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This paper is focused on the study of nonlinear vibration of rotating laminated 

composite cross-ply cylindrical shells on a nonlinear rotating elastic foundation. In this 

study, FSDT is employed while the geometrical nonlinearity of the cylindrical shell is 

modeled considering the von Karman approach. It should be mentioned that this study 

is accomplished considering the influences of initial hoop tension as well as Coriolis 

and Centrifugal accelerations. The nonlinear equation of the rotating laminated 

composite cross-ply cylindrical shell is extracted via the Ritz method and then is 

written in the state space form. Then, modal analysis and the multiple scales method 

are applied to the nonlinear vibration equation in the state space form to obtain 

relations for nonlinear forward and backward frequency ratios. Validation of the 

results of this study is investigated considering some results published in the literature 

and good agreement is observed. Finally, the effects of the nonlinear and linear 

constants of the rotating foundation, radius, total thickness, length, and rotation speed 

on the linear frequencies, nonlinear parameters, and the curves of nonlinear frequency 

ratios versus amplitude parameters are acquired. The results show that the increase 

of the nonlinear constant of the rotating foundation doesn’t influence the linear 

frequencies. Besides, linear frequencies increase with increase of the linear constants 

of the rotating elastic foundation and decrease with increase of the radius or total 

thickness. Furthermore, the increase of the nonlinear constant of the rotating elastic 

foundation or total thickness leads to an increase in nonlinear parameters and 

nonlinear frequency ratios. Conversely, the increase of the linear constants of the 

rotating foundation or the radius leads to a decrease in nonlinear parameters and 

frequency ratios. Moreover, the increase in amplitude parameters leads to an increase 

in the nonlinear frequency ratios. 

1. Introduction 

The vibration phenomenon is not suitable for 
many engineering structures and causes noise, 
fatigue, and failure [1]. Therefore, studying 
vibration behavior is substantial for the design of 
engineering structures. There are several 
researches in the literature which investigate the 
vibration or buckling of the structures. Sofiyev 
and Aksogan [2] investigated free vibration 
characteristics of thin non-homogeneous 
laminated orthotropic cylindrical shells 
considering geometric nonlinearity. Sofiyev et al. 
[3] carried out an investigation about the free 

vibration behavior of a thin laminated 
orthotropic non-homogeneous cylindrical shell 
surrounded by an elastic foundation taking into 
account the geometric nonlinearity. Najafov et al. 
[4] utilized the Karman-Donnell-type of 
kinematic nonlinearity, superposition principle, 
and Galerkin approach to study nonlinear free 
vibration of laminated orthotropic thin conical 
shells. Arshid et al. [5] investigated the buckling 
and bending of heterogeneous annular/circular 
micro sandwich plates resting on Pasternak 
substrate while electromagnetic fields and 
preloads are applied to the face sheets. Arshid 
and Khorshidvand [6] hired classical plate theory 

https://macs.semnan.ac.ir/article_6826.html


Mohammadrezazadeh and Jafari / Mechanics of Advanced Composite Structures 9 (2022) 317-334 

318 

as well as the differential quadrature method to 
analyze the free vibration of a thin circular plate 
from a porous material integrated 
by piezoelectric actuator patches. 
Mohammadimehr et al. [7] hired third-order 
shear deformation shells theory and Hamilton 
principle to study magneto-electro-elastic 
vibration of functionally graded carbon 
nanotubes reinforced composites cylindrical 
shell under Electro-magnetic loads resting on 
visco-Pasternak elastic foundation. Babaei and 
Yang [8] handled an investigation about the 
longitudinal free vibration of a rotating rod on the 
basis of Eringen’s nonlocal elasticity. Sofiyev [9] 
presented a review of the literature on the 
buckling and vibration of different types of 
functionally graded conical shells. Babaei et al. 
[10] studied the variations in the resonant 
frequency of a higher-order beam with the aid of 
Reddy-Levinson's theory considering rotation 
effects. Rahmani et al. [11] studied the lateral free 
vibration behavior of a micro-beam carrying a 
moveable attached mass. Avey and Yusufoglu 
[12] hired the nonlinear basic relations of von 
Karman as well as superposition, Galerkin, and 
semi-inverse methods to accomplish an 
investigation of the large amplitude vibration 
characteristics of carbon nanotube double-
curved shallow shells. Arshid et al. [13] studied 
mechanical buckling and free vibration behavior 
of a three-layered curved microbeam subjected 
to the Lorentz magnetic load on the basis of the 
higher order shear deformation theory and 
Navier method. Khorasani et al. [14] investigated 
the thermo-elastic buckling treatment of a 
sandwich rectangular microplate surrounded by 
a Pasternak elastic foundation. Arshid and Amir 
[15] accomplished an investigation about the 
size-dependent vibration of three-layered fluid-
infiltrated porous curved microbeams integrated 
with nanocomposite face sheets on an elastic 
foundation and subjected to thermal load. 
Mousavi et al. [16] focused on the free vibration 
study of a Porous Micro beam integrated with 
functionally graded piezoelectric layers with 
initial curvature with the aid of trigonometric 
shear deformation theories. Arshid et al. [17] 
investigated the thermal buckling behavior of 
annular/circular microplates resting on a 
Pasternak elastic foundation. Amir et al. 
investigated vibration characteristics of 
microbeams [18], microplates [19-21], and plates 
[22-23]. Arshid et al. investigated the vibration 
behavior of plates [24-26] and sandwich 
microplates [27]. Babaei [28-29] presented the 
longitudinal forced vibration response of 
nonlocal strain gradient rods.  

