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A B S T R A C T  
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MQ-RBF;  

Patch load;  

Elastic foundation. 

This study explores the bending analysis of porous functionally graded material (FGM) 

rectangular plate resting on two parameters elastic foundation based on the higher-order 

shear deformation theory (HSDT) and subjected to various types of transverse load. 

The material properties of porous FGM rectangular plates are assumed to be graded in the 

thickness direction according to modified power-law distribution in terms of the porosity 

fractions and grading index. The energy principle develops governing differential 

equations (GDEs) of the plate. The derived formulation is implemented numerically using 

the strong formulation, and the multiquadric radial basis function (MQ-RBF) based 

meshfree method for discretizing the GDEs. The MQ-RBF improved by modifying the radial 

distance between the interpolation. A code has been developed in MATLAB (2019) to 

obtain the results. The influence of the span to thickness ratio, aspect ratio, transverse 

loading type, porosity fraction, grading index, and elastic foundation coefficients on the 

bending response of porous FGM rectangular plate. New numerical results can provide 

benchmarks for future analyses of porous FGM plates on elastic foundations. 

1. Introduction 

Generally, models originating from practical 
applications in industry and engineering do not 
have an exact solution, or it is exorbitant to be 
implemented and actualized. Thus, such 
intentions are unavoidable depending on 
computational calculations, mainly numerical 
methods. 

The significant increase in the industrial use 
of composites constructions necessitated the 
development of various methods for analyzing 
structures made of these materials. Several 
analytical methods are used to solve engineering 
problems, but these can be applied only for 
problems with simple geometry and loading.  
With the advent of the fast computational facility, 
numerical methods have become a valuable tool 
for analyzing complex engineering problems. The 
basic advantage of the numerical methods is that 
they can handle real geometrical shapes and 
loadings, as distinct from somewhat limited 
shapes and loading, which analytical methods can 

handle. Most used numerical methods are the 
finite difference (FDM), finite element (FEM), and 
differential quadrature methods (DQM). FEM is 
now widely used in handling problems with 
complex geometry.  However, this becomes 
expensive and time-consuming to discretize the 
complex geometry domain. In addition, in the 
case of large deformations, considerable accuracy 
is lost because of element distortion. 

In the recent past, a more general method 
known as Meshless or Meshfree Method has 
avoided the mesh generation problem. These 
meshless methods have the ability of a numerical 
simulation process being constructed entirely 
from a set of nodes avoiding any pre-specified 
connectivity between the nodes. This has created 
the interest and motivation of researchers to 
investigate the various engineering problems 
using meshfree methods. 

Recently detailed elucidation of various types 
of meshfree methods can be discussed by Chen 
Jiun-Shyan et al. [1]. Meshfree methods 
formulation developed under two categories 
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which are known as strong form-based 
formulation such as radial basis collocation 
method [2], [3], and weak form-based 
formulation such as radial point interpolation 
method [4]. The meshfree method based on the 
strong form formulation attracts many 
researchers due to its high accuracy and fast 
convergence rate, and it is implemented easily. 
The time cost is significantly reduced. In the 
previous 25 years, the strong form formulation of 
the meshfree method, which depends on the 
RBFs, has gotten alluring for solving partial 
differential equations (PDEs). RBF based 
meshfree method is truly meshfree nature that 
can directly discretize GDE’s of any order, along 
with their boundary conditions. The foundation 
thought of RBF interpolation was introduced by 
Hardy[5] to appraise in scattered data sets. After 
two decades, Kansa [3] pioneered the concept of 
solving PDEs utilized by multiquadric RBF. 
Franke [6]investigated the assessment of RBFs 
for scattered data interpolation in terms of time 
cost, accuracy, and simplicity of usage. 
Functionally graded materials (FGMs), 
considered heterogeneous composite material 
has drawn considerable attention of the research 
community due to spatial variation of material 
properties in specific direction through 
appropriate volume fractions. This demanding 
feature of FGMs opens wide range of applications 
in many engineering applications such as 
aerospace, aircraft engineering, nuclear reactors, 
civil, shipbuilding industries, automotive, 
biomechanical, etc. Hence, numerous works 
based on FGMs has received much attention from 
researcher’s community. During application, 
bending analysis of FGMs rectangular plate under 
the various types of transverse loading plays a 
significant role for better safety and reliability at 
high temperature conditions.  Carrera et al. [7] 
investigated bending analysis of FGM plate by 
using finite element solution. Zenkour [8] 
presented a bending analysis of the FGM plate via 
sinusoidal HSDT. Mantari [9] introduced a new 
HSDT for the bending response of the FGM plate 
by using a Navier-type analytical solution. Kumar 
et al. [10] proposed two new HSDTs for the 
bending analysis of FGM plate via the Wendland 
RBF method. Neves et al. [11] used sinusoidal 
plate formulation via RBF for the bending 
analysis of the FGM plate. Mechab et al.[12] used 
two variable refined plate theory for the bending 
response of FGM plate. Neya [13] investigated the 
exact solution for the bending analysis of the FGM 
plate. Meksi et al. [14] studied the bending and 
free vibration response of Winkler or Pasternak 
elastically supported FGM plate via neutral 
surface position and first-order shear 
deformation theory (FSDT). Recently, 
investigations of FGM plates with porosity effects 

