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In this paper, a generalized solution for 1-D steady-state thermo-mechanical analysis of 

the FG rotating hollow spherical body is presented. Deformation and stresses are 

calculated for a spherical body subjected to rotation, gravitation force, and uniform heat 

generation. Temperature distribution with uniform heat generation to the spherical body 

is assumed to vary along the radius. General thermal and mechanical boundary 

conditions at the inner surface and outer surfaces of the hollow spherical body are 

applied. Material properties are assumed as a power function of the radius with grading 

indices ranging from -2 to 3. Governing differential equation for the FG spherical body is 

developed and solved analytically. The obtained results are verified with benchmark 

results and are found to be in very good agreement. The result shows that deformation 

and stresses in the FG body are less compared to the homogeneous material body and the 

same is reported to decrease with increasing value of the grading parameter. 

1. Introduction 

Functionally graded materials (FGM) are a 
special group of heterogeneous composite 
materials with mechanical properties varying 
continuously from surface to surface at a 
macroscopic level. Thermo-mechanical stresses 
in the functionally graded thick spherical body 
are investigated by, R. Poultangari, M. R. Eslami, 
M.H. Babaei [1] wherein the performance of a 
thick hollow spherical body of functionally 
graded material under 1-dimensional steady 
state distributed temperature with a general 
thermo-mechanical type of boundary conditions 
is reported. Stresses and deformations in rotating 
functionally graded material pressurized thick 
hollow cylinder under thermal loading are 
investigated by, G. H. Rahimi and M. Zamani Nejad 
[2]. Effect of material gradient on stresses of the 
thick functionally graded spherical pressurised 
body using exponentially distributed material 
grading is reported by M Gharibi and M. Zamani 
Nejad [3]. A novel approach to stress analysis of 
pressurized functionally graded disc, cylinder, 
and spheres is established by N. Tutuncu, B. 

Temel[4]. A functionally graded hollow 
cylindrical body under pressure and thermal 
loading conditions under the effect of material 
parameters on stresses and temperature 
distributions are presented by M. Gulgec and C. 
Evci [5]. Elastic analysis of rotating spherical 
body, cylindrical body, and disc of variable 
thickness are reported by A. M. Zenkour [6]. 
Thermo-mechanical and thermo-elastic stresses 
were analysed in [7 - 10]. 2D thermal and elastic 
behaviour of functionally graded cylindrical body 
is studied and reported by Ghannad, Yaghoobi 
[11], wherein axisymmetric functionally graded 
cylindrical body subjected to external heat and 
pressure in the inner surface is reported. A 
spherical pressure vessel is designed and 
analysed using FEM by Afkar et al. [12]. Multi-
scale hybrid disc resting on nonlinear elastic 
foundation under nonlinear frequency and 
extremely large oscillation is investigated by Ali 
Shariati et al. [13]. A shear deformation theory 
(refined quasi-3D theory) for the thermal and 
mechanical study of FG sandwich plates resting 
on two parameters elastic foundation is 
presented by Abdelkader Mahmoudi et al. [14].  
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Fig. 1. Hollow spherical body 

Nonlinear thermal-instability of electrically 
functionally graded GPLRC disc using GDQ 
method is investigated by M.S.H.Al-Furjan et al. 
[15]. Four variable quasi 3D HSDT is used for 
analytical modelling of vibration and bending of 
thick composite plates by Mokhtar Khiloun et al. 
[16]. Using a solid-state process, an application 
review of a functionally graded fabricated disk is 
reported by R. Madan and S. Bhowmick [17]. 
Limit elastic analysis of E-FG material-modeled 
rotating disc subjected to thermo-mechanical 
properties is studied by R. Madan et al. [18]. 
Thermal stresses induced due to internal heat 
generation (non-uniform heat) in FG hollow 
spherical bodies are reported by S. P. Pawar et al. 
[19]. Investigation of numerical, analytical, and 
experimental stress of spherical body having 
large volume is presented by Radovan Petrovic et 
al. [20].  

In the present study, the deformation and 
changes in stresses of the functionally graded 
hollow spherical body are investigated. The 
problem is analytically solved using an in-house 
source code implementing the Navier equation 
for body force, rotation, and constant heat 
generation. The validation of the present study is 
carried out with existing literature. 
Corresponding to rotational speed, body force, 
and uniform heat generation in the spherical 
body, stress, and deformation are estimated. The 
existing results are reported in dimensionless 
form. There is a vast application of functionally 
graded spherical bodies such as submarine, 
pneumatic and hydraulic reservoirs, storage 
vessels, oil refineries, petrochemical plants, 
domestic hot water tanks, pressure reactors, 
autoclaves, etc. 