Rotating cylindrical shells have numerous 
applications in industrial structures such as 
centrifugal separators and offshore drilling 

systems [30]. Reviewing the literature reveals 
that there are several works that focus on the 
vibration of rotating cylindrical shells [30-41]. 
Vibration with large amplitude requires the use 
of nonlinear simulation. A nonlinear simulation 
that is accomplished by consideration of 
nonlinear relations between strains and 
displacements is named geometrical nonlinearity 
[42]. There are several works in the literature 
that investigate about nonlinear vibration of 
rotating cylindrical shells. Young-Shin and 
Young-Wann [43] accomplished an investigation 
of the linear and nonlinear vibration of rotating 
hybrid cylindrical shells via the Ritz-Galerkin 
method. Liu and Chu [44] studied the nonlinear 
vibration behavior of clamped-free rotating thin 
cylindrical shells through Love thin shell theory 
and the Galerkin method. Wang [45] 
accomplished a study about the large amplitude 
vibration of a laminated composite rotating 
cylindrical shell subjected to radial harmonic 
excitation. Dong et al. [46] investigated linear and 
nonlinear vibration behaviors and dynamic 
responses of functionally graded graphene 
reinforced thin spinning cylindrical shells 
subjected to different boundary conditions and 
under static axial load via an analytical approach. 
Sun et al. [47] investigated nonlinear traveling 
wave vibration of thin simply supported rotating 
cylindrical shells with the Lagrange approach. 
Yao et al. [48] utilized a rotating pre-twisted 
cylindrical shell model to study the nonlinear 
dynamics of aero-engine compressor blades. 
Rostami et al. [49] employed first-order shear 
deformation theory and the Galerkin method to 
research about the nonlinear vibration and 
dynamic stability of sandwich rotating cylindrical 
shells. Liu et al. [50] investigated nonlinear 
breathing vibration of eccentric laminated 
composite rotating cylindrical shells subjected to 
temperature and lateral excitations using the 
Hamilton approach, Donnell theory, and the 
Galerkin method. Du et al. [51] used the Rayleigh-
Ritz method, the domain decomposition 
approach, and the strain energy density principle 
to study nonlinear vibration characteristics of 
hard-coating rotating cylindrical shells subjected 
to radial harmonic excitations. Li et al. [52] 
employed Incremental Harmonic Balance 
Method and arc-length technique to study large-
amplitude vibration of rotating thin laminated 
composite cylindrical shells subjected to 
arbitrary boundary conditions. 

The cylindrical structure can rest on an elastic 
foundation and rotates with it. The Winkler-
Pasternak model can be used for modeling the 
elastic foundation [53]. It should be noted that 
earthen soils can be modeled via the Pasternak 
model while sandy soils and liquids can be 
indicated by a model from Winkler [53 quoted 

https://www.sciencedirect.com/topics/engineering/quadrature-method
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from 54-55]. It should be emphasized that 
generally the behavior of the foundation should 
be modeled in the nonlinear form [56].  Despite 
this fact, there are limited studies about the 
vibration of cylindrical structures on nonlinear 
elastic foundation. Sheng et al. [57] studied the 
nonlinear vibration behavior of functionally 
graded cylindrical shells on a nonlinear elastic 
medium via first-order shear deformation theory 
and the Galerkin technique. Sofiyev [58] dealt 
with the large amplitude vibration of orthotropic 
functionally graded cylindrical shells on the 
nonlinear elastic foundation with the help of 
Donnell's shell theory as well as the 
superposition and Galerkin techniques. Sofiyev 
and Kuruoglu [56] investigated the nonlinear 
dynamic behavior of heterogeneous orthotropic 
cylindrical shells surrounded by a nonlinear 
elastic foundation. Sofiyev et al. [59] presented 
nonlinear vibration of orthotropic cylindrical 
shells surrounded by nonlinear elastic 
foundations employing the shear deformation 
theory. Hadi et al. [60] handled the study of the 
nonlinear dynamics of functionally graded 
cylindrical shells resting on a nonlinear elastic 
foundation subjected to static and lateral 
dynamic loads in a thermal environment. Babaei 
et al. [61] employed higher order shear 
deformation shell theory, kinematic assumptions 
of Donnell and perturbation approach to study 
the vibration of long functionally graded material 
cylindrical panel on a nonlinear foundation. 

It seems from the literature review that there 
is not any investigation of the nonlinear vibration 
of rotating cylindrical shells on a nonlinear 
rotating foundation. Thus, in this study, an 
impressive approach that converts nonlinear 
equation of the system to state space form and 
applies modal analysis and multiple scales 
method is used to study the nonlinear vibration 
of laminated composite rotating cylindrical shells 
on a nonlinear rotating elastic foundation. It is 
required to mention that the Winkler-Pasternak 
model is used to model the rotating elastic 
foundation surrounding the rotating cylindrical 
shell.  It should be mentioned that the rotation 

speeds of the shell and foundation are the same. 
First-order shear deformation theory (FSDT) 
considering the effect of rotary inertia is 
employed to obtain the vibration equation of the 
shell while geometrical nonlinearity is modeled 
with von Karman's theory. The nonlinear 
vibration equation of the rotating cylindrical shell 
is derived considering the effects of initial hoop 
tension as well as Coriolis and centrifugal 
accelerations. In order to derive a nonlinear 
differential equation of the vibration, the Ritz 
method is considered. Then, the responses for 
nonlinear forward and backward frequency 
ratios are extracted via a method that is a 
compound of modal analysis and multiple scales 
approach while the state space form of the 
vibration equation is considered. Some results of 
this study are compared with published 
literature to confirm the validity of this study. In 
the next step, the study about the effects of the 
nonlinear and linear coefficients of the rotating 
elastic foundation, radius, total thickness, length, 
and rotation speed on the linear frequencies, 
nonlinear parameters, and curves of amplitude 
parameter versus nonlinear frequency ratio for 
both forward and backward waves is 
accomplished. 