have been identified as an interesting field. 
According to the comprehensive literature 
survey, it can be found that there are scarcely any 
reported studies in this field. Yahia et al. [15] 
investigated wave propagation in porous FGM 
plates via various HSDTs. Benferhat et al. [16] 
investigated bending analysis of porous FGM 
plate via four variables new HSDT. Kim et al. [17] 
used three types of porosity distribution for the 
bending, buckling and free vibration of porous 
FGM micro-plate. Akbaş [18] examined vibration 
and statics analysis of porous FGM plate by using 
odd and even porosity distributions. Mechab et al. 
[19] examined free vibration analysis of Winkler 
Pasternak elastic elastically supported porous 
FGM nanoplate via two-variable refined plate 
theories. Gupta and Talha, [20] investigated 
flexural and vibration response of porous FGM 
plate using sinusoidal hyperbolic inverse HSDT. 
Rezaei et al. [21] investigated natural frequency 
of porous FGM plate using four variables refined 
theory. Chen et al. [22] investigated bending and 
buckling analysis of porous FGM plate via three 
types of porosity distributions. 

Recently, mesh-free methods have been 
considered for analyzing FGM structures 
subjected to various types of loading to avoid the 
drawbacks of mesh-based methods such as 
distortion of meshes causing inaccurate and 
unstable solutions and high costs and more time 
taken in creating remeshing can be avoided. 
Meshfree methods examine the problem domain 
using scattered nodes [23]. Ferreira et al. 
[24] investigated static analysis of FGM plate 
using TSDT with multiquadric (MQ) RBF-based 
meshless method. Dai et al.[25] investigated the 
analyses of FGM plate based on the radial point 
interpolation meshfree method.  Wu et al.[26] 
proposed a meshless collocation and Element-
Free Galerkin methods for the quasi-3D analyses 
of single and multilayered FGM plates. 
[27] applied the RBF-based meshfree method for 
the quasi-3D analysis of FGM plates based on the 
CUF. It was concluded that the normal transverse 
stress should not be neglected for the thin plates. 
Xiang and Kang [28] used the thin-plate spline 
RBF technique with the nth-order shear 
deformation theory for the bending analysis of 
FGM plates. Xiang and Kang [29] used thin-plate 
spline RBF to discretize GDE based on the 
meshfree method. Five HSDT models have been 
considered for the statics analysis of the FGM 
plate. To the author's knowledge, few results 
have been reported for the porous FGM 
rectangular plates resting on elastic foundations. 
Another novel contribution of the present work is 
the analysis of porous FGM plate for different 
types of patch load resting on two parameters 
elastic foundation by using MQ-RBF based 
meshfree method. 
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2. Mathematical Formulation 

Porous FGM rectangular plate constitution by 
a combination of ceramics and metals is shown in 
Fig. 1. The length of porous FGM plate is ‘a’ width 
‘b,’ and thickness ‘h’ is taken with the coordinates 
x, y, and z directions. 

 
Fig. 1.  Geometry of the functionally graded materials 

plate resting on elastic foundations 

2.1. Displacement Field 

The displacement field based on the five 
variables HSDT can be expressed as [30]: 
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where u, v, and w are the in-plane and transverse 
displacements of the plate at any point (x, y, z, t) 
in x, y, and z directions, respectively.  u0, v0, and w0 

are the displacements at the mid-plane of the 
plate at any point (x, y) in x, y, and z directions, 
respectively. The functions 𝜙𝑥 and 𝜙𝑦 are the 

higher order rotations of the normal to the mid-
plane due to shear deformation about the y and x 
axes, respectively. f(z) represents the transverse 
shear stress functions determining the 
distribution of the transverse shear strains and 
stresses along with the thickness. 

