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In this paper, the author studied free transverse vibration of a thin isotropic simply-

supported functionally graded (FG) rectangular plate with porosity effect based on 

classical plate theory. The plate is considered to be elastically restrained against rotation. 

It is assumed that the material properties of the graded plate are porosity-dependent. An 

even porosity distribution is considered for analysis purposes. Due to the asymmetry of 

material in the thickness direction, the neutral surface is not the same as the geometrical 

mid-plane of the plate. The concept of the physical neutral surface of the FG plate along 

with classical plate theory is used to formulate the problem. Hence, the physical neutral 

surface is taken as the reference plane. The first three dimensionless frequencies of the 

plate are obtained using the Rayleigh-Ritz method. Boundary characteristic orthogonal 

polynomials (eigenfunctions), generated using the Gram-Schmidt process, are used in the 

Rayleigh-Ritz method. A parametric study shows that porosity and material distribution 

parameters have remarkable effects on the free vibration response of the plate. Results 

are compared with those of simply-supported FG plates. 

 

1. Introduction 

Functionally graded materials, generally 
made of ceramic and metal, are nonhomogeneous 
materials in which material properties vary 
continuously in appropriate directions. Free 
transverse vibration analysis of FG rectangular 
plates has gained attention of many researchers. 
A few papers about free vibration of FG plates 
have appeared in the literature and are 
summarized as follows: Dynamic response of 
initially stressed FG rectangular thin plates 
resting on elastic foundation has been studied by 
Yang and Shen [1]. Abrate [2] studied free 
vibrations, buckling, and static deflections of FG 
rectangular plates. He concluded that the natural 
frequencies of FG plates are proportional to those 
of homogeneous isotropic plates. Ferreira et. al. 
[3] computed natural frequencies of square FG 
plates employing the asymmetric collocation 
method. Zhao et. al. [4] presented the mechanical 
and thermal buckling analysis of FG rectangular 
plates using first-order shear deformation theory 
and the element-free kp-Ritz method. Talha and 

Singh [5] studied static and free vibration of FGM 
plates using higher order shear deformation 
theory in conjunction with FEM. Janghorban and 
Zareb [6] investigated the thermal effect on free 
vibration of FG arbitrary straight-sided plates 
with circular and non-circular cut-outs. 
Ghannadpour et. al. [7] used the finite strip 
method to analyse the buckling behaviour of FG 
rectangular plates under thermal loading. The 
plates were subjected to distributed impulsive 
loads. Thermal buckling of FG skew and 
trapezoidal plates has been investigated by 
Jaberzadeh et. al. [8] using the element-free 
Galerkin method. Baferani et. al. [9] investigated 
free vibration of FG rectangular plates based on 
first-order shear deformation theory. 
Chakraverty and Pradhan [10-11] investigated 
free vibration of thin FG rectangular plates 
incorporating the effects of Winkler foundation 
and thermal environment using the Rayleigh-Ritz 
method. Pradhan and Chakraverty [12] dealt 
with static analysis of thin FG rectangular plates 
under mechanical load using the Rayleigh-Ritz 
method. Khorshidi and Bakhsheshy [13] 
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investigated the vibration analysis of FG 
rectangular plates partially in contact with a fluid. 
Pham [14] developed an analytical solution to 
investigate the thermal buckling of imperfect 
rectangular plates with FG coating under uniform 
temperature rise. Atmane et. al. [15] studied 
thermal buckling of a simply supported sigmoid 
FG rectangular plate employing first-order shear 
deformation theory.  Lee et. al. [16] presented a 
thermal buckling analysis of FG rectangular 
plates based on the neutral surface of a structure. 
Kumar et. al. [17] investigated free vibration of 
thin FG rectangular plates using the dynamic 
stiffness method. 