2. Problem Formulation  

In this study, a laminated composite 
cylindrical shell that rotates with constant   
rotation speed and is on the nonlinear rotating 
elastic foundation is considered. The length of 
this shell is shown with L , its radius is exhibited 
with R  while h  is used to demonstrate the total 
thickness. The considered rotating cylindrical 
shell is cross-ply with lamination scheme of 

o o o

s[90 /0 /90 ] . A schematic image of this shell with 

a coordinate system and elastic foundation is 
shown in Fig 1. It should be noted that s ,   and 

z  indicate longitudinal, circumferential, and 
normal directions of the coordinate system, 
respectively. 

 
Fig. 1. Schematic of the rotating cylindrical shell placed on nonlinear rotating elastic foundation used in this study [35, 60] 

 

https://www.sciencedirect.com/topics/engineering/large-amplitude-vibration
https://www.sciencedirect.com/topics/engineering/functionally-graded-material
https://www.sciencedirect.com/topics/engineering/shear-deformation
https://www.sciencedirect.com/topics/engineering/shear-deformation
https://www.sciencedirect.com/topics/engineering/kinematic-assumption
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In order to obtain strains of the shell, 
considering FSDT and the nonlinear von Karman 
approach lead to the extraction of the following 
relations [62-63]: 
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while 0u , 0v  and 0w  demonstrating 

displacements of a point on mid-surface along s ,

  and z  directions, respectively [62]. It should 

be mentioned that in equations (1) and (2), s  

and   are respectively total angular rotations of 

the normal to mid-surface about   and s  axes 

[62]. In order to obtain in-plane forces ( sN , N  ,

sN   ), moments ( sM , M  , sM  ), as well as 

transverse forces ( sQ  , Q  ) for cross-ply rotating 

cylindrical shells, equation (3), can be utilized 
[63]: 
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while ijQ  denote transformed plane-stress-

reduced stiffnesses [63].  

3. Hamilton Principle and Ritz 
Method 

In order to obtain the results of this study with 
the Ritz method [63, 64], it is requested to use the 
variational form of the Hamilton principle [62, 
65] which is as follows for the problem of this 
study: 
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The terms of equation (6) are related to 2  
and 2  are dependent on centrifugal and 
Coriolis accelerations, respectively. In addition, 
the inertia terms of equation (6) can be 
determined by equation (8) [66]: 
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while the term 
( )k demonstrates mass density of 

the kth layer [66] of the rotating laminated 
composite cylindrical shell. In equation (5), hU  

shows the energy caused due to the initial hoop 

tension ( 0 2 2
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2 2

0 0
0

0

2

0
0

2
h

s

u v
w

N
U d ds

R
w

v





 




      
 + +   

     
=  

   
 + −    

   (9) 

In equation (5), the term kU  refers to the 

variational form of the energy caused due to the 
elastic foundation [56]: 
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whereas LwK and NLwK denote linear and 

nonlinear coefficients of Winkler elastic 

foundation, respectively [56]. Furthermore, pK

indicate the shear stiffness of the foundation [56]. 
In order to use the Ritz method, it is required to 
choose approximation functions that satisfy 
geometrical boundary conditions [63] which are 

as (s, , z) 0, (s, , z) 0, (s, , z) 0v w    = = = , 0,s =  

L  for rotating cylindrical shells which are simply 
supported at two ends [66]. In this way, the 
following relation can be considered for rotating 
laminated composite simply supported 
cylindrical shells: 
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while , 1,2,...m n = . It is necessary to mention 

that in equation (11), the relations for 0u  , 0v and 

0w are written based on reference [47]. It is 

supposed that initial conditions are in a form that 
equation (11) can satisfy them. Substituting 
equation (11) into equations (6), (7), (9) and (10) 
and then substituting the results in equation (5) 
and performing required integrals and 

simplifications lead to the nonlinear ordinary 
differential equation of the system as follows: 
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In equation (12), M  and K exhibit mass and 
stiffness matrices, respectively. It is notable to 
express that matrix K  contains terms related to 
stiffness, centrifugal acceleration, and initial 
hoop tension. Besides, the matrix C  contains 
components established due to Coriolis 
acceleration caused by rotation of the shell and 
also: 
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Linearization of equation (12) around zero 
equilibrium point leads to the equation

+ + =Mx Cx Kx 0 . The smallest frequency that 

corresponds to the equation + + =Mx Cx Kx 0 is 

called forward linear frequency. It can be 
generally claimed that the absolute value of 
backward frequency is greater than the absolute 
value of forward frequency [67]. Thus, the 
frequency which is greater than forward linear 
frequency and smaller than other frequencies is 
called backward linear frequency. It should be 
emphasized that the components of the matrix C  

lead to obtaining forward and backward 
frequencies. 

4. Obtain the Responses 

In this section of the paper, the nonlinear 
responses for both forward and backward waves 
are obtained. In this way, in the first step, 
equation (12) is written in the state space form 
[62] as follows: 
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(10,10)I  is unit matrix. 