2. Mathematical Formulation 

Considering a rotating hollow spherical body 
made of functionally graded material, wherein 
the material properties of the body are assumed 
to be a power function of radius ‘r’. Stress, strain, 
and displacement relations are given by[1] 

( )
  ( )

1
2r r t

du
T r

dr E r
   = = − +

 
(1) 

( )
( ) ( )

1
1t t r

u
T r

r E r
    = = − − +  

 
(2) 

Stress- strain relations [1] being: 

( )

( )( )

( )

( ) ( )

1 2

1 1 2 1

r t

r

E r

T r

  

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(4) 

T(r) is determined from the heat conduction 
equation in section 3. The equilibrium equation 
in the radial direction, including the inertia term 
and body force, is given by, 

( ) 2 22 0r r t

d g
r r

dr a
    

 
+ − + − = 

   
(5) 

The power law is used to describe the 
material properties of a hollow spherical body 
which are given by[19], 

( ) ( ) 1n

aE r E r=
 (6) 

( ) ( ) 2n

ar r =
 (7) 

( ) ( ) 3n

ak r k r=
 (8) 

( ) ( ) 4n

ar r =
 (9) 

( ) ( ) 5n

aq r q r=
 (10) 

Here, 𝐸(𝑟), 𝛼(𝑟), 𝑘(𝑟), 𝜌(𝑟), q(r) are 

modulus of elasticity, thermal expansion 

coefficient, thermal conduction coefficient, 

density, and heat generation at radius ‘r’ 

respectively. 𝐸𝑎 , 𝛼𝑎 , 𝑘𝑎 ,  𝜌𝑎, 𝑞𝑎  are material 

properties as described above at radius ‘a’  

Using eq.(1) to (10), the Navier equation, in 
terms of displacement, is given by 

( ) ( )λ 1 2 1   
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in above eq. (11), 
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3. Temperature Formulation 

The ‘one-dimensional heat conduction 
equation’ with ‘heat generation’ in ‘steady–state’ 
condition in spherical coordinate is as follows 
[19]. 

( ) ( )2

2

1
0

d d
r k r T r q

dr drr

 
+ = 

   
(13) 

Thermal boundary conditions[19] are: 

( ) ( )=T r T a                          =at r a and  (14) 

( ) ( )=T r T b                 =at r b  (15) 

where, 𝑇(𝑟) is the temperature at radius ‘r’, 𝑇(𝑎) 
is the temperature at ‘a’ and 𝑇(𝑏) is the 
temperature at ‘b’.  

Differentiating above eq. (13) of heat 
conduction, we get the Navier equation for 
temperature  

5 3 22 ''

1 1 1 1T
n n

Ar T B rT C r − +
+ =+

 (16) 

where, 

1 aA k=  (17) 

( )1 3 2aB k n= +
 (18) 
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3 0P =  (21) 
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4 3

1

1
A B

P n
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(22) 

P3 and P4 are roots of the general solution of Eq. 
(16). After solving Eq. (16) analytically it gives, 

( ) 5 34 2

3 4 1

n nP
T r Q Q r r − +
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(23) 
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where, 
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1

1
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Using the boundary conditions, the value of 
𝑄3 and 𝑄4 yields 

( )5 3 5 3

4 4 4 4

2 2

1

4
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P P P P

a bT T
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5 3 42

3 1 4

n n P
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4. Solutions of Displacement 
Equation 

After solving the function T(r) in above 
section 3, the value of T(r) is put in eq. (11) 

2 3 52 4 312 '' V
− + ++ +

+ + = +
n n nn P
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                  W S
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a
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(34) 

Equation (27) is the Navier equation, which is 
a non-homogeneous Euler differential equation. 
Assuming general solution, 𝑢𝑔 as 

( ) P

gu r Qr=
 (35) 

Substituting the eq. (35) in homogeneous 
form of eq. (27) 

( )2A 0P B A P C+ − + =
 (36) 

The above eq. (36) has two real roots 𝑃1 And 
𝑃2 As, 

( ) ( )
2

1,2

4

2

A B B A AC
P

A

−  − −
=

 
(37) 

Now, the general solution is 

( ) 1 2

1 2

P P

gu r Q r Q r= +
 (38) 

Assuming the particular solution 𝑢𝑝(𝑟) in the 

form, 

( ) 2 3 52 4 2 4 131 1 3
J L M

n n nn P n n n

pu r Ir r r r
− + ++ + + − +

= + + +
 
(39) 