The materials having pores are termed as 
porous materials. The application of these 
materials in the aeronautical industry, energy 
absorbing systems, sound absorbers, insulating 
materials, heat exchangers, construction 
materials, and electromagnetic shielding has 
necessitated the study of different behaviors of 
structures made of porous materials in recent 
years [18]. A significant number of works dealing 
with the static, bending, vibration, and buckling 
problems of porous beams and plates are 
reviewed as follows: Theodorakopoulos and 
Beskos [19] studied flexural vibration of thin, 
rectangular, simply-supported, and fluid-
saturated porous plates. Leclaire et. al. [20] 

presented a simple model of the transverse 
vibration of a thin rectangular porous plate 
saturated by a fluid. The vibration of a clamped 
rectangular porous plate using Galerkin’s 
variational method has been presented by 
Leclaire et. al. [21]. Vibration analysis of porous 
FG beams was presented by Wattanasakulpong 
and Ungbhakorn [22]. Razaei and Saidi [23] 
presented an exact solution for the vibration of 
rectangular porous plates using Reddy’s third-
order shear deformation theory. Mojahedin et. al. 
[24] studied the buckling of FG circular porous 
plates using the energy method based on higher-
order shear deformation theory. Chen et. al. [25] 
presented free and forced vibration of FG porous 
beams with different kinds of porosity 
distributions. Ebrahimi and Habibi [26] 
presented a finite element formulation for 
deflection and vibration of FG porous plates 
based on higher-order shear deformation theory. 
Mechab et. al. [27-28] studied free 
vibration/probabilistic analysis of FG nanoplate 
with porosities resting on Winkler-Pasternak 
elastic foundation. Jahwari and Naguib [29] 

presented an analysis of FG viscoelastic porous 
structure with a higher order plate theory. Barati 
et. al. [30] used a refined four-variable theory to 
study the buckling of FG piezoelectric porous 
plates resting on an elastic foundation. Barati and 
Zenkour [31] explored the electro-thermo-
mechanical vibrational behavior of FG 
piezoelectric plates with porosity using a refined 

four-variable plate theory. Mouaici et. al. [32] 

used hyperbolic shear deformation theory to 
examine the effect of porosity on the vibration of 
non-homogeneous plates. Ebrahimi and Jafari 
[33] presented an analytical solution to study the 
buckling characteristics of porous magneto-
electro-elastic FG plates. In a series of papers, 
Rezaei and co-workers [34-40] studied the free 
vibration and buckling behavior of porous plates 
employing various plate models. Kamranfard et. 
al. [41] presented an analytical solution for 
vibration and buckling of porous annular sector 
plates under in-plane uniform compressive loads. 
Şimşek and Aydın [42] used a modified couple 
stress theory to study the forced vibration of FG 
microplates with porosity effects. Akbas [43] 
dealt with free vibration and static bending of 
simply supported FG plates with porosity effect 
incorporating first-order shear deformation 
theory. Barati and co-workers [44-47] have 
presented vibration analysis of smart/nano FG 
porous plates using a refined four-variable 
theory. Ali et. al. [48] studied free vibration of the 
embedded porous plate using higher order shear 
deformation theory. Wang and Zu [49-51] 
studied free/forced vibration of FG rectangular 
porous plates with different complicating effects. 
Wang and Yang [52] investigated the nonlinear 
vibration of moving FG plates in contact with 
liquid and containing porosities. Electro-
mechanical vibration analysis of FG piezoelectric 
porous plates in the translation state has been 
presented by Wang [53]. Kiran et. al. [54] studied 
the effect of porosity on the structural behavior of 
skew functionally graded magneto-electro-
elastic plates. Free vibration analysis of saturated 
porous circular plates made of FG material 
integrated with a piezoelectric actuator is 
presented by Arshid and Khorshidvand [55] 
using the differential quadrature method. Arani 
et. al. [56] dealt with the dynamic analysis of 
rectangular porous plates resting on the 
Pasternak foundation using high-order shear 
deformation theory. Gupta and Talha [57] 
presented the influence of porosity on flexural 
and free vibration of FG plates in a thermal 
environment based on non-polynomial higher-
order shear and normal deformation theory. 
Zhao et. al. [58] studied free vibration of 
functionally graded porous rectangular plates by 
means of an improved Fourier series method 
considering three types of porosity distributions. 
Daikh and Zenkour [59] obtained a Navier 
solution of free vibration and mechanical 
buckling of porous functionally graded sandwich 
plates using higher-order shear deformation 
theory.  Du et. al. [60] performed a free vibration 
analysis of rectangular plates with three types of 
porosity distributions using the Rayleigh-Ritz 
method based on first-order shear deformation 
theory. Rjoub and Alshatnawi [61] predicted the 
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natural frequencies of a simply-supported 
functionally graded porous cracked plate using 
the Artificial Neural Network technique. Bansal 
et. al. [62] provided Navier solution and FEM-
based solution of vibration of porous functionally 
graded plates with geometric discontinuities and 
partial supports based on the refined exponential 
shear deformation theory. Tran et. al. [63] 
presented static and free vibration of functionally 
graded porous plates using an edge-based 
smoothed finite element method. Chai and Wang 
[64] investigated traveling wave vibration of 
spinning graphene platelets reinforced porous 
joined conical-cylindrical shells using the power 
series method. 