1 1

1 1

, ,

,

− −

− −

   
= =   

− −   

   
= =   

− −  

5 6

1 2

7 8

3 4

0 0
g g

M g M g

0 0
g g

M g M g

 
(16) 

In order to obtain solutions of equation (14), 
one can use the multiple scales method [68] 
which is an impressive method for the solution of 
nonlinear ordinary differential equations. In 

order to use this method with 
3( )O   

approximation, one must rewrite the nonlinear 
time t  related differential equation (14) in the 

form of a partial differential equation related to 

0T t= , 1T t=  and 2

2T t=  while   denotes a 
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small dimensionless parameter [68]. 
Furthermore, it is required to write y , 1tw  and 

2tw  as functions of newly defined variables 0T , 1T  

and 
2T ; thus the terms of y , y and also 

1tw  and 

2tw  which are coefficients of , 1,2,3n n =  can be 

written in the following types [68]: 

( )

( )

2

0 1 2 0 1 2

3

0 1 2

( ) ( , , ) , ,

, ,

t T T T T T T

T T T

 



= +

+

1 2

3

y y y

y

 (17) 

( )

( )

2

0 1 2

2 3

0 1 0

D D D

D D D

  

  

= + +

+ + +

1 1 1

2 2 3

y y y y

y y y

 
(18) 

2

1 11 0 1 2 12 0 1 2

3

13 0 1 2

( ) ( , , ) ( , , )

( , , )

tw t w T T T w T T T

w T T T

 



= +

+
 (19) 

2

2 21 0 1 2 22 0 1 2

3

23 0 1 2

( ) ( , , ) ( , , )

( , , )

tw t w T T T w T T T

w T T T

 



= +

+
 (20) 

while 0 0D T=    , 1 1D T=   and 2 2D T=   . 

Substituting equations (17) to (20) into equation 
(14) and some simplifications lead to an equation 
that contains terms which are coefficients of  , 

2 and 3 . One can obtain the following relations 

by considering the coefficients of  , 2 and 3 in 

the obtained equation equal to zero:  

0D  − =
1 1

y Ay 0  (21) 

2

0 1D D  − = −
2 2 1

y Ay y  (22) 

3 3

0 1 2 11

3 2 2

21 11 21 21 11

D D D w

w w w w w

  − = − − +

+ + +

3 3 2 1 5

6 7 8

y Ay y y g

g g g
 (23) 

In order to find the solution of equation (21), 

using modal analysis relation  1=
1

y Y  [62] 

leads to the following relation:  

       ( )
1

0 , T T

i iD    
−

= =
1 1

Z Y Z AY  (24) 

It is important to mention that Y  and Z  refer 
to matrices of right and left eigenvectors, 

respectively, while  1 demonstrates modal 

coordinates vector [62]. Two rows in equation 
(24) include forward linear frequency ( f ); also, 

two rows of the relation (24) contain backward 
linear frequency ( b ). The responses of the rows 

of equation (24) which contain forward or 
backward linear frequencies are derived using 
equations (25) and (26), respectively: 

1 1 1 1 0

1 2 1 2 0

( ,1) exp( ),

( ,1) exp( )

f f

f f

f i T

f i T

  

  

= =

= = −

f

f

a

a
 (25) 

1 1 1 1 0

1 2 1 2 0

( ,1) exp( ),

( ,1) exp( )

b b

b b

b i T

b i T

  

  

= =

= = −

b

b

a

a
 (26) 

while subscripts f  and b  indicate forward and 

backward waves of the rotating laminated 
composite cylindrical shell, respectively. 

Substituting modal analysis relations  1=
1

y Y

and  2=
2

y Y  [62] into equation (22) and some 

simplifications lead to: 

      

  ( ) ( )

   

0 2 2 1 1

1 1

1 1 1 2

,

( )

i

T T T T

i

D D

D T

   



 

− −

= +

= = −

 = 

P

Z Y Z AY P Z Y Z Y

0

 
(27) 

Thus the particular solution of equation (27) 

is  2 = 0 . It should be noted that in addition to

 1 ,  2  also indicates the vector of modal 

coordinates [62]. Substituting  2 = 0 , modal 

analysis relations  3=
3

y Y  and  1=
1

y Y

[62] into equation (23) and performing some 
mathematical efforts, one can acquire the 
following relation: 

       3 3

0 2 11 21

2 2

11 21 21 11

ˆ ˆ

ˆ ˆ

iD D w w

w w w w

   = + + +

+ +

3 3 1 5 6

7 8

P g g

g g
 (28) 

while: 

( ) ( )

( ) ( )

1 1

1 1

ˆ ˆ, ,

ˆ ˆ,

T T T T

T T T T

− −

− −

= =

= =

5 5 6 6

7 7 8 8

g Z Y Z g g Z Y Z g

g Z Y Z g g Z Y Z g

 (29) 

Considering the row of equation (28) which 
contains linear forward frequency and neglecting 
all frequencies other than linear forward 
frequency, leads to the following relation: 

3

0 3 1 3 1 2 1 1 2 1 2 1 1 1

3 2 2

2 1 2 3 1 1 1 2 4 1 1 1 2

f f f f f f f

f f f f f f f f

D D D q

q q q

     

    

