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In this paper, the nonlinear torsional vibrations and internal resonances of nanorods are 
investigated by considering the surface energy effects. For this purpose, Hamilton’s 
principle is implemented to derive the nonlinear governing equation of motion based on 
the von-Kármán relations. Hamilton's principle includes the strain energy and the kinetic 
energy of the nanorod surface and bulk. The strain and kinetic energies of the nanorod 
bulk are obtained using the classical theory of elasticity, and those of the nanorod surface 
are obtained using the surface elasticity theory. The surface energy parameters, including 
the surface density and the surface Lame constants, are included in the equations by the 
surface elasticity theory. Then, the multi-mode Galerkin method is used to convert the 
partial differential equation of motion to an ordinary differential equation. The Multiple-
scale method is employed to solve the governing equations of motion for fixed-free and 
fixed-fixed end conditions. To investigate the technique presented in this paper, circular 
nanorods made of aluminum and silicon have been used. The effect of surface energy 
parameters  on the torsional frequencies of nanorods is investigated for different values of 
length, radius, frequency number, and amplitude of the nonlinear vibrations. In addition, 
the cases in which internal resonances occur are reported, and some numerical data are 
given. The results obtained in this research may be helpful for the better design of 
nanoelectromechanical devices such as nano-bearings and rotary servo motors. 

1. Introduction 

These days, nanostructures have captured 
significant attention due to their excellent 
physical and mechanical performance, surface 
stress, and size effects [1-6]. At the macroscale, 
since surface energy is small compared to the 
bulk energy, the effect of surface energy is not 
considered. Because the ratio of surface/volume 
in nano-scaled  structures is high, the surface 
effects become important. Therefore, surface 
energy has a critical role in the mechanical 
analysis of nanostructures and should be 
considered. The classical continuum mechanics 
are not size-dependent, and consequently, 
several new continuum mechanics theories are 
necessary for analyzing nano-scaled  structures. 
To investigate  the effect of surface stress on the 
mechanics of nanostructures,  Gurtin et al. [7, 8] 
introduced a mathematical theory  for the exact 
prediction of mechanical behaviors of nano-
scaled  structures. Consequently, the number of 

studies reported in this field increased rapidly, 
especially in recent years. 

A continuum model for nanobeams, including 
both surface effects and material heterogeneity,  
was developed by Baron et al. [9]. Wang and Feng 
presented a theoretical model directed toward 
investigating the effects of both surface elasticity 
and residual surface tension on the natural 
frequency of microbeams [10].  Ansari and 
Sahmani [11] studied the bending and buckling of 
nanobeams by using the Gurtin and Murdoch 
theory. They derived explicit formulas for 
different beam theories. Ansari et al. [12] 
developed a modified continuum model to 
predict the post-buckling deflection of 
nanobeams incorporating the effect of surface 
stress. They used the generalized differential 
quadrature (GDQ) method to solve governing 
differential equations.  A comprehensive model 
was presented by Abbasion et al. [13] to 
investigate the influence of surface elasticity and 
residual surface tension on the natural frequency 
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of flexural vibrations of microbeams in the 
presence of rotary inertia and shear deformation 
effects. An analytical model for predicting surface 
effects on the free vibration of fluid-conveying 
nanotubes based on the nonlocal elasticity theory 
was developed by Wang [14]. The results 
demonstrated that the surface effects with 
positive elastic constant or positive residual 
surface tension tend to raise the natural 
frequency and critical flow velocity. Farshi et al. 
[15] modified the Timoshenko beam model to 
study the surface effects and used it to analyze 
the vibration of nanotubes as well as calculate 
their natural frequencies. He and Lilley [16] 
studied the effect of surface stress and surface 
elasticity on the elastic behavior of nanowires in 
static bending. They used the Euler−Bernoulli 
beam theory and considered three different 
boundary conditions: cantilever, simply 
supported, and fixed−fixed. Fang et al. [17] 
investigated the size-dependent vibration of 
nano-sized piezoelectric double-shell structures 
under simply-supported boundary condition by 
combining Goldenveizer-Novozhilov shell theory, 
thin plate theory, and electro-elastic surface 
theory. 

Recently, some studies have been performed 
to study the surface effects on the nonlinear free 
vibration behaviors of nanobeams. Nazemnezhad 
et al. [18] investigated the nonlinear free 
vibration of nanobeams with considering surface 
effects using Euler–Bernoulli beam theory. Based 
on the Gurtin-Murdoch continuum theory,  Ansari 
et al. [19] studied the nonlinear free vibration 
behavior of Timoshenko nanobeams subject to 
different end conditions. Asgharifard Sharabiani 
et al. [20] analyzed the nonlinear free vibration of 
functionally graded Euler-Bernoulli nanobeams. 
In another work, Zhu et al. [21] considered the 
surface energy effect on nonlinear free vibration 
of viscoelastic orthotropic piezoelectric doubly-
curved smart nanoshells by a new approach. In 
addition, Zhu et al. [22] investigated the surface 
energy effect on the nonlinear free vibration 
behavior of orthotropic piezoelectric cylindrical 
nano-shells by introducing an electro-elastic 
surface/interface model. 

When nanotubes are subjected to the external 
torques, the torsional vibration becomes vital in 
some devices such as nanoelectromechanical 
systems, nano-scaled shafts, and 
nanoservomotors. There are not many studies 
about the free torsional vibration of nanotubes. 
Lim et al. [23] developed a new elastic nonlocal 
stress model and analytical solutions for 
torsional dynamic behaviors of circular 
nanorods/nanotubes. They investigated the free 
torsional vibration of nanorods/nanotubes and 
axially moving nanorods/nanotubes. Li and Hi 
[24] studied the free torsional vibration 

behaviors of nanotubes made of a bi-directional 
functionally graded (FG) material in which the 
material properties vary continuously along with 
the radius and length directions. Based on 
Nonlocal elasticity, Murmu et al. [25] analyzed 
the torsional vibration of single-walled carbon 
nanotube–buckyball systems. The buckyball was 
attached to a single-walled carbon nanotube 
(SWCNT) at one end, and the other end of the 
SWCNT was fixed. Torsional vibration analysis of 
nanobeams with a peripheral crack and different 
end conditions  was investigated by 
Nazemnezhad and Fahimi [26]. They considered 
surface energy effects, including  the surface 
stress, the surface shear modulus, and the surface 
density, on the torsional vibration of nanobeams 
with various boundary conditions. The stability 
of different types of single-walled carbon 
nanotubes (SWCNTs), rested in Winkler elastic 
foundations by considering the surface energy 
and surface residual stresses, was studied by Jena 
et al. [27,28]. Malikan et al. [29] analyzed the 
torsional buckling of a nano-composite shell 
employing first-order shear deformation shell 
theory. With the help of the finite element 
method, the nonlinear vibrational characteristics 
of a hetero-nanotube in the magneto-thermal 
environment were investigated by Sedighi and 
Malikan [30]. Sedighi et al. [31] used nonlinear 
finite element formulation to deal with the 
nonlocal vibrational behavior of carbon/boron-
nitride nano-hetero-tubes in the presence of a 
magneto-thermal environment. Nonlinear free 
vibration of nanotubes under a magnetic 
environment was studied by Malikan and 
Eremeyev [32]. The magnetic force is applied to 
the conductive nanotube with a piezo‐
flexomagnetic elastic wall. The Euler‐Bernoulli 
beam theory was conducted to extract governing 
equations of motion. In another work, Zarezadeh 
et al. [33] studied the size effects in FG nano-rod 
under a magnetic field supported by a torsional 
foundation based on the nonlocal elasticity. In 
this work, torsional vibration behavior was 
analyzed. Based on the nonlocal strain gradient 
elasticity, torsional vibration analysis of bi-
directional FG nonlinear nano-cones with 
arbitrary cross-section was investigated by 
Noroozi et al. [34]. In another similar work, static 
torsion of bi-directional functionally graded 
microtube was analyzed based on the couple 
stress theory under magnetic field by Barati et al. 
[35].   