An up-to-date review of works pertaining to 
the application of the Rayleigh-Ritz method in 
vibration analysis of structural elements is given 
by Kumar [65] and Pablo et. al. [66]. In their two 
papers, Wang and co-workers [67-68] used the 
Rayleigh-Ritz method to analyze the vibration of 
longitudinally moving plate submerged in an 
infinite liquid domain and that of FG cylindrical 
shells with porosities. 

In some engineering problems, the boundary 
conditions along the edges of the plate are 
assumed to be either clamped or simply 
supported. But the actual boundary conditions 
tend to be in between these two limiting cases. To 
achieve these boundary conditions, analysis is 
done by modeling the edge conditions as a 
collection of elastic springs whose combined 
effect could vary from zero to infinity. Very few 
researchers (Laura and Grossi [69], Okan [70], 
Kumar [71], Zhang et. al. [72], He et. al. [73]) have 
considered the effect of elastically restrained 
edges against rotation on the vibration of plates.  

The objective of this work is to study the free 
transverse vibration of a thin isotropic FG 
rectangular plate with even porosity distribution. 
The plate is simply-supported and elastically 
restrained against rotation along the edges. 
Material properties of the plate, continuously 
varying in the thickness direction, are assumed to 
be dependent on porosity. The Rayleigh-Ritz 
method incorporating boundary characteristic 
orthogonal polynomials as eigenfunctions is used 
to obtain the first three natural frequencies and 
mode shapes.  

2. Formulation of the problem 

Let us consider a thin isotropic FG elastically 
restrained against a rotation rectangular plate 
made of porous material with length ‘a’ taken in 
the x direction, breadth ‘b’ in the y direction and 
thickness ‘h’ in z direction as shown in Fig. 1. The 
top surface (h/2) is ceramic rich while bottom 
surface (-h/2) is metal rich.  

The physical neutral surface does not coincide 
with the geometrical mid-plane of the plate. The 

distance between the geometrical mid-plane and 
the physical neutral surface is considered to be 

0z . There exists uniformly distributed (even) 

porosity in the plate. In this model, porosity 
spreads uniformly through the thickness 
direction.  

The strains are defined as:  

( )

( )

( ) .2

,

,

2

0

2

2

0

2

2

0

yx

w
zz

y

w
zz

x

w
zz

xy

y

x




−−=




−−=




−−=







 (1) 

According to Hook’s law 
( ) ( )

( ) ( )

( )
( )

.
12

,
1

,
1

2

2

xyxy

yxy

yxx

zE

zE

zE
















+
=

+
−

=

+
−

=
 

(2) 

Using relation (1) in (2), we obtain 
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The expression for the strain energy is  
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Using relations (1) and (3) in (4), strain 
energy becomes  

( )
( ) ( )

( )

.

12

2

12

1

0 0

2

2

2

2

2

2
2

2

2

2

2

2

2

2

2

02
dxdydz

y

w

yx

w

y

w

x

w

x

w

zEzzV

a b

h

h
  

−















































+













−+








+














−
−

=







 

(5) 

 
Fig. 1. (i) FG porous elastically restrained rectangular plate 

with physical neutral surface and geometrical middle surface 
(ii) plate with even porosity (iii) cross-section of the plate 
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The kinetic energy of the plate is given as  
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where ),,( tyxw  is the displacement, )(zE  is 

Young’s modulus, )(z  is the density,   is the 

Poisson’s ratio, the subscript following a variable 
denotes differentiation of the variable w.r.to the 
subscript following it, and t  is the time.  