𝑓(𝑧) is a transverse shear deformation 
function which is expressed as[30]: 
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2.2. Strain Displacement Equation 

Singh et al. [31] express strain-displacement 
equations with linear terms: 
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(3) 

2.3. Modified Power Law Function 

Effective material properties of the FGM 
rectangular plate through the plate thickness are 
assumed to be represented by a modified power-
law and are given as [17]. 
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(4) 

The subscripts m and c refer to metal and 
ceramic, respectively, ‘n’ is the grading index, and 
P is the porosity index (0 <P< 1) 

2.4. Constitutive relations of FGM structures 

The 2-D constitutive relations can be 
expressed as [32]: 
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,i jQ  is plane stress-reduced stiffness and is 

given below [33]: 
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2.5. Governing Differential Equation 

Using the energy principle, potential energy 
can be expressed as: 

fV U U W= + −  (7) 

where U=strain energy, Uf =strain energy of the 
elastic foundation, and V= work done by the 
distributed transverse load 

The strain energy (U) of the FGM plate is 
expressed by Akavci, S.S [31]: 
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The strain energy of the elastic foundation 
(Uf) can be expressed as [35]: 
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Work done by the distributed transverse load 
is expressed by: 

z

A
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in which zq  is the transverse load applied on the 

FGM plate. The forces and moments are 
expressed as, 
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The stiffness coefficients of the FGM plates can 
be written as: 
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The coefficients of δu0, δv0, δw0, x and y  

can be expressed as: 
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2.6. Boundary conditions 

Three boundary conditions, namely all edges 
simply-supported plate (SS), all edges clamped 
supported plate (CC), two simply supported and 
two clamped (CS), are considered in the present 
analysis, which is as follows [36]. 

2.6.1 Simply supported plate (SS) is expressed as 
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2.6.2. Clamped plate (CC) is expressed as 
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The SC is the combination of the simply 
supported (SS) and clamped (CC) boundary 
conditions taken in the present investigation. 

3. Solution Methodology 

The GDEs are expressed in terms of 
displacement using MQRBF. MQRBF formulation 
works on the interpolation of scattered data over 

the entire domain. Franke [6] has ranked MQRBF 
as the best interpolation method based on its 
accuracy, execution time, and ease of 
implementation. Several other kinds of literature 
are also available showing the applicability of 
MQRBF. 

The GDE (15-19) and boundary conditions 
(20-21) are discretized using MQ-RBF.  The radial 
distance between nodes can interpolate the 
variable. The solution of the linear governing 
differential Eqs (15) - (19) is assumed in terms of 
MQ-RBF for nodes 1: N, as; 
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The radial distance between the nodes for 
rectangular coordinates is modified so that the 
aspect ratio starts changing without changing the 
shape parameters. The expression used for the 
square plate. 
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for the rectangular plate where a and b are the 
length and breadth of the rectangular plate. 

(MQRBF) 
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where jr X X= −  ‘m’ and ‘c’ are shape 

parameters. 𝑛𝑥 and 𝑛𝑦 are number of nodes along 

with the ‘a’ and ‘b’ respectively. α is a constant 
that governs the value of ‘c’ for interior and 
boundary nodes. 

While utilizing RBFs, several shape 
parameters need to be determined for better 
performance. These parameters can generally be 
determined by numerical examinations for given 
types of problems [4]. The shape parameter of 
RBFs affects the solution's accuracy and the 
discretized partial differential equations (PDEs) 
conditioning. These two aspects cannot be 
optimized for each other independently. 
Therefore, for any problem with a sufficiently 
smooth solution, an optimal value of the shape 
parameter will occur, representing a compromise 
between accuracy and conditioning. Several 
approximations, however, have been suggested 
for the selection of shape parameters; most of 
them are for the multiquadric RBF. Franke [6] has 
ranked MQRBF as the best interpolation method 
based on its accuracy, execution time, and ease of 
implementation. Still, there are no clear-cut 
guidelines for selecting the shape parameters. 
Hence it is a matter of further investigation by the 
researchers. 