According to the best author’s knowledge, 
surface effects on the nonlinear torsional 
vibration of nanorods have not been considered 
yet. Therefore, the aims of the present study are 
1) modeling the nonlinear torsional vibration of 
nanorods by considering the surface energy 
effects, 2) using the multi-mode Galerkin method 
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for converting the partial differential equation to 
an ordinary differential equation, 3) extracting 
and reporting the conditions in which the 
internal resonances occur. 

In this paper, the nonlinear torsional 
vibration of nanorods considering the effect of 
various parameters such as nanorod dimensions, 
boundary conditions, and frequency number on 
natural nonlinear torsional frequencies of the 
nanorod is studied. Hamilton’s principle is used 
to derive the equation of motion, and the multiple 
scale method is used to solve these equations. 

2. Governing Equations 

We consider a nanorod with length L and 
diameter D, as shown in Fig. 1. According to Fig. 
1, the coordinate origin is chosen on the left side, 
and the area of the nanorod’s cross-section is in 
the xy plane. The displacement components for 
torsion of the rod (Ux, Uy, Uz) are given as [36,37] 

𝑈𝑥 = 0  (1) 

𝑈𝑦 = −𝑧𝜃(𝑥, 𝑡)  (2) 

𝑈𝑧 = 𝑦𝜃(𝑥, 𝑡)  (3) 

where 𝜃(𝑥, 𝑡) donates angular displacement 
about the center of twist and t is time. 

Based on von-Kármán theory, the 
geometrically nonlinear strain–displacement 
relations can be expressed as following [38,39] 

휀𝑥𝑥 =
1

2
(𝑦2 + 𝑧2) (

𝜕𝜃

𝜕𝑥
)
2

; 휀𝑦𝑦 =
1

2
𝜃2 

(4) 휀𝑥𝑧 =
1

2
(𝑦
𝜕𝜃

𝜕𝑥
+ 𝑧𝜃

𝜕𝜃

𝜕𝑥
) ; 휀𝑦𝑧 = 0 

휀𝑥𝑦 =
1

2
(−𝑧

𝜕𝜃

𝜕𝑥
+ 𝑦𝜃

𝜕𝜃

𝜕𝑥
) ; 휀𝑧𝑧 =

1

2
𝜃2 

Based on linearized elasticity, the stress 
components are given by [38,39]  

𝜎𝑥𝑥 = 𝐺3 [(1 − 𝜈) (
1

2
) (𝑦2 + 𝑧2) (

𝜕𝜃

𝜕𝑥
)
2

+  𝜈(𝜃2)] 

(5) 
 

𝜎𝑦𝑦 = 𝐺3 [𝜈 (
1

2
) (𝑦2 + 𝑧2) (

𝜕𝜃

𝜕𝑥
)
2

+ (
1

2
𝜃2)] 

𝜎𝑧𝑧 = 𝐺3 [𝜈 (
1

2
) (𝑦2 + 𝑧2) (

𝜕𝜃

𝜕𝑥
)
2

+ (
1

2
𝜃2)] 

𝜎𝑥𝑦 = 𝐺3 [(
1 − 2𝜈

2
) (−𝑧 

𝜕𝜃

𝜕𝑥
+ 
1

2
 𝑦𝜃

𝜕𝜃

𝜕𝑥
)] 

𝜎𝑥𝑧 = 𝐺3 [(
1 − 2𝜈

2
) (𝑦

𝜕𝜃

𝜕𝑥
+ 
1

2
 𝑧𝜃

𝜕𝜃

𝜕𝑥
)] 

𝜎𝑦𝑧 =  0. 

 
Fig. 1. Geometry of nanorod 

To get the surface stresses, it should be noted 
that due to the high surface-to-volume ratio, 
nanoscale elements usually exhibit a great 
influence of surface/interface free energy, which 
is the energy associated with atoms at or near a 
free surface; consequently, their mechanical 
behavior becomes size-dependent. Thus, surface 
energy effects, which are generally ignored in 
conventional continuum mechanics problems, 
need to be considered in modified continuum-
based simulation for nanoscale systems. A 
theoretical framework based on continuum 
mechanics concepts was proposed by Gurtin and 
Murdoch [7,8] to take into consideration the 
influence of surface energy effects. According to 
Gurtin and Murdoch, the surface district of a solid 
can be modeled as a layer of disappearing 
thickness sticking to the solid without sliding. For 
an isotropic, linear elastic material, the usual 
equations for the static elastic field in the inside 
of the solid are explained as 

𝛻. 𝝈 = 0 
𝝈 = 2𝜇𝜺 + 𝜆(trε)𝑰 

𝜺 =
1

2
[∆u + (∆u)𝑇] 

(6) 

where σ, ε, and u are stress, strain, and 
displacement components, respectively, μ and  
denote Lamé constants, and I is the unity tensor. 
They presented the constitutive equations of the 
surface stresses as follows 

𝜎𝑖𝑗 = 𝜎0  𝛿𝑖𝑗 + 2(𝜇 − 𝜎0 ) 휀𝑖𝑗  

            + (𝜆 + 𝜎0 )𝑢𝑘,𝑘𝛿𝑖𝑗 + 𝜎0 𝑢𝑖𝑗  
(7) 

where 𝜎0, 𝜆 and 𝜇 are the surface residual stress 
under unstrained conditions, and surface Lamé 
parameters, respectively; 𝑢𝑖 and 𝛿𝑖𝑗 are the 

displacement components of the surfaces and 
Kronecker delta, respectively. The parameters 
with bar symbols belong to surface properties. 

Substituting Eqs. (1)-(4) into Eq. (7) results in 
the surface stress components as 

𝜎𝑥𝑥 = 𝜇(𝑦
2 + 𝑧2) (

𝜕𝜃

𝜕𝑥
)
2

; 

�̅�𝑦𝑦 = 𝜇𝜃
2; 

�̅�𝑧𝑧 = 𝜇𝜃
2; 

�̅�𝑥𝑦 = 2𝜇 [−𝑧
𝜕𝜃

𝜕𝑥
+
1

2
𝑦𝜃
𝜕𝜃

𝜕𝑥
] ; 

�̅�𝑥𝑧 = 2𝜇 [𝑦
𝜕𝜃

𝜕𝑥
+
1

2
𝑧𝜃
𝜕𝜃

𝜕𝑥
] ; 

�̅�𝑦𝑧 = 0. 