The effective material properties viz. Young’s 
modulus and density are assumed to be graded in 
the thickness direction according to the power 
law (Wattanasakulpong and Ungbhakorn [22]) as 
follows:  
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where mc EE ,  are young’s moduli of ceramic and 

metal; mc  , are densities of ceramic and metal; 

g  is the non-negative volume fraction index 

which describes the material distribution across 

the thickness of the plate and )1( kk is 

porosity volume fraction. The value of k  equal to 

0 corresponds to the perfect FG plate. The plate 

becomes isotropic homogeneous if either 0=g  

(fully ceramic) or =g (fully metal).  

For harmonic solution, the displacement 

),,( tyxw  is assumed to be  

,),(),,( tieyxWtyxw =  (9) 

where   is the circular frequency, ),( yxW  

represents the maximum transverse 

displacement at the point ),( yx and 1−=i .  

Using relations (7), (8), and (9), the 
expressions for maximum strain energy and 
kinetic energy of the plate become 
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The maximum strain energy (Warburton and 
S.L. Edney [74]) associated with the rotational 
restraints in the edges is given by 
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where )4,3,2,1( =iri
 are the rotational spring 

constants. 
Introducing the non-dimensional variables
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We obtain the standard eigenvalue problem 
as follows: 
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where N is the order of approximation to get the 

desired accuracy, ĵ  
are orthonormal 

polynomials, jd  are unknowns, 
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and   is the frequency parameter.  

The orthonormal polynomials k̂  are 

generated using the Gram-Schmidt process 
(Singh and Chakraverty [75]). 

3. Results 

In this modal analysis, a plate made of 
functionally graded material (Aluminium/ 

Alumina, i.e., 
32/ OAlAl  ) is considered. Here, the 

symbol ijklR
 
is used for 

lkji RRRR === and
ijR

represents .0, === lkji RRRR
 

The following 

values of material coefficients (Talha and Singh 
[5]) for the FG plate and other parameters are 
taken: 

370 , 380 , 2707 / ,m c mE GPa E GPa kg m= = =  

33800 / ; 0.1,0.2,0.3;c kg m k = =  

;0.2,5.1,0.1,5.0;5,4,3,2,1 == g  

;10,10,10,10,10,10,10,1 765432

1234 =R  

.26=N  

We also assume that the Poisson’s ratio   
remains constant along the thickness direction as 
the plate is considered to be thin. The first three 

values of the frequency parameter   have been 
calculated from the standard eigenvalue problem 
given by (18). For this purpose, a computer 
program has been developed by the author in 
C++. Table 1 shows the convergence of frequency 

parameter   with increasing N . To achieve an 

accuracy of four decimal places, the value of N  
has been fixed as 26. A comparison of frequencies 
of simply-supported isotropic FG 
rectangular/square plates is shown in Table 2. 
The results are in good agreement with those 
available in the literature. The results have been 
reported in Tables (3-5) and Figs. (2-7).  

Table 1. Convergence of first three values of frequency parameter Ω of FG porous plate with increasing value of N

