect to dimensionless wave number for values to show 
the dispersion curves for different values of reinforcement 

parameter (
𝝁𝑳

𝝁𝑻
) in higher modes. 

Figure 13 depicts the prominent influence of 
initial stress of considered structure on the phase 
velocity of surface waves. From Figure 13, it 
seems that the phase velocity increases when 
initial stress is present. So, here these results 
conclude that the wave phase velocity is high in 
absence of initial stress. 

3.1. Significance  

One of the sociologically important 
applications of modern seismology is the 
monitoring of global underground nuclear 
testing. The seismic waves generated by such 
explosions reveal the occurrence of the event as 
well as provide an estimate of the size of the 
explosion, mainly by empirical calibration of P- 
and Rayleigh-wave amplitudes with explosions of 
known yield, or energy release, in equivalent 
kilotons of TNT. But first, an event must be 
identified as an explosion rather than a natural 
source. Usually, this discrimination of explosion 
events is accomplished by examining a variety of 
waveform characteristics that may distinguish 
earthquakes from explosions. It would seem 
reasonable to rely mainly on whether or not SH-
wave energy is observed, for an explosion source 
theoretically will not generate significant 
transverse-component radiation at the source. 

 
Fig. 12. Variations in dimensionless group velocity 

(𝒄𝒈/𝜷𝟐)against dimensionless wave number (𝒏𝒅). 

 
Fig. 13. Variation of dimensionless phase velocity with 
respect to dimensionless wave number for values of the 

imperfect parameter with initial stress and without initial 
stress.  

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/seismology
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/seismic-wave
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/rayleigh-wave


Singhal et al. / Mechanics of Advanced Composite Structures 9 (2022) 1-10 

8 

3.2. Validation and equations 

When the interface of the two media is 
perfectly bonded, and the overlay medium is self-
reinforced free, then the dispersion relations (23) 
reduced to  

|

𝑓𝑔11 𝑓𝑔𝑔12 𝑓𝑔13

𝑓𝑔21 𝑓𝑔22 𝑓𝑔23

0 𝑓𝑔32 𝑓𝑔33

| = 0 (25) 

where 

𝑓𝑔11 =
𝑛

𝛺
(1 − 𝑘2)𝐽𝑛(𝛺) − 𝐽𝑛+1(𝛺), 

(26) 

𝑓𝑔12 = −𝛾1 (
𝑛𝑓

𝛼1𝛺
(1 − 𝑘2)𝐽𝑛𝑓(𝛼1𝛺)

− 𝐽𝑛𝑓+1(𝛼1𝛺)), 

𝑓𝑔13 = −𝛾1 (
𝑛𝑓

𝛼1𝛺
(1 − 𝑘2)𝑌𝑛𝑓(𝛼1𝛺)

− 𝑌𝑛𝑓+1(𝛼1𝛺)), 

𝑓𝑔21 = {𝑛𝛬(1 − 𝑘2) + 1}𝐽𝑛(𝛺)
− 𝛺𝛬𝐽𝑛+1(𝛺), 

𝑓𝑔22 = −𝐽𝑛𝑓(𝛼1𝛺), 𝑓𝑔22 = −𝑌𝑛𝑓(𝛼1𝛺), 

𝑓𝑔32 =
𝑛𝑓

𝛽1𝛺
𝐽𝑛𝑓(𝛽1𝛺) − 𝐽𝑛𝑓+1(𝛽1𝛺), 

𝑓𝑔33 =
𝑛𝑓

𝛽1𝛺
𝑌𝑛𝑓(𝛽1𝛺) − 𝑌𝑛𝑓+1(𝛽1𝛺), 

The obtained dispersion relations are 
matched with [46]. 

4. Conclusion 

Transference characteristics of horizontally 
polarized shear wave (SH wave) in a self-
reinforced coated piezomagnetic cylinder with a 
mechanical imperfect bonding interface are 
studied analytically. The interactions of traveling 
SH waves with the material properties of adopted 
composite media/structure give rise to a sensing 
response. Change in material properties leads to 
the change in the phase velocity of the wave. The 
prominent influence of factors affecting the 
parameters namely mechanical imperfection 
parameter, reinforcement parameter, thickness 
ratio, initial stress, piezomagnetic (PM), and 
magnetic permeability have been studied 
graphically. More precisely, the following 
consequences are the crux of meticulous 
examination of the present study. 
• Thinner the coating of a self-reinforced layer 

higher the phase velocity of SH wave in an 
adopted composite structure. 

• A leap in the value of the reinforcement 
parameter surmounts the phase velocity. 

Thus, it is worthy to choose the proper 
reinforced material to overlay the 
piezomagnetic cylinder for optimizing the 
phase velocity of the SH wave. 

• Increasing the value of the piezomagnetic 
constant endorses the phase velocity, while a 
rise in the value of the dielectric constant 
diminishes the phase velocity. 

• The radial component of the initial stress of 
the piezomagnetic cylinder shows favoring 
effect on the phase velocity, as the phase 
velocity upswings with an increase in the 
value of initial stress. 

• Imperfect bonding of two media scale down 
the phase velocity. This helps for optimizing 
the phase velocity of the SH wave the 
bonding should be perfect. 

• In each mode of the propagating SH wave 
dispersion curve initiates from a certain 
value, which falls of with increasing value of 
wave number. 

The principle of acoustic wave devices relies 
on the dispersion characteristics of propagating 
waves. These devices consist of a multilayer 
structure. It is apparent from the findings that the 
imperfect interface of two media reduces the 
phase velocity remarkably and reinforcement 
parameter, thickness ratio, initial stress, 
piezomagnetic and dielectric constants have 
significant effects on phase velocity. In this view, 
the outcomes of the study may play an eminent 
role in designing more efficient acoustic wave 
devices involving smart materials, especially 
piezomagnetic cylinders overlaid by a self-
reinforced material.  
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Nomenclature 

All variables using this manuscript, listed in 
nomenclature. 

𝑟𝑝𝑚&𝑟𝑆𝑅  Radius of Piezomagnetic and 
Self-Reinforced Cylinder 

𝛿𝑙𝑚 Kronecker delta 

𝑒𝑙𝑚 Strain component 
𝛼, 𝛽, 𝛾 Elastic constants having 

dimensions as same as stress 
𝜇𝐿 Shear modulus in longitudinal 

direction of reinforcement 
𝜇𝑇 Shear modulus in transverse 

direction of reinforcement 
𝛬 Imperfection Parameter 
𝑛 Wave Number 
𝜔 Frequency 
𝑐 Phase Velocity 
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𝑐𝑔 Group Velocity 

𝜇𝐿&𝜇𝑇 Shear Modulus in longitudinal & 
in transverse direction 

𝑃1 Radial component of initial 
stress 

𝐽𝑗&𝑌𝑗  Bessel Function of First and 
Second Kind 
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