(8) 
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Hamilton’s principle is implemented to obtain 
the equations for torsional vibration of nanorod 
based on the surface effect theory: 

𝛿 ∫ (𝑈 − 𝑇 − 𝐾)𝑑𝑡 = 0
𝑡2
𝑡1

  (9) 

where U, T, and K are the strain energy, the 
kinetic energy, and the work done by external 
forces, respectively. After applying Hamilton’s 
principle, the governing equation of motion for 
torsional vibration of nanorod is obtained as 
follows 

(−
3

2
𝐺1𝐼𝑃2 − 3𝜇𝐴1) (

𝜕𝜃

𝜕𝑥
)
2

(
𝜕2𝜃

𝜕𝑥2
) + 

(𝐺3𝐴 + 2𝜇𝑆)𝜃
3 − (𝐺𝐼𝑃1 + 2𝐴2𝜇)

𝜕2𝜃

𝜕𝑥2
− 

(𝐺2𝐼𝑃1 +
𝐺𝐼𝑃1
4

+
𝐴2𝜇

2
)𝜃 (

𝜕𝜃

𝜕𝑥
)
2

− 

(𝐺2𝐼𝑃1 +
𝐺𝐼𝑃1
4

+
𝐴2𝜇

2
)𝜃2 (

𝜕2𝜃

𝜕𝑥2
)

− (+𝜌𝐼𝑃1 + 𝐴2�̅�)
𝜕2𝜃

𝜕𝑡2

= 0 

(10) 

where 

𝐺 =
𝐸

2(1+𝜈)
;         𝐺1 =

𝐸(1−𝜈)

(1+𝜈)(1−2𝜈)
; 

𝐺2 =
𝐸𝜈

2(1+𝜈)
;       𝐺3 =

𝐸

(1+𝜈)(1−2𝜈)
; 

{𝐼𝑃1 , 𝐼𝑃2} = ∫(𝑦
2 + 𝑧2)1,2𝑑𝐴 ; 

{𝐴1, 𝐴2} = ∫(𝑦
2 + 𝑧2)1,2𝑑𝑠 ;  𝐴 = 𝜋𝑅2; 

(11) 

We can rewrite Eq. (10) as follow 
 

𝛼1 (
𝜕𝜃

𝜕𝑥
)
2 𝜕2𝜃

𝜕𝑥2
+ 𝛼2𝜃

3 + 𝛼3
𝜕2𝜃

𝜕𝑥2

+ 𝛼4 (𝜃 (
𝜕𝜃

𝜕𝑥
)
2

+ 𝜃2
𝜕2𝜃

𝜕𝑥2
) + 𝛼5

𝜕2𝜃

𝜕𝑡2

= 0 

(12) 

where in Eq. (12) 

𝛼1 = −
3

2
𝐺1𝐼𝑃2 − 3𝜇𝐴1; 

𝛼2 = 𝐺3𝐴 + 2𝜇𝑆; 𝛼3 = −𝐺𝐼𝑃1 − 2𝐴2𝜇; 

𝛼4 = −𝐺2𝐼𝑃1 −
1

4
𝐺𝐼𝑃1 −

1

2
𝐴2𝜇; 

𝛼5 = −𝜌𝐼𝑃1 − 𝐴2�̅�. 

(13) 

The equation of spatial function and the 
boundary conditions are obtained by ignoring the 
nonlinear parameters in Eq. (12)  

𝛼3
𝜕2𝜃

𝜕𝑥2
+ 𝛼5

𝜕2𝜃

𝜕𝑡2
= 0 (14) 

[𝛼1
𝜕2𝜃

𝜕𝑥2
] 𝛿𝜃 |

𝑙

0
= 0 (15) 

The separation-of-variables method is used to 
solve Eq. (14) and find the natural frequencies of 
nanorod 

𝜃(𝑥, 𝑡) = 𝜙(𝑥)𝑒−𝑖𝜔𝐿𝑡  (16) 

where 𝜔𝐿 is the linear torsional natural 
frequency. Substituting Eq. (16) into Eq. (14) and 
(15) yields the following equations 

𝛼3
𝑑2𝜙

𝑑𝑥2
− 𝛼5𝜔𝐿

2 = 0 (17) 

[𝛼1
𝑑2𝜙

𝑑𝑥2
] 𝛿𝜙 |

𝑙

0
= 0 (18) 

By solving Eq. (17), we have 

𝜙(𝑥) = 𝐶1𝑆𝑖𝑛(𝛽𝑥) + 𝐶2𝐶𝑜𝑠(𝛽𝑥)  (19) 

where 𝛽 = √
𝛼5

𝛼1
𝜔𝐿

2. To obtain natural 

frequencies and mode shapes of nanorod we 
apply boundary conditions, Eq. (18), to Eq. (19). 
The mode shapes and natural frequencies of 
nanorod with fixed–fixed and fixed-free 
boundary conditions are expressed as 
• Fixed-Fixed 

𝜙𝑛(𝑥) = 𝐶1𝑆𝑖𝑛 (
𝑛𝜋

𝐿
𝑥)  (20) 

𝜔𝐿)𝑛 = (
𝑛𝜋

𝐿
)√

𝛼5
𝛼1

 

 
(21) 

• Fixed-Free 

𝜙𝑛(𝑥) = 𝐶1𝑆𝑖𝑛 (
(2𝑛 − 1)𝜋

2𝐿
𝑥) (22) 

𝜔𝐿)𝑛 = (
(2𝑛−1)𝜋

2𝐿
)√

𝛼5

𝛼1
  (23) 

To convert the partial differential equation 
(Eq. (12)) to an ordinary differential equation, 
there are two choices: 

• Single-mode Galerkin method 

𝜃(𝑥, 𝑡) = 𝜙(𝑥) 𝑞(𝑡)  (24) 

• Multi-mode Galerkin method 

𝜃(𝑥, 𝑡) =∑𝜙𝑖(𝑥) 𝑞𝑖(𝑡)

𝑖=1

 (25) 

where 𝑞(𝑡) represents a time-dependent function 
to be determined, and 𝜙(𝑥) is the normalized 
linear mode shape function. 

The single-mode Galerkin method only gives 
the nonlinear natural frequencies, but the multi-
mode Galerkin method results in not only the 
nonlinear natural frequencies but also conditions 
of occurring the internal resonances. Since one of 
the main aims of the present research is to 
consider the state of internal resonances in 
nonlinear torsional vibration, the multi-mode 
Galerkin method is used. 
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Putting Eq. (25) into Eq. (12) results in the 
following equation 

(𝛼1∑∑∑
𝑑𝜙𝑖
𝑑𝑥

𝑁

𝑖=1

𝑑𝜙𝑗

𝑑𝑥

𝑁

𝑗=1

𝑑2𝜙𝑘
𝑑𝑥2

𝑁

𝑘=1

)𝑞𝑖𝑞𝑗𝑞𝑘

+ (𝛼2∑∑∑𝜙𝑖

𝑁

𝑖=1

𝜙𝑗

𝑁

𝑗=1

𝜙𝑘

𝑁

𝑘=1

)𝑞𝑖𝑞𝑗𝑞𝑘

+ (𝛼3∑
𝑑2𝜙𝑖
𝑑𝑥2

𝑁

𝑖=1

)

+ (𝛼4∑∑∑𝜙𝑖

𝑁

𝑖=1

𝑑𝜙𝑗

𝑑𝑥

𝑁

𝑗=1

𝑑𝜙𝑘
𝑑𝑥

𝑁

𝑘=1

)𝑞𝑖𝑞𝑗𝑞𝑘

+ (𝛼4∑∑∑𝜙𝑖

𝑁

𝑖=1

𝜙𝑗

𝑁

𝑗=1

𝑑2𝜙𝑘
𝑑𝑥2

𝑁

𝑘=1

)𝑞𝑖𝑞𝑗𝑞𝑘

− (𝛼5∑𝜙𝑖

𝑁

𝑖=1

)𝑞�̈� = 0 

(26) 

Using the following dimensionless 
parameters, 

𝑋 =
𝑥

𝐿
 ; 

�̅� =
𝑞

𝑞𝑚𝑎𝑥
; 

�̅� =
𝜙

𝐿
; 

(27) 

and multiplying Eq. (26) by the normalized linear 
mode shapes (Eqs. (20) and (22)) and integrating 
from X=0 to X=1, results in the following equation 
�̈̅�𝑚 +𝜔𝑚