= − − +

+ + +
 (30) 

where in: 
3 3 2

1 5 1 5 1 6 1 6 1 7 1 6 1 5 1

2

8 1 5 1 6 1

3 3 2

2 5 1 5 2 6 1 6 2 7 1 6 2 5 2

2

8 1 5 2 6 2

2 2

3 5 1 5 2 5 1 6 1 6 2 6 1

2

7 1 6 1 6 2 5 1 7 1 6 1 5 2

8 1 5 1 5 2 6 1

ˆ ˆ ˆ

ˆ

ˆ ˆ ˆ

ˆ

ˆ ˆ3 3

ˆ ˆ2

ˆ ˆ2

f f f f f f f f

f f f

f f f f f f f f

f f f

f f f f f f f

f f f f f f f

f f f f

q g Y g Y g Y Y

g Y Y

q g Y g Y g Y Y

g Y Y

q g Y Y g Y Y

g Y Y Y g Y Y

g Y Y Y

= + +

+

= + +

+

= +

+ +

+ + 2

8 1 5 1 6 2

2 2

4 5 1 5 2 5 1 6 1 6 2 6 1

2

7 1 6 2 5 1 7 1 6 1 6 2 5 2

2

8 1 5 2 6 1 8 1 5 1 5 2 6 2

ˆ ˆ3 3

ˆ ˆ2

ˆ ˆ2

f f f

f f f f f f f

f f f f f f f

f f f f f f f

g Y Y

q g Y Y g Y Y

g Y Y g Y Y Y

g Y Y g Y Y Y

= +

+ +

+ +

 (31) 
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5 1 1 6 1 1

7 1 1 8 1 1

5 1 1 6 1 1

5 2 2 6 2 2

ˆ ˆ ˆ ˆ( ,1), ( ,1),

ˆ ˆ ˆ ˆ( ,1), ( ,1),

(5, ), (6, ),

(5, ), (6, )

f f

f f

f f

f f

g f g f

g f g f

Y f Y f

Y f Y f

= =

= =

= =

= =

5 6

7 8

g g

g g

Y Y

Y Y

 (32) 

It should be noted that if the row of equation 
(28) which contains linear backward frequency is 
considered and frequencies other than linear 
backward frequency are neglected, equations 
similar to equations (30) to (32) are obtained 
while subscript f is replaced with b . Putting 

equation (25) into equation (30), one can extract 
the following formulation: 

( )

( )

2

0 3 1 3 1 4 0

2

2 3 0

3 3

1 0 2 0

exp( )

exp( )

exp(3 ) exp( 3 )

f f f f f f f

f f f f f

f f f f f f

D q a a i T

D a q a a i T

q a i T q a i T

   



 

= + −

+ − +

+ + −

 (33) 

In order to obtain a finite particular solution 
for equation (33), it is necessary to put the 
coefficient of 0exp( )fi T equal to zero; then, 

putting  exp( )f f fa Q i= [68] and its derivative 

with respect to 2T  into obtained relation and 

some simplifications lead to the following results 
for fQ  and f : 

2

3 2 3 3
ˆ ˆ, ,

const., const.

f f f f f f

f f

q Q T p q iq

p Q

 = + = −

= =
 (34) 

while fQ and f are real terms related to 2T  [68] 

and 3fq  is an imaginary term. Using equation 

(35), one can easily obtain the term of time 
response which is only related to linear forward 
frequency as shown in equation (36):  

1 11 1 0

2 0

a (5, )exp( )

(5, )exp( )

f f

f f

w w f iT

a f iT

  

 

= =

+ −

Y

Y
 (35) 

( )

2

3

1 2

1

1

ˆ A
w cos( ),

4 (5, )

ˆ ˆA 2 (5, ) ,

f f

f f f

f f f f

q
A t t p

Y f

Q Y f Q Q

 



= + + +

= =

 (36) 

It should be noted that equation (36) is 
written by eliminating all linear frequencies 
other than linear forward frequency. According 
to equation (36), the nonlinear forward 
frequency ratio (

( )NL f f  ) can be written as 

shown in equation (37). In addition, considering 
the same procedure mentioned in equations (30) 
to (36), one can obtain a nonlinear backward 
frequency ratio (

( )NL b b  ) as shown in equation 

(37): 

( ) ( )

22
( ) ( )

3 3

2 2

1 1

AA
1 , 1 ,

ˆ ˆ
,

4 (5, ) 4 (5, )

NL f NL b b bf f

f f b b

f b

f b

ee

q q
e e

Y f Y b

 

   
= + = +

= =

 (37) 

In equation (37), the terms Af
and Ab

denote 

amplitude parameters. In addition,  fe and be

represent nonlinear forward and backward 
parameters. According to equation (37), one can 
elicit that the nonlinear forward frequency ratio 
is in direct linear relation with fe  inverse relation 

with f , and direct relation with 2

fA . In 

addition, the nonlinear backward frequency ratio 
has direct relations with be and 2

bA while its 

relation with linear backward frequency is 
inverse. 

5. Results and Discussions  

This paper investigates the nonlinear 
vibration of simply supported cross-ply 
laminated composite cylindrical shells 
surrounded by a nonlinear rotating elastic 
foundation. To ensure the correctness and 
validity of linear results of this study, the results 
of the literature can be compared with the results 
of this study. In this way, Table 1 compares the 
non-dimensional frequency parameter results of 
this study with literature for linear forward  

( 22f ff R E  = ) and linear backward 

( 22b bf R E  = ) waves of a laminated 

composite cross-ply cylindrical shell. The shell 

has a lamination scheme of 
o o o[0 /90 /0 ]  while its 

material properties are: 
31643 kg/m = , 

11 19 GPaE = , 22 7.6 GPaE = , 12 4.1 GPaG = , 

12 0.26 =  [67]. Furthermore, geometric 

characteristics of the considered cylindrical shell 
are: 0.006h R =  and 1L R = while 1m =  [67]. 