   N  

k  Mode  10 15 20 24 25 26 

1000,5,0.1 1234 === Rg  

0.3 

I 89.7801 10.2914 10.2914 10.2914 10.2914 10.2914 

II 179.1420 179.1420 21.2307 21.2264 21.2264 21.2264 

III 913.5480 179.1420 21.2390 21.2264 21.2264 21.2264 

10000000,5,0.1 1234 === Rg  

0.3 

I 8923.51 10.2931 10.2931 10.2931 10.2931 10.2931 

II 17796.3 17796.3 21.2429 21.2429 21.2429 21.2429 

III 91336.8 17796.3 21.2430 21.2429 21.2429 21.2429 

10000000,2,0.2 1234 === Rg  

0.1 

I 16078 64.7397 64.7397 64.7397 64.6713 64.6713 

II 30095.9 29615.5 83.7024 83.7024 83.7024 83.7024 

III 107816 30095.9 171.346 171.3450 119.9290 119.9290 

0,2,0.2 1234 === Rg  

0.2 

I 29.5262 29.5218 29.5160 29.5160 29.5160 29.5160 

II 47.3251 47.3251 47.2301 47.2262 47.2262 47.2262 

III 99.1221 77.5665 77.5665 76.8723 76.7577 76.7577 

10000000,5,0.1 12 === Rg  

0.2 

I 15.2531 15.0241 15.0241 15.0238 15.0238 15.0238 

II 32.9505 32.9504 28.4808 28.4808 28.4808 28.4808 

III 36.5462 36.5462 35.9856 35.9856 35.9856 35.9856 
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Table 2. Comparison of frequency parameter Ω of simply-supported FG plate 

g
   Reference Mode I Mode II Mode III 

0 0.4 Leissa [76] 11.4487 16.1862 24.0818 

  Present  11.4487 16.1863 24.2984 

 1.0 Leissa [76] 19.7392 49.3480 49.3480 

  Present  19.7392 49.3490 49.3490 

 1.5 Leissa [76] 32.0762 61.6850 98.6960 

  Present  32.0762 61.6860 98.6982 

0.2 1.0 Kumar et. al. [17] 18.3177 45.7942 45.7942 

  Present  18.3177 45.7951 45.7951 

1.0 0.5 Kumar et. al. [17] 9.4131 15.0610 24.4741 

  Present 9.4131 15.0612 24.7371 

 1.0 Kumar et. al. [17] 15.0610 37.6524 - 

  Present 15.0610 37.6531 - 

 2.0 Kumar et. al. [17] 37.652 60.244 97.896 

  Present 37.6524 60.2447 97.9168 

5.0 1.0 Kumar et. al. [17] 12.9831 32.4578 32.4578 

  Present 12.9831 32.4584 32.4584 

Table 3. First three values of frequency parameter Ω of FG porous plate for 1234 100R =
 

 g  

  0 1 2 3 4 5 

k  Mode                                                                  0.5 =  

0.0 
I 20.3576 16.7595 15.5579 15.1744 15.0228 14.9330 
II 28.1742 22.5141 20.7440 20.1829 19.9590 19.8262 
III 45.3146 37.7248 35.6836 35.1296 34.9489 34.8525 

0.1 
I 20.8079 16.6007 14.9632 14.3858 14.1615 14.0502 
II 28.7066 22.1958 19.8414 19.0234 18.7051 18.5464 
III 46.2599 37.7577 35.1488 34.3706 34.1258 34.0306 

0.2 
I 21.3262 16.2883 13.8835 12.8726 12.4421 12.2443 
II 29.3263 21.6684 18.2965 16.9092 16.3217 16.0518 
III 47.3702 37.6793 34.1196 32.8494 32.3928 31.9499 

0.3 
I 21.9326 15.6980 11.6935 9.3033 7.8542 6.9551 
II 30.0596 20.7689 15.3005 12.1211 10.2133 9.0352 
III 48.6954 37.3800 30.5239 24.3207 20.5589 18.2235 

 0.1=  

0.0 
I 34.6795 26.9424 24.5964 23.8533 23.5532 23.3746 
II 70.9287 55.1290 50.3468 48.8330 48.2222 47.8587 
III 70.9287 55.1290 50.3468 48.8330 48.2222 47.8587 

0.1 
I 35.2494 26.4107 23.3518 22.3010 21.8902 21.6839 
II 72.0935 54.0525 47.8166 45.6753 44.8387 44.4189 
III 72.0935 54.0525 47.8166 45.6753 44.8387 44.4189 

0.2 
I 35.9161 25.6153 21.3390 19.6197 18.8964 18.5636 
II 73.4572 52.4395 43.7197 40.2136 38.7386 38.0605 
III 73.4572 52.4395 43.7197 40.2136 38.7386 38.0605 

0.3 
I 36.7098 24.3647 17.6371 13.8647 11.6389 10.2761 
II 75.0818 49.8999 36.1736 28.4688 23.9184 21.1299 
III 75.0818 49.8999 36.1736 28.4688 23.9184 21.1299 