2 �̅�𝑚

− 휀∑∑∑({
𝛼1
𝛼5𝐿

4
(𝛽1)𝑚𝑖𝑗𝑘

𝑘=1𝑗=1𝑖=1

+
𝛼2
𝛼5
(𝛽2)𝑚𝑖𝑗𝑘

+
𝛼4
𝛼5𝐿

2
((𝛽3)𝑚𝑖𝑗𝑘

+ (𝛽4)𝑚𝑖𝑗𝑘)} (𝑞�̅�𝑞�̅�𝑞𝑘̅̅ ̅)) 𝑞𝑚𝑎𝑥
2 = 0 

(28) 

where qmax is the maximum amplitude of the time 
dependent function 𝑞(𝑡) and the parameters β1, 
β2, β3 and β4 are specified as: 

(𝛽1)𝑚𝑖𝑗𝑘 = ∫ (�̅�𝑚
𝑑�̅�𝑖

𝑑𝑋

𝑑2�̅�𝑘

𝑑𝑋2
) 𝑑𝑋

1

0
, 

(𝛽2)𝑚𝑖𝑗𝑘 = ∫ (�̅�𝑚�̅�𝑖�̅�𝑗�̅�𝑘)𝑑𝑋
1

0
, 

(𝛽3)𝑚𝑖𝑗𝑘 = ∫ (�̅�𝑚�̅�𝑖
𝑑�̅�𝑗

𝑑𝑋

𝑑�̅�𝑘

𝑑𝑋
) 𝑑𝑋

1

0
, 

(𝛽4)𝑚𝑖𝑗𝑘 = ∫ (�̅�𝑚�̅�𝑖�̅�𝑗
𝑑2�̅�𝑘

𝑑𝑋2
) 𝑑𝑋

1

0
. 

(29) 

and 

{
 
 
 

 
 
 ∫ �̅�𝑚(𝑥)�̅�𝑖(𝑥)𝑑𝑋 = 𝛿𝑖𝑚

1

0

                

∫ �̅�𝑚(𝑥)
𝑑2𝜙�̅�(𝑥)

𝑑𝑋2

1

0

𝑑𝑋 = −𝜆𝑚
2 𝛿𝑖𝑚

𝜔𝑚
2 =

𝛼3𝜆𝑚
2

𝛼5𝐿
2
                                      

 (30) 

In Eq. (30) 𝜆𝑚and �̅�(𝑥) are defined as  

𝜆𝑚 = 𝑚𝜋;                  𝜙𝑚̅̅ ̅̅ = √2𝑆𝑖𝑛(𝜆𝑚𝑋) (31) 

𝜆𝑚 = (2𝑚 − 1)
𝜋

2
;  𝜙𝑚 =̅̅ ̅̅ ̅̅ ̅ √2𝑆𝑖𝑛(𝜆𝑚𝑋) (32) 

where Eqs. (31) and (32) are for fixed-fixed and 
fixed-free end conditions, respectively. 

3. Solution Procedure 

To solve the nonlinear equation, Eq. (28), the 
multiple-scale method is used. For this purpose, 
the small dimensionless parameter ε is 
introduced. Therefore, Eq. (28) can be written as 
follow 

�̅�𝑚(𝑡𝑖; 휀) = �̅�𝑚0
(𝑡0, 𝑡1) + 휀�̅�𝑚1

(𝑡0, 𝑡1) +

휀2�̅�𝑚2
(𝑡0, 𝑡1) + ⋯  (33) 

where t0 = t is  the time scale that indicates 
oscillatory effect and  

𝑡𝑛 = 휀
𝑛𝑡  (34) 

Substituting Eq. (33) into Eq. (28) and 
equating the coefficients with the same power 
results in the following differential equations: 

휀0:        𝐷0
2�̅�𝑚0

+ 𝜔𝑚
2�̅�𝑚0

= 0; (35) 

휀1:       𝐷0
2�̅�𝑚1

+ 𝜔𝑚
2�̅�𝑚1

= −2𝐷0𝐷1�̅�𝑚0
+ (

𝛼1(𝛽1)𝑚𝑚𝑚𝑚

𝛼5𝐿
4 +

𝛼2(𝛽2)𝑚𝑚𝑚𝑚

𝛼5
+

𝛼4

𝛼5𝐿
2
((𝛽3)𝑚𝑚𝑚𝑚 +

(𝛽4)𝑚𝑚𝑚𝑚)) �̅�𝑚0

3𝑞𝑚𝑎𝑥
2; 

(36) 

휀2:   𝐷0
2�̅�𝑚2

+ 𝜔𝑚
2�̅�𝑚2

= −(𝐷1
2 + 2𝐷0𝐷2)�̅�𝑚0

− 2𝐷0𝐷1�̅�𝑚1
+

�̅�𝑚0

2𝑞𝑚𝑎𝑥
2∑ �̅�(𝑝,1)

3
𝑝=1 {

𝛼1

𝐿4𝛼5
((𝛽1)𝑚𝑚𝑚𝑝 + (𝛽1)𝑚𝑚𝑝𝑚 + (𝛽1)𝑚𝑝𝑚𝑚) +

𝛼2

𝛼5
((𝛽2)𝑚𝑚𝑚𝑝 + (𝛽2)𝑚𝑚𝑝𝑚 +

(𝛽2)𝑚𝑝𝑚𝑚) +
𝛼4

𝛼5𝐿
2 ((𝛽3)𝑚𝑚𝑚𝑝 + (𝛽3)𝑚𝑚𝑝𝑚 + (𝛽3)𝑚𝑝𝑚𝑚 + (𝛽4)𝑚𝑚𝑚𝑝 + (𝛽4)𝑚𝑚𝑝𝑚 + (𝛽4)𝑚𝑝𝑚𝑚)} ; 

(37) 
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where 𝐷𝑖 =
𝜕

𝜕𝑡̅𝑖
. A general solution for Eq. (35) can 

be written as 

�̅�𝑚0
= 𝐴𝑚𝑒

𝑖𝜔𝑚𝑡0 + �̅�𝑚 𝑒
−𝑖𝜔𝑚𝑡0 (38) 

�̅�𝑛0 = 0    𝑓𝑜𝑟   𝑛 ≠ 𝑚 (39) 

Am is a complex function and will be 
determined later, and �̅�𝑚 is the complex 
conjugate of Am. 

Substituting �̅�𝑚0
and �̅�𝑛0  into Eqs. (36) results 

in 

𝐷0
2�̅�𝑚1

+𝜔𝑚
2�̅�𝑚1

= −(𝐷1𝐴𝑚)(2𝑖𝜔𝑚𝑒
𝑖𝜔𝑚𝑡0)

+ 𝑞𝑚𝑎𝑥
2 ((

𝛼1(𝛽1)𝑚𝑚𝑚𝑚
𝛼5𝐿

4
+
𝛼2(𝛽2)𝑚𝑚𝑚𝑚

𝛼5

+
𝛼4
𝛼5𝐿

2
((𝛽3)𝑚𝑚𝑚𝑚

+ (𝛽4)𝑚𝑚𝑚𝑚))𝐴𝑚
3𝑒3𝑖𝜔𝑚𝑡0

+ 3(
𝛼1(𝛽1)𝑚𝑚𝑚𝑚

𝛼5𝐿
4

+
𝛼2(𝛽2)𝑚𝑚𝑚𝑚

𝛼5

+
𝛼4
𝛼5𝐿

2
((𝛽3)𝑚𝑚𝑚𝑚

+ (𝛽4)𝑚𝑚𝑚𝑚))𝐴𝑚
2�̅�𝑚𝑒

𝑖𝜔𝑚𝑡0) + 𝐶𝐶 

(40) 