It should be noted that the difference rate is 
calculated by the following formulation: 

Present study response-reference response
100

reference response
 =   (38) 

Table 1 shows that for different values of 
circumferential wave number and also rotational 
velocity, the results of this study and reference 
[67] have good adaptation with each other while 
this adaptation for smaller values of 
circumferential wave number n  is much better. 
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Table 1. Comparison of non-dimensional forward and backward frequency parameter results of this study with literature for 
different rotational speeds and circumferential wave numbers 

 (rps)Ω  n  
Forward Backward 

Present Reference [67] difference rate Present Reference [67] difference rate 

0.1 

1 1.061435 1.061140 0.03 1.061725 1.061429 0.03 

2 0.804409 0.803894 0.06 0.804729 0.804214 0.06 

3 0.599286 0.598187 0.18 0.599574 0.598476 0.18 

4 0.452513 0.450021 0.55 0.452761 0.450270 0.55 

5 0.350708 0.345149 1.61 0.350921 0.345363 1.61 

6 0.282392 0.270667 4.33 0.282577 0.270852 4.33 

7 0.240376 0.217489 10.52 0.240538 0.217651 10.52 

1 

1 1.060133 1.059836 0.03 1.063025 1.062728 0.03 

2 0.802978 0.802464 0.06 0.806181 0.805667 0.06 

3 0.598032 0.596937 0.18 0.600916 0.599820 0.18 

4 0.451513 0.449027 0.55 0.453999 0.451513 0.55 

5 0.350006 0.344459 1.61 0.352141 0.346593 1.60 

6 0.282043 0.270349 4.33 0.283891 0.272197 4.30 

7 0.240441 0.217651 10.47 0.242059 0.219269 10.39 

 

In Table 2, the frequency results (Hz) of this 
study and reference [69] are presented for an 
isotropic non-rotating cylindrical shell on an 
elastic foundation with 1m = . The geometric 
constants of the shell are considered to be 

0.3015 mR = , 0.41 mL = , 1 mmh = while the 

isotropic material constants are 210 GPaE = ,
37850 kg/m = and  0.3 = [69]. According to 

Table 2, the results of this study and reference 
[69] demonstrate excellent agreement with each 
other. 

Table 2. The frequency results of this study and 
literature for a non-rotating isotropic cylindrical shell 

surrounded by an elastic foundation 

n  

3

7

0 N/m ,

1.5 10  N/m

w

p

K

K

=

= 

 
7 3

7

1.5 10  N/m ,

2.5 10  N/m

w

p

K

K

= 

= 

 

Present Ref. [69] Present Ref. [69] 

3 2780.5951 2780.6 3487.4491 3487.5 

4 3314.4768 3314.5 4233.7205 4233.7 

5 3950.2596 3950.3 5077.1828 5077.2 

6 4626.4943 4626.6 5959.9684 5960.1 

7 5321.2712 5321.4 6861.4644 6861.6 

After validation studies, in the rest of this 
paper, the effects of several parameters on the 
linear and nonlinear forward and backward 
frequency characteristics of laminated composite 
cross-ply rotating cylindrical shell on a nonlinear 
rotating elastic foundation are researched. In this 
way, a laminated composite rotating cylindrical 
shell is assumed with a lamination scheme of 

o o o[90 /0 /90 ]s  which rotates with 35 rad/s =

and is surrounded by a nonlinear rotating elastic 

foundation with 35 rad/s = , 10 51.2 10  N/mNLwK =  , 
7 31.2 10  N/mLwK =   and 71.2 10  N/mpK =  . 

It should be emphasized that the rotational 

velocities of the shell and foundation are the 
same. The shell is presumed to be from carbon 
fiber-reinforced polymeric (CFRP) material with 

11 138.6 GPaE = , 22 8.27 GPaE = , 12 4.12 GPaG = , 

23 4.96 GPaG = , 13 4.96 GPaG = , 
31824 kg/m = , 

12 0.26 = and 21 22 12 11E E =  [63] which has 

geometrical characteristics of 1 mmh = , 
0.8 mL = , 1 mR = . The results are attained for 

the mode shape of the cylindrical shell 
corresponds to 1m =  and 4n = . The mentioned 
constants and characteristics are assigned to 
obtain the whole results unless other values are 
noted. 

Table 3 indicates the values of linear forward 
and backward frequencies as well as fe , f fe  , 

be and b be  for different values of the rotating 

foundation constants. According to this table, one 
can conclude that the values of linear forward 
and backward frequencies don’t change for 
different values of NLwK ; the reason for this 

behavior is that the nonlinear constant of the 
foundation does not affect the values of stiffness, 
mass, and matrix C of the system. On the other 

hand, Table 3 shows that the values of fe  and be

increas with an increase of NLwK ; because NLwK

is a nonlinear constant and its increment affects 
the nonlinear parameters of the system which are 

fe  and be . As represented in Table 3, the 

increase of fe  and be causes higher values for 

f fe   and b be  , respectively. In addition to 

mentioned outcomes, Table 3 demonstrates the 
increase of the linear forward (backward) 
frequency and decrease of the nonlinear forward 
(backward) parameter with an increase of LwK  
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which leads to smaller values for 
f fe   (

b be  ). 