 0.2=  

0.0 
I 81.4036 67.0071 62.2002 60.6664 60.0599 59.7007 
II 112.6970 90.0566 82.9760 80.7316 79.8361 79.3049 
III 167.1160 130.9970 120.0990 116.6610 115.2840 114.4660 

0.1 
I 83.2031 66.3703 59.8209 57.5116 56.6146 56.1699 
II 114.8260 88.7832 79.3657 76.0936 74.8202 74.1856 
III 169.9390 128.7410 114.4610 109.5510 107.6400 106.6850 

0.2 
I 85.2746 65.1195 55.5028 51.4611 49.7399 48.9492 
II 117.3050 86.6735 73.1861 67.6369 65.2870 64.2072 
III 173.2520 125.2630 105.1450 96.9921 93.5559 91.9784 

0.3 
I 87.6980 62.7578 46.7478 37.1944 31.4035 27.8106 
II 120.2380 83.0756 61.2021 48.4844 40.8531 36.1407 
III 177.2070 119.6390 87.5955 69.2985 58.3839 51.6567 



Kumar/ Mechanics of Advanced Composite Structures 9 (2022) 335-348 

341 

Table 4. First three values of frequency parameter Ω of FG porous plate for 1234 10000000R =  

 g  

  0 1 2 3 4 5 

k  Mode                                                        5.0=  

0.0 

I 24.6096 18.7771 17.0717 16.5339 16.3162 16.1866 

II 31.8669 24.3144 22.1060 21.4097 21.1278 20.9599 

III 65.2334 49.7732 45.2527 43.8272 43.2501 42.9065 

0.1 

I 24.9625 18.3586 16.1601 15.4106 15.1175 14.9701 

II 32.3237 23.7724 20.9256 19.9551 19.5756 19.3847 

III 66.1687 48.6639 42.8363 40.8496 40.0728 39.6820 

0.2 

I 25.3817 17.7570 14.7195 13.5109 13.0037 12.7705 

II 32.8666 22.9934 19.0602 17.4952 16.8385 16.5364 

III 67.2800 47.0693 39.0177 35.8139 34.4697 33.8514 

0.3 

I 25.8882 16.8410 12.1213 9.5079 7.9736 7.0364 

II 33.5225 21.8074 15.6958 12.3118 10.3250 9.1114 

III 68.6226 44.6413 32.1304 25.2031 21.1361 18.6517 

 0.1=  

0.0 

I 36.0000 27.4679 24.9732 24.1865 23.8680 23.6784 

II 74.2966 56.6881 51.5395 49.9160 49.2587 48.8673 

III 74.2966 56.6881 51.5395 49.9160 49.2587 48.8673 

0.1 

I 36.5161 26.8557 23.6396 22.5432 22.1145 21.8989 

II 75.3618 55.4247 48.7874 46.5246 45.6399 45.1948 

III 75.3618 55.4247 48.7874 46.5246 45.6399 45.1948 

0.2 

I 37.1294 25.9757 21.5323 19.7642 19.0224 18.6812 

II 76.6274 53.6085 44.4383 40.7894 39.2584 38.5541 

III 76.6274 53.6085 44.4383 40.7894 39.2584 38.5541 

0.3 

I 37.8703 24.6357 17.7314 13.9085 11.6641 10.2931 

II 78.1565 50.8431 36.5941 28.7044 24.0724 21.2429 

III 78.1565 50.8431 36.5941 28.7044 24.0724 21.2429 

 0.2=  

0.0 

I 98.4856 75.1444 68.3194 66.1674 65.2961 64.7773 

II 127.4670 97.2574 88.4241 85.6387 84.5110 83.8396 

III 182.6360 139.3510 126.6940 122.7030 121.0870 120.1250 

0.1 

I 99.8976 73.4696 64.6713 61.6719 60.4991 59.9091 

II 129.2950 95.0897 83.7024 79.8203 78.3024 77.5388 

III 185.2550 136.2450 119.9290 114.3660 112.1910 111.0970 

0.2 

I 101.5750 71.0620 58.9063 54.0694 52.0399 51.1064 

II 131.4660 91.9737 76.2409 69.9806 67.3539 66.1457 

III 188.3660 131.7800 109.2380 100.2680 96.5038 94.7726 

0.3 

I 103.6020 67.3964 48.5082 38.0498 31.9098 28.1590 

II 134.0900 87.2294 62.7829 49.2469 41.3000 36.4455 

III 192.1250 124.9820 89.9542 70.5587 59.1716 52.2155 



Kumar/ Mechanics of Advanced Composite Structures 9 (2022) 335-348 

342 

Table 5. Proportionality factor effeffD **  for simply-supported )0( 1234 =R FG porous plate 