Substituting the above Eq. (39) in eq. (27), we 
get, 
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Equating the coefficients of identical power in 
above eq. (40), we have 
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Complete solution for displacement function 
𝑢(𝑟) is given by, 

( ) ( ) ( )g pu r u r u r= +
 (45) 

Thus 
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Substituting eq. (46) in eq. (1) to (2), the 
strains and stresses are obtained as, 
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To determine the constants 𝑄1 and 𝑄2, the 
boundary conditions for stress profile are used. 
Considering the mechanical boundary conditions 
in the radius ‘a’ and outer radius ‘b’ [1] 

( )r aa p = −        and       ( )r bb p = −  (50) 

Substituting the above eq. (50) in eq. (49), the 
integration constants become: 
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where, 
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5. Result and Discussion 

FG Spherical Body Subjected to Internal 
Pressure and Temperature 

The numerical values of different parameters 
considered in the work are as follows: the inner 
and outer radius of the hollow spherical body are  
a = 1 m, b = 1.2 m, Poisson's ratio 𝜗 = 0.3 since it 
is considered that material properties are in 
accordance with eq. (6) to (10). The internal 
properties of the hollow spherical body are as 
follows: modulus of elasticity 𝐸𝑎 = 200 GPa, 
thermal coefficient of expansion 𝛼𝑎 = 1.2*10-6 
per 0C, thermal conduction coefficient ka = 15 
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W/mK, Density 7800a =   kg/m3, Heat 

generation q = 50*103 kJ/m3 and Gravity g = 9.81 
m/s2 Rotation ω = 50 rad/s. Thermal boundary 
conditions are taken as T (a) = 10 0C and T (b) = 0 
0C. Mechanical Boundary conditions are taken as 
internal pressure of 50 MPa and External 
pressure = 0; material grading indices ‘n’ are 
choosen as -2 to 3 and 𝑛1 =  𝑛2 =  𝑛3 =  𝑛4 are 
identical but , 𝑛5 = 0 [1]. 

 

Fig. 2. Variation of elasticity modulus along the radius 

 

Fig. 3. Radial variation of thermal expansion coefficient 

 

Fig. 4. Variation of density along the radius 

 

Fig. 5. Radial variation of thermal conduction coefficient 

The above graphs show the material property 
variation wherein Fig. 2 is for elastic modulus, 
Fig. 3 is for thermal expansion coefficient, Fig. 4 is 
for material density and Fig. 5 for thermal 
conduction coefficient for n = -2 to 3.  

For n = 1 to 3 the value of material properties 
are in increasing order from radius a to radius b 
while for n = -1 to -2 the value of material 
properties are in decreasing order from radius a 
to radius b. 

 

Fig. 6. Variation of temperature along the radius 

 

Fig. 7. Variation of radial displacement 

 

Fig. 8. Variation of radial stress 

 

Fig. 9. Variation of tangential stress  
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Fig. 10. Variation of von-Mises stress for b/a = 1.2 

Graphs plotted in Fig. 6 to Fig. 10 show the 
validation of the present study, which are found 
to be in good agreement with reference [1] for 
grading indices ranging from n = -2 to 3. It is 
shown in Fig. 6 that the temperature varies 
inversely with the radius and grading indices, too. 
In Fig. 7, radial displacement is plotted and is 
observed to be inversely proportional to the 
grading index ‘n’. In Fig. 8, radial stresses are 
plotted and are reported to vary directly with 
radius. Fig. 9 reports tangential stress that is 
decreasing radially outward for n < 1, but 
increasing outward for n > 1 and constant 
throughout the thickness for n = 1. The von-Mises 
stress is investigated and plotted in Fig. 10. It is 
clearly observed from the graph that Von-Mises 
stress is inversely proportional to the grading 
index up to r/a = 1.10 beyond which there is a 
reversal in variation. 

Case 1: Rotating FG Spherical Body 

Herein, a functionally graded rotating hollow 
spherical body is investigated under the effect of 
rotation in a hollow spherical body. Fig. 11 
reports the temperature distribution for grading 
indices ranging from n = -2 to 3 and it is observed 
that temperature varies inversely to the grading 
index for FG rotating hollow sphere. 