The reason for the increase of the linear forward 
and backward frequencies with the increase of 

LwK is the increase in the system stiffness. 

Another result of Table 3 is that the increase of 

pK leads to the increase of f  and b which is 

due to the increase of the stiffness. Besides, Table 
3 shows that nonlinear parameters ( fe  and be ) 

get smaller values with an increase of pK . 

Table 3 illustrates that the increase of pK results 

in the decrease of f fe   which is because of the 

increase of linear forward frequency and 
decrease of fe . Furthermore, Table 3 

demonstrates that the greater the value of pK , 

the smaller the value of b be   which can be 

justified by the increase of  b   and decrease of 

be . 

Figures 2 (a) and (b) show the effects of the 
nonlinear constant of the rotating elastic 
foundation ( NLwK ) on the curves of nonlinear 

forward and backward frequency ratios against 
amplitude parameters, respectively. Figs. 2 (a) 
and (b) respectively show that for constant 
amplitude parameters, the increase of NLwK leads 

to greater values for nonlinear forward and 
backward frequency ratios. This outcome is 
apparent because of the equation (37) as well as 
the results mentioned in Table 3 for different 
values of NLwK . It can be seen that there is not a 

significant difference between the diagrams 
obtained for forward and backward waves 
because the matrix C  which is the reason for the 

advent of forward and backward frequencies is 
small in comparison with K matrix. 

Figures 3(a) and (b) depict the effects of 
LwK  

on the variation of nonlinear frequency ratios 
with amplitude parameters for forward and 
backward waves, respectively. Figs. 3(a) and (b) 
respectively illustrate that for constant values of 
amplitude parameters, as the value of LwK  

increases, the values of nonlinear forward and 
backward frequency ratios decrease. This 
outcome is because of the fact that, as shown in 
Table 3, the increase of 

LwK leads to smaller 

values for f fe  and b be  which according to 

equation (37) leads to smaller values for 
nonlinear forward and backward frequency 
ratios, respectively. 

The variations of nonlinear forward and 
backward frequency ratios with amplitude 

parameters for various pK  values are 

respectively illustrated in Figs. 4 (a) and (b). Figs. 
4 (a) and (b) respectively show that for constant 
values of amplitude parameters, the increase of 

pK value decreases the values of nonlinear 

frequency ratios for forward and backward 
waves.  

These results are because of these facts that 

according to Table 3, the increase of pK  leads to 

smaller values for f fe   and b be  . According 

to equation (37), for constants amplitude 
parameters, the smaller the values of f fe   and 

b be  , the smaller the values of nonlinear 

forward and backward frequency ratios, 
respectively. Another outcome of Figs. 2 to 4 is 
that the increase of amplitude parameters causes 
greater values for nonlinear forward and 
backward frequency ratios; these results are in 
agreement with equation (37). 

Table 3. The effect of the constants of the rotating elastic foundation on the vibration  
characteristics of the rotating cylindrical shell 

Nonlinear foundation's 

 constants 710−   
 (rad/s)fω  2 (s.m )fe −

 2

 

(m )

f fe ω

−
  (rad/s)bω  2 (s.m )be −

 
b be ω  

−2(m )  

31.2 N/m

1.2 N/m

Lw

p

K

K

=

=
 

50 N/mNLwK =  5934.00 4.5514415⨯105 76.70 5967.10 4.5533563⨯105 76.31 
5600N/mNLwK =  5934.00 4.7961346⨯105 80.82 5967.10 4.7981523⨯105 80.41 
51200 N/mNLwK =  5934.00 5.0408278⨯105 84.95 5967.10 5.0429484⨯105 84.51 

51800 N/mNLwK =  5934.00 5.2855209⨯105 89.07 5967.10 5.2877444⨯105 88.62 

51200 N/m

1.2 N/m

NLw

p

K

K

=

=
 

30 N/mLwK =  5846.76 5.1166411⨯105 87.51 5879.83 5.1187576⨯105 87.06 
30.6 N/mLwK =  5890.54 5.0783148⨯105 86.21 5923.63 5.0804334⨯105 85.77 

31.2 N/mLwK =  5934.00 5.0408278⨯105 84.95 5967.10 5.0429484⨯105 84.51 
31.8 N/mLwK =  5977.14 5.0041496⨯105 83.72 6010.26 5.0062723⨯105 83.30 

5

3

1200 N/m

1.2 N/m

NLw

w

K

K

=

=
 

0 N/mpK =  1700.48 1.75571525⨯106 1032.48 1732.47 1.75591500⨯106 1013.53 

0.6 N/mpK =  4365.06 6.8626177⨯105 157.22 4397.59 6.8646757⨯105 156.10 

1.2 N/mpK =  5934.00 5.0408278⨯105 84.95 5967.10 5.0429484⨯105 84.51 

1.8 N/mpK =  7165.31 4.1659305⨯105 58.14 7198.99 4.1681161⨯105 57.90 
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(a) (b) 

Fig. 2. The effect of the elastic foundation nonlinear coefficient on the diagrams of, (a): nonlinear forward frequency 
 ratio against amplitude parameter, (b): nonlinear backward frequency ratio versus amplitude parameter 

  
(a) (b) 

Fig. 3. The effect of LwK  on the curves obtained for, (a): nonlinear forward frequency ratio versus amplitude parameter, 

(b): nonlinear backward frequency ratio against amplitude parameter 

  
(a) (b) 

Fig. 4. Diagrams of nonlinear frequency ratios versus amplitude parameters for different values of pK  for, 