𝐷0
2�̅�𝑛1 +𝜔𝑚

2�̅�𝑛1

= 𝑞𝑚𝑎𝑥
2 ((

𝛼1(𝛽1)𝑚𝑚𝑚𝑚
𝛼5𝐿

4
+
𝛼2(𝛽2)𝑚𝑚𝑚𝑚

𝛼5

+
𝛼4
𝛼5𝐿

2
((𝛽3)𝑚𝑚𝑚𝑚

+ (𝛽4)𝑚𝑚𝑚𝑚))𝐴𝑚
3𝑒3𝑖𝜔𝑚𝑡0

+ 3(
𝛼1(𝛽1)𝑚𝑚𝑚𝑚

𝛼5𝐿
4

+
𝛼2(𝛽2)𝑚𝑚𝑚𝑚

𝛼5

+
𝛼4
𝛼5𝐿

2
((𝛽3)𝑚𝑚𝑚𝑚

+ (𝛽4)𝑚𝑚𝑚𝑚))𝐴𝑚
2�̅�𝑚𝑒

𝑖𝜔𝑚𝑡0) + 𝐶𝐶 

(41) 

where CC is the complex conjugate of the 
preceding terms. Since the general solution of Eq. 
(40) is similar to Eq. (35), the following term 
causes a resonant effect and hence called the 
secular term 

(−(𝐷1𝐴𝑚)(2𝑖𝜔𝑚)+ 3(
𝛼1(𝛽1)𝑚𝑚𝑚𝑚

𝛼5𝐿
4

+
𝛼2(𝛽2)𝑚𝑚𝑚𝑚

𝛼5
 

+
𝛼4

𝛼5𝐿
2
((𝛽3)𝑚𝑚𝑚𝑚

+ (𝛽4)𝑚𝑚𝑚𝑚))𝐴𝑚
2�̅�𝑚)𝑒

𝑖𝜔𝑚𝑡0 

To prevent the resonant, we should have 

(−(𝐷1𝐴𝑚)(2𝑖𝜔𝑚)+ 3(
𝛼1(𝛽1)𝑚𝑚𝑚𝑚

𝛼5𝐿
4

+
𝛼2(𝛽2)𝑚𝑚𝑚𝑚

𝛼5

+
𝛼4

𝛼5𝐿
2
((𝛽3)𝑚𝑚𝑚𝑚

+ (𝛽4)𝑚𝑚𝑚𝑚))𝐴𝑚
2�̅�𝑚)

= 0 

(42) 

Then, the solution of Eqs. (40) and (41) 
becomes 
�̅�𝑚1

= −(
𝛼1(𝛽1)𝑚𝑚𝑚𝑚

𝛼5𝐿
4

+
𝛼2(𝛽2)𝑚𝑚𝑚𝑚

𝛼5

+
𝛼4
𝛼5𝐿

2
((𝛽3)𝑚𝑚𝑚𝑚

+ (𝛽4)𝑚𝑚𝑚𝑚))
𝑞𝑚𝑎𝑥

2

8𝜔𝑚
2
𝐴𝑚

3𝑒3𝑖𝜔𝑚𝑡0 

(43) 

�̅�𝑛1

= (
𝛼1(𝛽1)𝑚𝑚𝑚𝑚

𝛼5𝐿
4

+
𝛼2(𝛽2)𝑚𝑚𝑚𝑚

𝛼5

+
𝛼4
𝛼5𝐿

2
((𝛽3)𝑚𝑚𝑚𝑚 + (𝛽4)𝑚𝑚𝑚𝑚))

×
𝑞𝑚𝑎𝑥

2

(𝜔𝑛
2 − 9𝜔𝑚

2)
𝐴𝑚

3𝑒3𝑖𝜔𝑚𝑡0

+ 3(
𝛼1(𝛽1)𝑚𝑚𝑚𝑚

𝛼5𝐿
4

+
𝛼2(𝛽2)𝑚𝑚𝑚𝑚

𝛼5

+
𝛼4
𝛼5𝐿

2
((𝛽3)𝑚𝑚𝑚𝑚 + (𝛽4)𝑚𝑚𝑚𝑚))

×
𝑞𝑚𝑎𝑥

2

(𝜔𝑛
2 −𝜔𝑚

2)
𝐴𝑚

2�̅�𝑚𝑒
𝑖𝜔𝑚𝑡0 

(44) 

Now, 𝐴𝑚 is expressed in the polar form 

𝐴𝑚 =
1

2
𝑎𝑚𝑒

𝑖𝑏𝑚 (45) 

in which a and b indicate real variables. Putting 
Eq. (45) into Eq. (42) and separating the 
imaginary and real parts equal to zero, results in 
the following equations 

• Real part 
𝜔𝑚𝑏𝑚

′ 𝑎𝑚

+ 𝑞𝑚𝑎𝑥
2 (
3

8
𝑎𝑚

3)(
𝛼1(𝛽1)𝑚𝑚𝑚𝑚

𝛼5𝐿
4

+
𝛼2(𝛽2)𝑚𝑚𝑚𝑚

𝛼5

+
𝛼4
𝛼5𝐿

2
((𝛽3)𝑚𝑚𝑚𝑚 + (𝛽4)𝑚𝑚𝑚𝑚)) = 0 

• Imaginary part      −𝑖𝜔𝑚𝑎𝑚
′ = 0 

(46) 
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From Eq. (46), it is possible to obtain  

𝑏𝑚 = −
𝑞𝑚𝑎𝑥

2

𝜔𝑚
(
3

8
𝑎𝑚

2) (
𝛼1(𝛽1)𝑚𝑚𝑚𝑚

𝛼5𝐿
4

+
𝛼2(𝛽2)𝑚𝑚𝑚𝑚

𝛼5

+
𝛼4
𝛼5𝐿

2
((𝛽3)𝑚𝑚𝑚𝑚

+ (𝛽4)𝑚𝑚𝑚𝑚)) 𝑡1 + 𝑏𝑚0
 

𝑎𝑚 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

(47) 

Substituting Eq. (47) into Eq. (45) yields the 
following equation 

𝐴𝑚

=
𝑎𝑚
2
𝑒

𝑖

(

 
 
 

𝑏𝑚0−
𝑞𝑚𝑎𝑥

2

𝜔𝑚
(
3
8
𝑎𝑚

2)×

(

𝛼1(𝛽1)𝑚𝑚𝑚𝑚
𝛼5𝐿

4 +
𝛼2(𝛽2)𝑚𝑚𝑚𝑚

𝛼5
+

𝛼4
𝛼5𝐿

2((𝛽3)𝑚𝑚𝑚𝑚+(𝛽4)𝑚𝑚𝑚𝑚)
)𝑡1

)

 
 
 

 

(48) 

Also, �̅�𝑚 and �̅�𝑛 are obtained as 

�̅�𝑚
= 𝐴𝑚𝑒

𝑖𝜔𝑚𝑡0

− 휀 (
𝛼1(𝛽1)𝑚𝑚𝑚𝑚

𝛼5𝐿
4

+
𝛼2(𝛽2)𝑚𝑚𝑚𝑚

𝛼5

+
𝛼4
𝛼5𝐿

2
((𝛽3)𝑚𝑚𝑚𝑚

+ (𝛽4)𝑚𝑚𝑚𝑚))
𝑞𝑚𝑎𝑥

2

8𝜔𝑚
2
𝐴𝑚

3𝑒3𝑖𝜔𝑚𝑡0 + 𝐶𝐶 

(49) 