A MATLAB (2019) code is developed to 
acquire the solution for the present investigation. 
Singh et al. [31] present the time required for the 
solution by different RBFs, and the static problem 
in MQ-RBF can be expressed as [10]. 

3.1. Discretization of Governing Differential 
Equations 

The unknown field variables appearing in 
governing differential equations are assumed in 
terms of radial basis function as: 
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We finally expressed in compact matrix form 
the governing differential discretized equations, 
which are as follows: 
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 B  F (5 ,5 )
[K ] 0

NB N 
=                                                (29.2) 

Here, [K]I represent the stiffness matrix for 
interior points resulting from LHS of Eq. (17) 

[ ]LF  and represents the force matric resulting 

from RHS of Eq. (17). 
The boundary conditions can be discretized 

similarly. E.g., simply supported boundary 
condition at the edge x=0 is discretized and 
finally expressed as:  
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(31) 

where details terms of [ ]IK  and [ ]bK  are given 

in Appendix-II 
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Similarly, other boundary conditions at the 
edges x=a, y=0, and y=b are discretized. The 
resulting equation is written in matrix form as: 

   [ ] 0BK  =  (32) 

where, 

, 0 , , , 0 (5 ,5 )
[ ] [ ] [ ] [ ] [ ]

B

T

B b y b x a b y b b x N N
K K K K K= = = =  

  =    
 (33) 

while discretizing the boundary, corner nodes 
are considered only once. 

The unknown coefficients {δ} are calculated 
from equation (25) obtained and finally using 

equations (24), u0, v0, w0, x  and y  at desired 

locations are obtained. Using equation (1), the 
displacement components, and using equation 
(5), the stress components are obtained. 

4. Results and Discussion 

For bending analysis, the equations were 
solved by developing a computer program using 
MATLAB (2019) to obtain the results. A simply 
supported plate has been taken throughout the 
study. We presented and discussed various 
numerical examples in this section to verify the 
effectiveness of the present method. Based on the 
convergence study, a 15×15 node is used 
throughout the study. Four types of FGM Plates 
are used in this study. Their material properties 
are enumerated in Table 1. Eight types of 
distributed transverse load are considered for 
the analysis which is presented. In Fig. 2 in which, 
the first and second are bi-sinusoidal load and 
uniformly distributed load, and the remaining all 
are patch loads in which 4 square patch loads are 
applied on 4x4 nodes symmetrically, but the 
location of patch load is moving in every case.: 

Table 1. Material properties of FGM plates are following 

Types of Functionally 
graded material 

Properties 

E (GPa)     

FGM-1 
(Al) 70 2702 0.3 

(Al2O3) 380 3800 0.3 

FGM-2 
(Al) 70 2702 0.3 

(ZrO2) 151 3000 0.3 

FGM-3 
(Ti-6Al-4V) 105.7 4429 0.298 

(aluminum oxide) 320.2 3750 0.26 

FGM-4 
Stainless steel 201.04 8166 0.3262 

Silicon nitride 348.43 2370 0.2400 

The non-dimensional quantities of deflection, 
stresses, and elastic foundation parameters are 
taken as: 
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deflection. 

 

1 0

169
sin sin

169
z

x y
q q

a b

   
=    

   

 

 

 
 

2 0

169

169
zq q=

 

 

3 0

16

169
zq q=

 

 

4 0

16

169
zq q=

 

 

5 0

16

169
zq q=

 

 

6 0

16

169
zq q=

 

 

7 0

16

169
zq q=

 

 

8 0

16

169
zq q=

  

Fig. 2. Various types of distributed transverse loads 
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Fig. 3. Convergence study of normalized deflection and 

stresses of square FGM-1 plate under 1zq  
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Table 2 represents the convergence study of 
deflections and stresses of square FGM-1 plate 
under load with n=2 and a/h=10, which is also 
depicted in Fig. 3. It can be seen that after 13x13 
nodes, normalized deflection and stresses 
showed good convergence and good agreement 
with the results reported in the literature [7], [8], 
[9], [37], [38] and [39]. The results obtained by 
the present method are compared with the 3D 
solution given by Carrera et al. [7], and the 
different percentage at 9x9 nodes is 3.29%, 
followed by 2.59%, 1.93%, 1.16 and 0.73 at 
11x11 nodes, 13x13 nodes, 15x15 nodes, and 
17x17 nodes respectively. Fig. 3 shows that the 
normalized deflection and stresses predict good 
convergence after 13x13 nodes. So, it is 
concluded that 15x15 is sufficient for further 
analysis with computationally inexpensive. 