In Fig. 12, it is shown that radial displacement 
is inversely proportional to the grading index ‘n’. 
Fig. 13 shows the distribution of radial stress that 
is directly proportional to the radius i.e. 
temperature at outer radius is higher than inner 
radius but radial stress is inversely proportional 
to the grading index ‘n’. Fig. 14 reports that 
tangential stress is decreasing radially outward 
for n < 1, but increasing outward for n > 1 and 
constant throughout the thickness for n = 1. The 
von-Mises stress is investigated in Fig. 15. It is 
evident from the figure that Von-Mises stress is 
inversely proportional to the grading index up to 
r/a = 1.08 (approx.) beyond which the von-Mises 
stress becomes directly proportional to the 
grading index. 

 

Fig. 11. Variation of temperature 

 

Fig. 12. Variation of radial displacement 

 

Fig. 13. Variation of radial stress 

 

Fig. 14. Variation of tangential stress 

 

Fig. 15. Variation of von-Mises stress 
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Case 2: FG Hollow Spherical Body Subjected to 
Gravitational Force 

The effect of gravitational force on the 
functionally graded hollow spherical body is 
investigated and reported in this sub-section. The 
distribution of temperature for different grading 
indexes ‘n’ is shown in Fig. 16. Similar to case 1, 
the temperature distribution is inversely 
proportional to the radius of the hollow spherical 
body and grading index too. The distribution of 
radial displacement shown in Fig. 17 is inversely 
proportional to the radius of the hollow spherical 
body and grading index too. The radial stress 
distribution is shown in Fig. 18 wherein it is 
observed to be directly proportional to the radius 
but inversely proportional to the grading index of 
the hollow spherical body as in the previous case. 
The tangential stress distribution is plotted in Fig. 
19 wherein it is observed to decrease along the 
radius for n < 1, but increases outward for n > 1 
and remains constant throughout the thickness 
for n = 1 similar to case 1.  

The variation in Von-Mises stress is plotted in 
Fig. 20. It is clearly observed from the graph that 
Von-Mises stress is inversely proportional to the 
grading index up to r/a = 1.09 (approx.) beyond 
which there is a reversal in variation. 

 

Fig. 16. Variation of temperature 

 

Fig. 17. Variation of displacement 

 

Fig. 18. Variation of radial stress 

 

Fig. 19. Variation of tangential stress 

 

Fig. 20. Variation of von-Mises stress 

Case 3: FG Spherical Body Subjected to 

Constant Heat Generation 

In this section, the effect of constant heat 
generation on the displacement and stresses is 
investigated for the hollow spherical body. The 
results are reported in a similar sequence of 
graphs as mentioned for the remaining cases. 
(Fig. 21 – Fig. 25). The reversal in the variation of 
Von-Mises stress is observed to occur at r/a = 
1.09 (approx.) as shown in Fig. 25. 
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Fig. 21. Variation of temperature 

 
Fig. 22. Variation of displacement 

 
Fig. 23. Variation of radial stress 

 
Fig. 24. Variation of tangential stress 

 

Fig. 25. Variation of von-Mises stress 

Case 4: FG Spherical Body Subjected to 
Gravitational Force and Rotation 

Herein, the effect of gravitation and rotational 
force on displacement and stresses of the 
functionally graded hollow spherical body is 
investigated and the results are reported in Fig. 
26 - Fig. 30 in a similar sequence of graphs. 

 
Fig. 26. Variation of temperature 

 
Fig. 27. Variation of displacement 

 
Fig. 28. Variation of radial stress 

 
Fig. 29. Variation of tangential stress 
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Fig. 30. Variation of von-Mises stress 

Case 5: Rotating Spherical Body with Constant 
Heat Generation 

The displacement and stresses for a 
functionally graded hollow spherical body under 
the effect of centrifugal loading and constant heat 
generation are reported herein (Fig. 31-Fig.35). 

 
Fig. 31. Variation of temperature 

 
Fig. 32. Variation of displacement 

 
Fig. 33. Variation of radial stress 

 
Fig. 34. Variation of tangential stress 

 

Fig. 35. Variation of von-Mises stress 

Case 6: FG Spherical Body Subjected to 
Constant Heat Generation and Gravitation 

Herein, the effect of constant heat generation 
and gravitation on the stresses and displacement 
field of the hollow spherical body is investigated 
and reported (Fig. 36-Fig. 40). 

 
Fig. 36. Variation of temperature 

 
Fig. 37. Variation of displacement 
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Fig. 38. Variation of radial stress 

 

Fig. 39. Variation of tangential stress 

 

Fig. 40. Variation of von-Mises stress 

Case 7: Rotating FG Hollow Sphere Under 
Gravitation and Constant Heat Generation 

The stresses and displacements of a rotating 
hollow spherical body with gravitation and 
constant heat generation are investigated and 
reported in Fig. 41-Fig. 45. 