Mode   g  k    g  k  
 

Proportionality 
factor 

% change 
 in Ω 

I 0.5 0 0  12.3370 0 0.1 12.5139 1.0143 1.4 

II    19.7395   20.0225 1.0143 1.4 

III    32.4210   32.8858 1.0143 1.4 

I     1  9.2033 0.7460 -25.4 

II       14.7255 0.7460 -25.4 

III       24.1858 0.7460 -25.4 

I     2  8.1012 0.6567 -34.3 

II       12.9620 0.6567 -34.3 

III       21.2894 0.6567 -34.3 

I     5  7.5046 0.6083 -39.2 

II       12.0076 0.6083 -39.2 

III       19.7217 0.6083 -39.2 

I 1.0   19.7392 0 0.1 20.0222 1.0143 1.4 

II    49.3480   50.0565 1.0143 1.4 

III    49.3480   50.0565 1.0143 1.4 

I     1  14.7253 0.7460 -25.4 

II       36.8139 0.7460 -25.4 

III       36.8139 0.7460 -25.4 

I     2  12.9619 0.6567 -34.3 

II       32.4053 0.6567 -34.3 

III       32.4053 0.6567 -34.3 

I     5  12.0074 0.6083 -39.2 

II       30.0191 0.6083 -39.2 

III       30.0191 0.6083 -39.2 

I 2.0   49.3480 0 0.1 50.0556 1.0143 1.4 

II    78.9579   80.0899 1.0143 1.4 

III    128.3320   130.1720 1.0143 1.4 

I     1  36.8132 0.7460 -25.4 

II       58.9019 0.7460 -25.4 

III       95.7344 0.7460 -25.4 

I     2  32.4047 0.6567 -34.3 

II       51.8482 0.6567 -34.3 

III       84.2698 0.6567 -34.3 

I     5  30.0185 0.6083 -39.2 

II       48.0302 0.6083 -39.2 

III       78.0645 0.6083 -39.2 
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Figure 2 shows the effect of the volume 
fraction index g  on the first three values of the 

frequency parameter   for 0.2, 2,k = =

1234 1000R = . 

It is observed that frequency decreases with 
increasing value of g . This is due to the fact that 

a higher value of g  introduces more metal 

components and reduces the stiffness of the 
plate, i.e., elasticity modulus and bending rigidity. 
The variation of non-dimensional frequency with 

porosity volume fraction k  for 

1000,2,2 1234 === Rg 
 
is shown in Fig. 3. 

The frequency decreases with increasing 

value of k . With the increase in k , the strength 

of the material decreases. It is concluded that 
even porosity distribution lowers the natural 
frequency. 

The effect of aspect ratio  on frequency for 

1000,2,2.0 1234 === Rgk is shown in Fig. 4 and 

it is observed that frequency increases with 
increasing value of  . 

Fig. 5 demonstrates the frequency-response 
variation with 1234R  for 0.2, 2, 2.k g= = =  The 

frequency first increases and then becomes 
constant. 

The variation of 
h

z0 , i.e., the distance between 

the physical neutral surface and the geometrical 
mid-plane with porosity volume fraction k for 
different values of volume fraction index g  is 

shown in Fig. 6. 

The value of 
h

z0  increases with the increase in 

k. It is also observed that the value of 
h

z0  for 

5=g  remains lower than that for 3=g  up to 

k=0.09 and remains higher for k >0.09. 