�̅�𝑛

= 휀 ((
𝛼1(𝛽1)𝑚𝑚𝑚𝑚

𝛼5𝐿
4

+
𝛼2(𝛽2)𝑚𝑚𝑚𝑚

𝛼5

+
𝛼4
𝛼5𝐿

2
((𝛽3)𝑚𝑚𝑚𝑚 + (𝛽4)𝑚𝑚𝑚𝑚))

×
𝑞𝑚𝑎𝑥

2

(𝜔𝑛
2 − 9𝜔𝑚

2)
𝐴𝑚

3𝑒3𝑖𝜔𝑚𝑡0) + 

(50) 

휀 (3(
𝛼1(𝛽1)𝑚𝑚𝑚𝑚

𝛼5𝐿
4

+
𝛼2(𝛽2)𝑚𝑚𝑚𝑚

𝛼5

+
𝛼4
𝛼5𝐿

2
((𝛽3)𝑚𝑚𝑚𝑚 + (𝛽4)𝑚𝑚𝑚𝑚))

×
𝑞𝑚𝑎𝑥

2

(𝜔𝑛
2 −𝜔𝑚

2)
𝐴𝑚

2�̅�𝑚𝑒
𝑖𝜔𝑚𝑡0) 

 

 
By considering Eq. (48), Eqs. (49) and (50) can 

be rewritten as: 

�̅�𝑚
= 𝑎𝑚 cos 𝜃

− 휀 ((
𝛼1(𝛽1)𝑚𝑚𝑚𝑚

𝛼5𝐿
4

+
𝛼2(𝛽2)𝑚𝑚𝑚𝑚

𝛼5

+
𝛼4
𝛼5𝐿

2
((𝛽3)𝑚𝑚𝑚𝑚

+ (𝛽4)𝑚𝑚𝑚𝑚))
𝑎𝑚

3

32𝜔𝑚
2
𝑞𝑚𝑎𝑥

2)cos(3𝜃)

+ ⋯ 

(51) 

�̅�𝑛

= 휀 (3(
𝛼1(𝛽1)𝑚𝑚𝑚𝑚

𝛼5𝐿
4

+
𝛼2(𝛽2)𝑚𝑚𝑚𝑚

𝛼5

+
𝛼4
𝛼5𝐿

2
((𝛽3)𝑚𝑚𝑚𝑚 + (𝛽4)𝑚𝑚𝑚𝑚))

×
𝑎𝑚

3

4(𝜔𝑛
2 − 𝜔𝑚

2)
𝑞𝑚𝑎𝑥

2 cos(𝜃)

+ (
𝛼1(𝛽1)𝑚𝑚𝑚𝑚

𝛼5𝐿
4

+
𝛼2(𝛽2)𝑚𝑚𝑚𝑚

𝛼5

+
𝛼4
𝛼5𝐿

2
((𝛽3)𝑚𝑚𝑚𝑚 + (𝛽4)𝑚𝑚𝑚𝑚))

×
𝑎𝑚

3

4(𝜔𝑛
2 − 9𝜔𝑚

2)
𝑞𝑚𝑎𝑥

2 cos(3𝜃)) 

(52) 

where  

𝜃 = 𝜔𝑁𝑚𝑡 + 𝑏𝑚0
; 

𝜔𝑁𝑚 = 𝜔𝑚 −

𝑞𝑚𝑎𝑥
2

𝜔𝑚
(
3

8
𝑎𝑚

2)(
𝛼1(𝛽1)𝑚𝑚𝑚𝑚

𝛼5𝐿
4 +

𝛼2(𝛽2)𝑚𝑚𝑚𝑚

𝛼5
+

𝛼4

𝛼5𝐿
2
((𝛽3)𝑚𝑚𝑚𝑚 +

(𝛽4)𝑚𝑚𝑚𝑚)) 휀 + 𝑏𝑚0
; 

(53) 

and 𝜔𝑁𝑚 and 𝜔𝑚 are nonlinear and linear natural 
frequencies, respectively. To satisfy the initial 
conditions (�̅�𝑚(0) = 1; �̅��̇�(0) = 0) in Eq. (47), 
the error associated with the second order 
expansion should be considered. In Addition, 
because ε is a bookkeeping device, we set it equal 
to unity. These result in 𝑏𝑚0

= 0; 𝑎𝑚 = 1. Eq. 

(52) shows that there are two cases in which the 
internal resonances occur, one-to-one (𝜔𝑛 = 𝜔𝑚) 
and three-to-one (𝜔𝑛 = 3𝜔𝑚). 

4. Numerical Results 

In the following, the influence of surface 
effects, the amplitude of nonlinear vibrations, the 
frequency number, the radius, and the length of 
the nanorod on the linear and nonlinear 
frequencies of the nanorod are investigated. The 
bulk and the surface elastic properties of 
aluminum and silicon are listed in Table 1. It 
should be mentioned that the crystallographic 
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direction of aluminum is [1 1 1], and the 
crystallographic direction of silicon is [1 0 0]. 

To display the high accuracy of the present 
results, a direct comparison has been conducted 
with the results obtained by Jamali Shakhlavi et 
al. [39] and Setoodeh et al. [40] in Table 2. From 
this table, it can be found that the results 
presented in this study are closely matched with 
those given by [39,40]. The slight difference 
between the results of the present study with 
those of reference [40] is the method of solution. 
Setoodeh et al. [40] used the Homotopy Analysis 
method while the present study used the method 
of multiple scale. 

To show better the effects of surface 
components on the natural torsional frequencies 
of nanorods, the frequency ratio in the form of Eq. 
(54) is used. This equation states that if the 
frequency ratio is more than one, the surface 
components have an accumulative effect and vice 
versa. Also, for the frequency ratio equal to one, 
surface components do not affect the natural 
torsional frequencies of nanorods.  The frequency 
ratio is defined as 

𝐹𝑅 =
𝑓𝑠
𝑓𝑐

 (54) 

where 𝑓𝑠 and 𝑓𝑐 are the natural torsional 
frequency of nanorod with surface energy effects, 
and the natural torsional frequency of nanorod, 
respectively. 

The influence of surface parameters on the 
torsional vibration of nanorod is listed in Table 3 
for various radii and amplitudes of vibration. 
According to this table, the following results can 
be deduced. First, it is seen that in the case of 
linear torsional vibration (qmax=0), both the 
surface density and the surface Lamé constants 

decrease the natural torsional frequencies for 
different frequency numbers, various values of 
nanorod radii, and two boundary conditions i.e., 
fixed-fixed and fixed-free. This result is valid in 
the nonlinear case only for the surface density 
effect. While it is observed that the surface Lamé 
constants have different effects on nonlinear 
torsional frequencies. In other words, the effect of 
surface Lamé constants on the nonlinear 
torsional frequencies depends on the vibration 
amplitude, the material of the nanorod, mode 
number, and radius of the nanorod. It is worth 
mentioning that the reason for decreasing effect 
of the surface density is increasing the kinetic 
energy of the nanorod due to considering the 
surface density. As known, the frequency and the 
kinetic energy are inversely related. 

Then, Table 3 shows that the effect of surface 
density on torsional frequencies is different only 
for various values of nanorod radius. This means 
that the surface density decreases the torsional 
frequencies with the same percent for various 
boundary conditions, mode numbers, and 
amplitudes of vibration. But, this is not the case 
for the surface density effect on torsional 
frequencies for multiple values of nanorod 
radius. This implies that by increasing the 
nanorod radius, the surface density effect 
decreases. This is due to the fact that by 
increasing the nanorod radius, the energy stored 
in the bulk grows faster than the one on the 
surface. It is also observed from Table 3 that the 
decreasing effect of the surface density on the 
torsional frequencies of nanorod made of 
aluminum is more in comparison with the one 
made of silicon. The reason for this is that the 
value of the surface density of aluminum is 
greater than the one of silicon. 