Table 3 represents the normalized deflection 
and stresses for various values of foundation 
parameters (Kw, Ks) for square FGM-3 plate 
under various types of transverse loads. Span to 
thickness ratio (a/h) =10 with grading index 
(n)=0.5. It is to be seen that normalized deflection 
decreases by adding the two parameters elastic 
foundation for all the distributed transverse 
loading, and it is also observed that Ks is more 
dominating than Kw. 

Table 4 presents normalized deflection of 
porous FGM-4 rectangular plate with and without 
porosity fraction ‘P’ for different values of two 
parameters elastic foundation. The aspect ratio 
(a/b) =2 with grading index(n)=1 and a/h=10 
under. By increasing the porosity fraction (P), the 
normalized deflection increases, and by adding 
the two parameters, elastic foundation 
normalized deflection decreases. Ks is observed 
to be more dominating than Kw. 

Table 5 presents the effect of aspect ratio on 
the normalized deflection of porous FGM-4 plate 
with various span to thickness ratios under 2zq

loading; by increasing the aspect ratio (a/b) and 
span to thickness ratio (a/h), normalized 
deflection decreases, and by increasing porosity 
fraction, the normalized deflection increases. The 

porosity fraction effect dominates the thick plate 
more than the thin plate. 

Table 6 presents the effect of aspect ratio on 
the normalized deflection of porous FGM-3 plate 
with various grading indexes under 1zq  loading. 

By increasing the aspect ratio (a/b), normalized 
deflection decreases, and by increasing porosity 
fraction, P, and grading index, n, the normalized 
deflection increases, and the effect of porosity 
fraction is more significant in metals, and the 
effects are weakened in ceramic phase. Now, the 
effect of boundary conditions on the normalized 
deflection of FGM-1 plate (a/h=100, 2zq , kw=0, 

ks=0) with different grading indexes (n=0, 0.5, 1, 
2, 5 and 10) is investigated and shown in Fig. ig. 
4. It has been observed that the SS constraint 
envisages maximum normalized maximum 
central deflection, and the CC predicts minimum 
central deflection. All the boundary condition 
follows the same natures, and by increasing the 
grading index, normalized central deflection 
increases. 

Fig. 5 represents the effect of span to 
thickness ratios on the normalized deflection of 
square FGM-3 plate with different two 
parameters elastic foundations 1zq . Grading 

index ‘n’ =1 is taken. It can be seen that the 
normalized deflection declines from a thin to a 
thick plate, and by increasing the value of Kw, the 
normalized deflection decreases less as 
compared to increasing the value of Ks. Fig.6, Fig. 
7 and Fig. 8 represent the stresses along with the 
thickness of the square FGM-3 plate resting on 
two parameters elastic foundation 1zq . From Fig. 

6, a higher value of Ks predicts a maximum xx

less, and the low value of Kw predicts a high 
maximum xx . From Fig. 7, it can be seen that xy  

the entire (Kw, Ks) effect follows the same 
pattern and predicts maximum at the metal layer. 
From Fig. 8, the stress xz  at the top and bottom 

satisfied zero conditions and followed parabolic 
in nature. 

Table 2. Convergence and comparison study of normalized deflection and stresses of square FGM-1 plate under 1zq  

Methods w  xx  xy  Different % 

Carrera et al. [7] 0.757 1.4147 0.5421 ----- 

Wu and Chiu [32] 0.7571 1.4133 0.5421 ----- 

Zenkour [8] 0.7573 1.3954 0.5441 ----- 

Mantari et al.[9] 0.7564 1.394 0.5438 ----- 

Wu and Li [33] 0.7573 1.396 0.5442 ----- 

Thai and Kim [34] 0.7573 1.396 0.5442 ----- 

Present method (9x9 nodes) 0.7452 1.417 0.498 3.29 

Present method (11x11 nodes) 0.7494 1.424 0.509 2.59 

Present method (13x13 nodes) 0.7509 1.425 0.519 1.93 

Present method (15x15 nodes) 0.7522 1.418 0.528 1.16 

Present method (17x17 nodes) 0.7526 1.419 0.535 0.73 
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Table 3. Normalized deflection and stresses of square FGM-3 plate resting on two parameters elastic 
 foundation under various types of transverse loads 