 
Fig. 2. Frequency parameter   of isotropic FG porous 
plate for 1000,2,2.0 1234 === Rk  : First mode               ,  

Second mode                   , Third mode               

 
Fig. 3. Frequency parameter   of isotropic FG porous 

plate for 12342, 2, 1000g R= = = : First mode                ,  

Second mode                   , Third mode                 

 
Fig. 4. Frequency parameter   of isotropic FG porous 

plate for 12340.2, 2, 1000k g R= = = : First mode                  , 

 Second mode                   , Third mode                 

 
Fig. 5 Frequency parameter   of isotropic FG porous 

plate 2,2,2.0 === gk  :   First mode                , 

Second mode                   , Third mode                 

 
Fig. 6 Variation of 0 /z h  with volume fraction index g for 

different values of porosity volume fraction k; 
 k=0 (□), k=0.1 (◊), k=0.2 (∆), k=0.3 (O) 



Kumar/ Mechanics of Advanced Composite Structures 9 (2022) 335-348 

344 

The value of 0 /z h  for 5=g  remains lower than 

that for 4=g  up to 16.0=k  and remains 

higher for k>0.16. Variation of proportionality 
factor with g  

is shown in Fig. 7. 

The first three mode shapes for FG porous square 
plate are shown in Fig. 8. 

 
Fig. 7 Variation of proportionality factor with g for 

simply-supported FG porous plate without restraint 
edges for k=0.1 (□), k=0.2 (∆), k=0.3 (O) 

 
Fig. 8 First three mode shapes for FG porous square plate 

for 1,3.0,10012 === gkR  

4. Conclusion 

Free transverse vibration of a thin isotropic 
FG rectangular porous plate is studied here. A 
simply-supported plate having all the edges 
elastically restrained against rotation is 
considered. Material properties are assumed to 
be graded in the thickness direction and are 
dependent on even porosity distribution. The 
first three frequencies are obtained using the 
Rayleigh-Ritz method and boundary 
characteristic orthogonal polynomials. The 
effects of volume fraction index, porosity volume 
index, aspect ratio, and restraint parameters are 
studied on the frequencies. It is concluded that  

(i) The present technique is simple, 
straightforward forward, and provides 
good accuracy. The use of orthonormal 
polynomials results in a standard 
eigenvalue problem which can be easily 
solved for frequency parameters. 

(ii) The frequency of porous plate is lower 
than that of FG plate. 

(iii) Frequency generally decreases with 
increasing value of porosity volume 

fraction k . But, the variation of frequency 

with porosity volume fraction k  is not 

monotonic for all the three modes as can 

be seen for 100,5.0,1 1234 === Rg  . 

Here, frequencies in first and second 
modes decrease continuously but 
frequency in third mode first increases up 

to 1.0=k  and then decreases. The 

porosity has a considerable effect on 
frequency in the case of thin plates.  

(iv) The frequencies of isotropic simply-
supported FG porous plate are 
proportional to those of simply-
supported homogeneous isotopic plate 
and the proportionality factor is 
independent of the aspect ratio .  

The results presented here may serve as a 
benchmark for further studies dealing with FG 
porous rectangular plates with elastically 
restrained edges. 

Nomenclature 

a  Length of the plate 

b  Breadth of the plate  
g  Volume fraction index  

h  Thickness of the plate 

k  Porosity volume fraction 
t  Time  
w  Displacement  

N  Order of approximation 

TV ,  
Strain and kinetic energies of the 
plate 

)(zE  Young’s modulus 
 

mE  Young’s modulus of metal  

cE  Young’s modulus of ceramic  

4321 ,,, rrrr  Rotational spring constants 

maxmax ,TV  
Maximum strain and kinetic 
energies of the plate 

maxU
 

Maximum strain energy 
associated to the rotational 
restraints 

W  
Maximum transverse 
displacement 

)(z  Density of the plate material
 

  Poisson’s ratio 

  Frequency parameter 


 Aspect ratio  


 Circular frequency 

m  Density of metal 

c  Density of ceramic  
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0z  

Distance between the geometrical 
mid-plane and the physical 
neutral surface 

xyyx  ,,  Normal and shear strains 

xyyx  ,,  Normal and shear stresses 

j  jth Orthogonal polynomial 

ĵ  jth Orthonormal polynomial 

ij  The Kronecker delta  
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