Table 1. Bulk and the surface elastic properties of Aluminum and Silicon 

Material 
Bulk elastic properties Surface elastic properties 

𝐺(𝐺𝑃𝑎) 𝜌 (
𝑘𝑔

𝑚3⁄ ) �̅� (
𝑘𝑔

𝑚3⁄ ) �̅�(𝑁 𝑚⁄ ) �̅�(𝑁 𝑚⁄ ) 

Al 28.5 2700 10-7×5.46 6.842 -0.367 

Si 86 2370 10-7×3.17 -4.494 -2.7779 

 
Table 2. Comparison of nonlinear torsional frequencies (GHz) for various lengths and mode numbers, μ, and all surface parameters 

considered zero. 

Amplitude of 
vibration  (D/π) 

Length (nm) Mode number 
Setoodeh et al. 
[40] 

Jamali et al. 
[39] 

Present study 

0.001 10 1st 167.422 167.409 167.409 

  2nd 363.744 363.430 363.430 

 15 1st 109.738 109.736 109.736 

  2nd 228.380 228.331 228.331 

0.010 10 1st 441.133 434.047 434.047 

  2nd 1672.54 1639.00 1639.00 

 15 1st 212.00 209.533 209.533 

  2nd 760.65 746.79 746.79 
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Next, it is focused on the effect of surface Lamé 
constants on the torsional frequencies. First, it is 
observed that impact of the surface Lamé 
constants is different in linear and nonlinear 
cases. In linear vibration, decreasing effect of 
surface Lamé constants is the same for both types 
of boundary conditions, i.e., fixed-fixed and fixed-
free, while this is not the case in nonlinear 
vibration. For a given radius value, the decreasing 
effect of the surface Lamé constants is also the 
same at all frequency numbers in the linear 
vibration. In the nonlinear vibration case, the 
decreasing effect of the surface Lamé constants 
differs with changing the type of boundary 
condition, the value of the vibration amplitude, 
the value of nanorod thickness, and the frequency 
number. By increasing the value of the amplitude 
of vibration, the frequency ratio value becomes 
more remarkable. This means that the 
nonlinearity has an increasing effect on the 
torsional frequencies, and this effect becomes 
more by increasing the vibration amplitude. This 
result is also observed for various values of the 
nanorod radius and frequency number. The final 
point regarding the surface Lamé constants effect 
is that by increasing the nanorod radius, two 
phenomena occur. Firstly, the decreasing effect of 
surface Lamé constants decreases, which is due 
to the fact that by increasing the nanorod radius, 
the energy stored in the bulk grows faster than 

the one on the surface. Secondly, the increasing 
effect of nonlinearity decreases due to the 
thickening of the nanorod.  

Finally, it is focused on the simultaneous 
effect of surface density and the surface Lamé 
constants. It is observed from Table 3 that when 
effects of both the surface density and the surface 
Lamé constants are considered, the values of all 
frequency ratios become more minor than those 
when one of them is considered. This implies that 
the decreasing effect of surface parameters 
becomes more when they are considered 
simultaneously compared to the case they are 
solely considered. 

Tables 4 and 5 study the influences of the 
surface effect on the internal resonances of the 
nanorods. It is crucial to learn these values to 
prevent undetected resonances in 
nanostructures. The length of the nanorods is 
chosen larger than 5nm and less than 40nm to 
keep a sensible shape for the nanorods. It is seen 
from these tables that the ratios of internal 
resonances for classical nanorods are 
independent of n, m, and qmax and for both 
materials and boundary conditions. Besides, it is 
observed that considering the surface effect 
results in lower internal resonance ratios for all 
values, and they are independent of the vibration 
amplitude, but they are related to the type of ends 
conditions and mode number. 

Table 3. Nonlinear torsional frequency ratios for various cases 

R 

(nm) 
n qmax 

B.C. 

type 

only surface density only surface Lamé both surface density and Lamé 

Al Si Al Si Al Si 

1 

  
1 0 Fi-Fi 0.7435 0.8071 0.9457 0.4680 0.7031 0.3777 
  Fi-Fr 0.7435 0.8071 0.9457 0.4680 0.7031 0.3777 
 0.05 Fi-Fi 0.7435 0.8071 0.9744 0.8966 0.7245 0.7237 
  Fi-Fr 0.7435 0.8071 1.0064 1.3746 0.7483 1.1095 
 0.1 Fi-Fi 0.7435 0.8071 1.0064 1.3745 0.7483 1.1094 
  Fi-Fr 0.7435 0.8071 1.0299 1.7253 0.7657 1.3925 

5 0 Fi-Fi 0.7435 0.8071 0.9457 0.4680 0.7031 0.3777 
  Fi-Fr 0.7435 0.8071 0.9457 0.4680 0.7031 0.3777 
 0.05 Fi-Fi 0.7435 0.8071 0.9473 0.4929 0.7044 0.3979 
  Fi-Fr 0.7435 0.8071 0.9477 0.4983 0.7046 0.4022 
 0.1 Fi-Fi 0.7435 0.8071 0.9520 0.5627 0.7078 0.4541 
  Fi-Fr 0.7435 0.8071 0.9533 0.5819 0.7088 0.4697 

2 

  
1 0 Fi-Fi 0.8438 0.8882 0.9732 0.7807 0.8212 0.6934 
  Fi-Fr 0.8438 0.8882 0.9732 0.7807 0.8212 0.6934 
 0.05 Fi-Fi 0.8438 0.8882 0.9777 0.8221 0.8250 0.7302 
  Fi-Fr 0.8438 0.8882 0.9872 0.9092 0.8330 0.8076 
 0.1 Fi-Fi 0.8438 0.8882 0.9872 0.9093 0.8330 0.8077 
  Fi-Fr 0.8438 0.8882 1.0027 1.0524 0.8461 0.9348 

5 0 Fi-Fi 0.8438 0.8882 0.9732 0.7807 0.8212 0.6934 
  Fi-Fr 0.8438 0.8882 0.9732 0.7807 0.8212 0.6934 
 0.05 Fi-Fi 0.8438 0.8882 0.9735 0.7834 0.8215 0.6958 
  Fi-Fr 0.8438 0.8882 0.9735 0.7837 0.8215 0.6961 
 0.1 Fi-Fi 0.8438 0.8882 0.9744 0.7912 0.8222 0.7028 
  Fi-Fr 0.8438 0.8882 0.9745 0.7923 0.8223 0.7037 
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Table 4. Internal resonances ratios for Al nanorod and various cases (R = 1.5nm) 

Fixed-Fixed Fixed-Free 

n m qmax 
Length 

(nm) 

Ratio 
n m qmax 

Length 

(nm) 

Ratio 

Classic With surface effect Classic With surface effect 

1 4 0.06 23.27 3 2.953 1 3 0.06 16.28 3 2.926 

1 4 0.07 19.98 3 2.953 1 3 0.07 13.97 3 2.926 

1 4 0.08 17.54 3 2.953 1 3 0.08 12.25 3 2.926 

1 4 0.09 15.66 3 2.953 1 3 0.09 10.91 3 2.926 

1 4 0.1 14.18 3 2.953 1 3 0.1 9.85 3 2.926 

1 5 0.06 32.57 3 2.923 1 4 0.06 22.79 3 2.895 

1 5 0.07 27.95 3 2.923 1 4 0.07 19.55 3 2.895 

1 5 0.08 24.50 3 2.923 1 4 0.08 17.13 3 2.895 

1 5 0.09 21.83 3 2.923 1 4 0.09 15.25 3 2.895 

1 5 0.1 19.71 3 2.923 1 4 0.1 13.76 3 2.895 

1 6 0.06 39.64 3 2.908 1 5 0.06 27.76 3 2.878 

1 6 0.07 34.01 3 2.908 1 5 0.07 23.81 3 2.878 

1 6 0.08 29.80 3 2.908 1 5 0.08 20.86 3 2.878 

1 6 0.09 26.54 3 2.908 1 5 0.09 18.57 3 2.878 

1 6 0.1 23.95 3 2.908 1 5 0.1 16.76 3 2.878 

Table 5. Frequency ratios of Si nanorod for different cases (R = 1.5nm) 