 

Fig. 41. Variation of temperature 

 

Fig. 42. Variation of displacement 

 

Fig. 43. Variation of radial stress 

 

Fig. 44. Variation of tangential stress 

The variation of Von-Mises stresses for 
various loading conditions as reported in cases 1-
7 in FG hollow spherical body for b/a = 1.2 is 
reported in Fig. 15, Fig. 20, Fig. 25, Fig. 30, Fig. 35, 
Fig. 40, Fig. 45 with respect to grading indices 
ranging from n=-2 to 3. 

 

Fig. 45. Variation of von-Mises stress 



Sondhi et al. / Mechanics of Advanced Composite Structures 9 (2022) 125-136 

135 

It is evident that for a hollow sphere subjected 
to rotation in presence of other gravitation 
and/or constant heat generation, the distribution 
of Von-Mises stresses along the radial direction 
attains maximum value as shown in Fig. 35 and 
Fig. 45. The von-Mises stress distribution is 
lowest for case 2 as shown in Fig. 20. 

It has been also observed that, for r/a in the 
range of 1.08 to 1.1(approx.), the reversal of the 
gradient of Von-Mises stresses is obtained in 
relation to grading indices, i.e. for r/a < 1.08 
(approx.) the von-Mises stress is inversely 
proportional to the grading index and for r/a > 
1.1 (approx.) the von-Mises stress is directly 
proportional to the grading index. The Von-Mises 
stress at b/a =1.08, corresponding to grading 
indices and different loading conditions, is 
reported in Table 1.  

Table 1: For cases 1-7 the Von-Mises stresses ( * ) 

 at b/a =1.08 

Cases  
Grading index 

-2 -1 0 1 2 3 

Case 1 0.21 0.21 0.21 0.21 0.21 0.21 

Case 2 0.20 0.20 0.19 0.19 0.19 0.19 

Case 3 0.19 0.19 0.19 0.19 0.19 0.19 

Case 4 0.21 0.21 0.21 0.21 0.21 0.21 

Case 5 0.21 0.21 0.21 0.21 0.21 0.21 

Case 6 0.19 0.19 0.19 0.19 0.19 0.19 

Case 7 0.21 0.21 0.21 0.21 0.21 0.21 

6. Conclusion 

The present study reports the exact solution 
for elastic and thermoelastic deformation and 
stresses of the FG rotating spherical body. Power 
law grading of material properties along the 
radial direction has been considered in the 
formulation. Stresses and displacement are 
obtained through the direct solution of the Navier 
equation and the effect due to grading index, 
rotational, gravitation force, and constant heat 
generation are investigated for the hollow 
spherical body. 

• The effect of grading index is 
investigated for hollow spherical body 
and it is observed that grading index is 
directly proportional to the strength of 
the hollow spherical body. 

• The effect of grading index on the 
displacement of FG hollow spherical 
body has been investigated and it is 
observed that the grading index is 
inversely proportional to the radial 
displacement. 

• Due to the nature of the loading and 
boundary conditions, the displacement 
field is observed to decrease along the 
radius towards the periphery of the 
hollow sphere. 

• Radial stresses are found to vary 
inversely with the variation of grading 
indices at any radial location.  

• For n < 1, the tangential stress is 
inversely proportional to the radius, 
while for n >1, the tangential stress is 
directly proportional to the radius and 
for n = 1, tangential stress is uniform 
along the radius. 

• The von-Mises stress distribution is 
plotted along the radius to study the 
overall stress distribution. The von-
Mises stress is almost uniform along the 
radius for n = 3. This is an interesting 
observation as this leads to the design of 
a functionally graded hollow sphere 
having uniform strength. In other words, 
it may be observed that the grading 
index of n = 3 in power law grading leads 
to the design of an FG hollow sphere of 
uniform strength.  

• The Von-Mises stresses are inversely 
proportional to the grading index until a 
critical value of ‘b/a’ is reached. Beyond 
this, the variation of Von-Mises stresses 
undergoes a reversal in relation to the 
grading index. 

Nomenclature 

a inner radius of the hollow sphere 

b outer radius of the hollow sphere 

u displacement in the radial direction 

𝜀𝑖  (i = r, t) strain tensor 

𝜎𝑖  (i = r, t) stress tensor 

α thermal expansion coefficient 

𝜌 material density 

𝜔 rotation 

g gravitational force 

𝑛𝑗(j = 1 to 5) grading index 
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