(Kw, Ks) Load Type cw  xx

a b h
, ,

2 2 2

 
  

   
, ,

2 2 3
yy

a b h


 
 
   

0,0,
3

xy

h


 
− 

   

(0,0) 

1zq
 0.4172 2.3889 1.3883 0.6920 

2zq
 0.6525 3.4523 2.0157 1.2363 

3zq
 0.3441 1.4348 0.8475 1.0204 

4zq
 0.9518 4.9584 2.9178 1.6018 

5zq
 0.5671 2.8935 1.3033 1.1479 

6zq
 0.7743 4.0089 1.9969 1.4256 

7zq
 0.6340 2.8583 1.6811 1.3398 

8zq
 0.4664 2.1337 1.1176 1.1078 

(100,0) 

1zq
 0.3706 2.1220 1.2332 0.6147 

2zq
 0.5778 3.0264 1.7681 1.1117 

3zq
 0.3017 1.1968 0.7090 0.9482 

4zq
 0.8438 4.3411 2.5590 1.4225 

5zq
 0.4994 2.5082 1.0820 1.0344 

6zq
 0.6840 3.4938 1.6994 1.2749 

7zq
 0.5585 2.4310 1.4326 1.2130 

8zq
 0.4098 1.8138 0.9326 1.0122 

(0,100) 

1zq
 0.1200 0.6858 0.3987 0.2009 

2zq
 0.1818 0.8713 0.5122 0.4086 

3zq
 0.0868 0.1991 0.1226 0.4536 

4zq
 0.2676 1.1724 0.7093 0.4596 

5zq
 0.1492 0.6363 0.1435 0.3762 

6zq
 0.2101 0.9257 0.3215 0.4348 

7zq
 0.1675 0.4876 0.2937 0.4612 

8zq
 0.1201 0.3745 0.1482 0.4125 

(100,100) 

1zq
 0.1158 0.6618 0.3848 0.1939 

2zq
 0.1751 0.8339 0.4904 0.3972 

3zq
 0.0831 0.1797 0.1112 0.4466 

4zq
 0.2579 1.1176 0.6774 0.4433 

5zq
 0.1432 0.6029 0.1251 0.3656 

6zq
 0.2020 0.8805 0.2959 0.4208 

7zq
 0.1608 0.4513 0.2725 0.4493 

8zq
 0.1151 0.3476 0.1329 0.4034 

Table 4. Effect of porosity fraction on the normalized deflection of rectangular porous FGM-4 plate 
 resting elastic foundation 

(Kw, Ks) P=0 P=0.05 P=0.1 P=0.15 P=0.2 

(0,0) 0.0940 0.0959 0.0978 0.0998 0.1020 

(10,0) 0.0937 0.1165 0.1019 0.1019 0.1016 

(100,0) 0.0909 0.1121 0.0944 0.0963 0.0982 

(0,10) 0.0902 0.1111 0.0937 0.0955 0.0975 

(0,100) 0.0659 0.0668 0.0677 0.0687 0.0697 

(100,100) 0.0643 0.0742 0.0661 0.0670 0.0679 
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Table 5. Effects of aspect ratio and ‘P’ on the normalized deflection of rectangular FGM-4 plate  
with various span to thickness ratios 

a/h P a/b=0.5 a/b=1 a/b=1.5 a/b=2 a/b=3 

5 

0 2.0386 0.6900 0.2507 0.1024 0.0235 

0.1 2.1461 0.7219 0.2619 0.1069 0.0245 

0.2 2.2683 0.7573 0.2742 0.1119 0.0256 

10 

0 1.5716 0.6083 0.2278 0.0940 0.0225 

0.1 1.6400 0.6332 0.2370 0.0978 0.0234 

0.2 1.7154 0.6604 0.2470 0.1020 0.0245 

20 

0 1.4524 0.5875 0.2218 0.0919 0.0219 

0.1 1.5107 0.6106 0.2305 0.0955 0.0227 

0.2 1.5741 0.6357 0.2400 0.0994 0.0237 

50 

0 1.4178 0.5815 0.2201 0.0925 0.0218 

0.1 1.4731 0.6041 0.2287 0.0961 0.0227 

0.2 1.5330 0.6286 0.2379 0.0999 0.0236 

100 

0 1.4124 0.5806 0.2199 0.0990 0.0219 

0.1 1.4673 0.6032 0.2284 0.1024 0.0227 

0.2 1.5266 0.6276 0.2376 0.1060 0.0236 

Table 6. Effects of aspect ratio and ‘P’ on the normalized deflection of rectangular FGM-3 plate 
 with various grading indexes 