Fixed-Fixed Fixed-Free 

n m qmax 
Length 

(nm) 

Ratio 
n m qmax 

Length 

(nm) 

Ratio 

Classic With surface effect Classic With surface effect 

1 4 0.06 23.27 3 2.873 1 3 0.06 16.28 3 2.803 

1 4 0.07 19.98 3 2.873 1 3 0.07 13.97 3 2.803 

1 4 0.08 17.54 3 2.873 1 3 0.08 12.25 3 2.803 

1 4 0.09 15.66 3 2.873 1 3 0.09 10.91 3 2.803 

1 4 0.1 14.18 3 2.873 1 3 0.1 9.85 3 2.803 

1 5 0.06 32.57 3 2.803 1 4 0.06 22.79 3 2.727 

1 5 0.07 27.95 3 2.803 1 4 0.07 19.55 3 2.727 

1 5 0.08 24.50 3 2.803 1 4 0.08 17.13 3 2.727 

1 5 0.09 21.83 3 2.803 1 4 0.09 15.25 3 2.727 

1 5 0.1 19.17 3 2.803 1 4 0.1 13.76 3 2.727 

1 6 0.06 39.64 3 2.758 1 5 0.06 27.76 3 2.685 

1 6 0.07 34.01 3 2.758 1 5 0.07 23.81 3 2.685 

1 6 0.08 29.80 3 2.758 1 5 0.08 20.86 3 2.685 

1 6 0.09 26.54 3 2.758 1 5 0.09 18.57 3 2.685 

1 6 0.1 23.95 3 2.758 1 5 0.1 16.76 3 2.685 

 
It is also observed from Tables 4 and 5 that for 

higher frequency numbers, the internal 
resonance conditions are observed for large 
nanorod lengths, and at higher amplitude of 
vibrations, the more internal resonance 
conditions occur for smaller nanorod lengths. 
Moreover, by considering the surface effects, for 
a higher frequency number, changes in the 
internal resonance conditions become greater. 

This result is true for both boundary conditions 
(i.e., fi-fi and fi-fr) and both materials (i.e., Al and 
Si). Without considering the surface energy effect, 
the internal resonances for the fi-fr end condition 
occur at frequencies with closer mode numbers 
and shorter nanorod lengths, compared to the fi-
fi boundary condition. Changes in the internal 
resonance conditions of the nanorod with the fi-
fr boundary condition are more than the fi-fi 
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boundary condition when the surface effects are 
considered. Without considering the surface 
energy effects and under the same conditions, the 
internal resonance conditions are the same for 
both materials. However, when surface effects 
are considered, changes in internal resonance 
conditions for Si nanorods are more significant 
than Al nanorods. This is due to the difference 
between the values of the surface effect 
components of Al and Si. This difference 
highlights the importance of investigating surface 
effects on the internal resonances. 

Figure 2 displays the change of the nonlinear 
natural frequency versus the nanorod length for 
two different boundary conditions, i.e., fi-fi and fi-
fr, and for various surface effect parameters, at 
𝑞𝑚𝑎𝑥 = 0.01 and 𝑅 = 1 𝑛𝑚. It is evident for both 
boundary conditions, increasing in length of 
nanorod leads to a dramatic decrease in all 
nonlinear natural frequencies, which shows the 
decrease in length effects. The decrease in the 
distance among the curves is due to the reduction 
in the ratio of energy stored at the surface to the 
energy stored in the volume. Also, it is seen that 
by considering �̅� and �̅�, all natural frequencies are 
lessened. This may be due to considering �̅� in 
which the stiffness of nanorod falls off and taking 
into account �̅� results in an increase in the 
nanorod mass. Other results that can be seen 
from these figures confirm the results previously 
stated in Tables 3-5 and are avoided to prevent 
duplication. 

In the present paragraph, the effect of radius 
on the first natural frequency of the aluminum 
and silicon nanorods for two values of qmax and 
different surface parameters are presented in 
Figs. 3a-3d. It is observed that with increasing 
radius, the natural frequency for both boundary 
conditions and both materials increases 
gradually except for the classical nanorod with 
qmax = 0. This implies the independency of 

nanorods' classical natural frequency from their 
radius. When the surface energy effect is 
considered, the linear and nonlinear frequencies 
of nanorods are related to the nanorod radius. 
For both boundary conditions and both materials 
properties, linear frequencies of nanorod without 
considering the surface energy effect are 
independent of the nanorod radius, whereas 
nonlinear frequencies of nanorod without 
considering the surface energy effect are 
dependent on the radius of the nanorod. It should 
be noted that since the Lamé constants of Si are 
positive, unlike other surface constants that have 
a decreasing effect on frequency, this parameter 
has a positive effect. The behavior of the 
nonlinear frequency curve in terms of the radius 
can be different from other constants by 
considering the effect of this constant. The 
difference in the behavior of the curve certainly 
depends on the amplitude of the nonlinear 
vibrations of the nanorod. 

The variation of the first natural frequency of 
the aluminum and silicon nanorods against the 
nanorod amplitude for various surface 
parameters is presented in Figs. 4a and 4b. It is 
seen that by increasing the vibration amplitude 
the system's nonlinearity increases and leads to 
the rise of the natural frequency for both Al and 
Si nanorods. Also, it is obvious increasing 
frequency because the rise in the vibration 
amplitude is greater for nanorods with fixed-free 
boundary condition than that of nanorods with 
fixed-fixed boundary condition. 

In all figures, it is seen that the natural 
frequencies obtained for the fixed-fixed end 
condition are higher than those predicted for the 
fixed-free boundary conditions. Actually, the 
stiffness of fixed-fixed nanorods is more than the 
fixed-free nanorods, and thus the frequencies are 
increased. 

 
 

 
Fig. 2. Variations of the nonlinear natural frequency with the length of nanorod for two boundary conditions, fi–fi, and fi–fr at R = 

0.5 nm. 
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Fig. 3. Variations of the nonlinear natural frequency with the radius of aluminum nanorod for two boundary conditions, fi–fi, and 
fi–fr at L = 20 nm. 

 

  

  
Fig. 4. Variations of first natural frequency for Al nanorod against amplitude R=1.5 nm; L=10 nm (a) Al, (b) Si. 
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5. Conclusion  

In this paper, torsional vibrations of nanorods 
were investigated by considering the surface 
effects and the fixed-fixed and fixed-free end 
conditions. It is found that for various amplitudes 
of vibration, different frequency numbers, and 
both boundary conditions, the surface density 
has a decreasing effect on the torsional vibration 
of nanorod while considering only surface Lame, 
can have a decreasing or increasing effect on the 
torsional frequencies of nanorods. When both 
surface density and Lame constants are 
considered, a decreasing effect on the natural 
torsional frequency of nanorod is seen, and this 
reduction is greater than when the surface 
density or surface Lame is deemed to be alone. 
Also, when surface effects are considered, 
changes in internal resonance conditions for Si 
nanorods are more significant than Al nanorods. 
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