‘n’ ‘P’ a/b=0.5 a/b=1 a/b=1.5 a/b=2 a/b=3 

0 

0 0.8125 0.3037 0.1145 0.0484 0.0122 

0.1 0.8478 0.3160 0.1191 0.0503 0.0127 

0.2 0.8868 0.3294 0.1241 0.0524 0.0132 

1 

0 1.3052 0.4911 0.1856 0.0785 0.0198 

0.1 1.3645 0.5121 0.1935 0.0818 0.0207 

0.2 1.4303 0.5353 0.2021 0.0854 0.0216 

2 

0 1.5056 0.5635 0.2128 0.0900 0.0228 

0.1 1.5723 0.5870 0.2216 0.0936 0.0237 

0.2 1.6464 0.6127 0.2311 0.0977 0.0247 

5 

0 1.7109 0.6313 0.2376 0.1003 0.0255 

0.1 1.7844 0.6563 0.2469 0.1042 0.0266 

0.2 1.8658 0.6836 0.2570 0.1084 0.0279 

10 

0 1.8643 0.6855 0.2577 0.1087 0.0277 

0.1 1.9423 0.7117 0.2674 0.1128 0.0290 

0.2 2.0288 0.7403 0.2779 0.1172 0.0306 
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Fig. 4. Normalized deflection of FGM-1 plates under 

different boundary conditions 
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Fig. 5. Effect of span to thickness ratio on the normalized 

deflection of FGM-3 plate resting on elastic foundation 
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Fig. 6. Effect of the span to thickness ratio on FGM-3  
plate resting on elastic foundation 
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Fig. 7. Effect of the span to thickness ratio on FGM-3  
plate resting on elastic foundation 
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Fig. 8. Effect of the span to thickness ratio on FGM-3 
plate resting on elastic foundation 

5. Conclusions 

In the present paper, the equivalent five 
variables inverse hyperbolic higher-order shear 
deformation plate formulation based on modified 
radial distance based MQ-RBF meshfree method 
is considered for the flexural analysis of FGM 
plate. Eight types of distributed transverse loads 
for the bending analysis of elastically supported 
porous FGM plate have been considered. We 
concluded that the results obtained by the 
present solution methodology are in good 
agreement with other published results. These 
are some of the primary present study 
conclusions. 
• The stability and results of the present 

formulation using MQ-RBF are in good 
agreement with other published results, 
which shows its applicability. 

• With the increase in the grading index, 
normalized deflection also increases, and this 
effect becomes insignificant if the grading 
index is increased for more than 5. 

• The normalized deflection increases by 
increasing the porosity fraction. The effect of 
P decreases when plates become thick to thin.  

• The effect of P is more in the metal phase than 
the ceramic phase.  

• With the increase in a/b, the normalized 
deflection decreases.  

• The effects of Ks are prominent as compared 
to Kw.  

• Some new results for porous FGM plates 
resting on the elastic foundation are 
presented, which can be used for further 
validation and research. 

The present result may be a benchmark for 
further examination of FGM plates resting on an 
elastic foundation. 
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Appendix –I 

The GDEs are expressed in terms of 
displacement components and are represented 
as: 

2 2 2 2
0 0 0 0

11 66 12 662 2

3 3 3
0 0 0

11 12 663 2 2

2 22 2

11 66 12 662 2
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Appendix –II 

The first part of GDEs (5) 0 : 0
xyxx

NN
u

x y


 + =

 

are discretized using MQ-RBF and are expressed 
as: 
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Similarly, other parts of GDEs are discretized.  

The boundary conditions can be discretized 
similarly. E.g., simply supported boundary 
condition at the edge x=0 (equation -8) is 
discretized and finally expressed as: 
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nbx0= number of nodes on the boundary x=0. 
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Similarly, other boundary conditions at the 
edges x=a, y=0, and y=b are discretized. The 
resulting equation is written in matrix form as: 

   [ ] 0BK  =  (59) 
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