(a): forward waves, (b): backward waves 

 
Figures 5 (a) and (b) indicate the effects of the 

shell radius on the diagrams of nonlinear forward 
and backward frequency ratios versus amplitude 
parameters, respectively. Figs. 5 (a) and (b) 
indicate that for determining amplitude 
parameters, the greater the radius, the smaller 
the nonlinear frequency ratios for both forward 
and backward waves. In order to illustrate the 
reason for the results obtained from Figs. 5 (a) 
and (b), Table 4 and equation (37) can be used. 
Table 4 represents the effect of the shell radius on 

the linear forward and backward frequencies, 
nonlinear forward and backward parameters as 
well as f fe   and b be  . This table shows that 

the values of linear frequencies and nonlinear 
parameters decrease with an increase in the 
radius. According to Table 4, the consequence of 
these reductions is the reduction of f fe   and 

b be  which according to equation (37) leads to 

the reduction of forward and backward 
frequency ratios, respectively.  
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Figures 6 (a) and (b) represent the influence 
of the total thickness of the shell on the nonlinear 
frequency ratio to amplitude parameter curves 
for forward and backward waves, respectively. 
These figures illustrate that for constant 
amplitude parameters, the increase of the total 

thickness increases the values of ( )NL f f  and 

( )NL b b  . In order to explain the reason for this 

behavior, Table 5 can be utilized. Table 5 displays 
linear forward and backward frequencies, 
nonlinear forward and backward parameters as 

well as f fe  and f fe   for different values of 

the total thickness of the shell. 

Table 5 shows that the increase of the total 
thickness results in the smaller linear forward 
and backward frequencies; the reason for this 
behavior could be the increase in the absolute 
values of the mass components of the shell. On 
the other hand, the values of the nonlinear 
forward and backward parameters increase as 
the total thickness increases. Table 5 indicates 
that the resultant decrease of 

f (
b ) and 

increase of 
fe (

be ) is the increase of 
f fe  (

b be  ) which according to equation (37) leads to 

an increase in the nonlinear forward (backward) 
frequency ratio. 

  
(a) (b) 

Fig. 5. The effect of the cylindrical shell radius on the diagrams of nonlinear frequency ratios against amplitude 
 parameters for, (a): forward waves, (b): backward waves 

Table 4. The effects of the cylindrical shell radius on the vibration characteristics obtained for forward and backward waves 

 (m)R   (rad/s)fω  2 (s.m )fe −

 
2 (m )f fe ω −   (rad/s)bω  2 (s.m )be −

 
2 (m )b be ω −  

0.5 9202.65 3.21413958⨯106 349.26 9236.13 3.21467500⨯106 348.05 

1 5934.00 5.0408278⨯105 84.95 5967.10 5.0429484⨯105 84.51 

1.5 5111.19 3.0399999⨯105 59.48 5143.62 3.0423795⨯105 59.15 

2 4788.74 2.7373408⨯105 57.16 4820.26 2.7407214⨯105 56.86 

  
(a) (b) 

Fig. 6. The impression of the total thickness of the shell on the nonlinear frequency ratio-amplitude 
 parameter diagrams for, (a): forward waves, (b): backward waves 
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Table 5. The influence of the total thickness on the vibration characteristics 

 (mm)h   (rad/s)fω  2 (s.m )fe −

 
2 (m )f fe ω −   (rad/s)bω  2 (s.m )be −

 
2 (m )b be ω −  

6 5934.00 5.0408278⨯105 84.95 5967.10 5.0429484⨯105 84.51 

12 4325.76 6.5871650⨯105 152.28 4358.28 6.5891208⨯105 151.19 

18 3666.09 7.6377340⨯105 208.33 3698.42 7.6396363⨯105 206.56 

 
Figs. 7(a) and (b) demonstrate the impression 

of the length on the nonlinear frequency ratio 
versus amplitude parameter diagrams drawn for 
forward and backward waves, respectively. One 
can deduce from Fig. 7(a) that for a determined 

value of 
fA ,

 ( ) 0.4 mNL f f L  = 

( ) 1.6 mNL f f L  =  ( ) 1.2 mNL f f L  =

( ) 0.8 mNL f f L  = . In a similar way, Fig. 7(b) 

indicates that for a determined amplitude 
parameter value, the outcome of 

( ) 0.4 m ( ) 1.6 mNL b b L NL b b L   = =

( ) 1.2 mNL b b L  = ( ) 0.8 mNL b b L  =  is acquired. 

The reason for these outcomes can be clarified in 
Table 6. The influences of the length on the 

vibration characteristics including f , fe , f fe 

, b , be and b be  are shown in Table 6. 

According to this table, one can conclude that 
linear frequencies for both forward and 
backward waves decrease with an increase of the 
length which is due to the increase of the absolute 
values of mass components. In addition, Table 6 

shows that 
0.4 m 1.6 mf f L f f Le e = =

1.2 mf f Le  =  
0.8 mf f Le  = and 

0.4 mb b Le  =

1.6 mb b Le  = 1.2 mb b Le  = 0.8 mb b Le  = ; the 

reason for these results is that depending on the 

rate of the changes of fe ( be ) and f ( b ), 

f fe  ( b be  ) increases or decreases which 

according to equation (37) affects the value of 
nonlinear forward (backward) frequency ratio.  

Figures 8 (a) and (b) respectively display 

diagrams of ( )NL f f  - fA  and ( )NL b b  - bA  

for different values of the rotation speed of the 
laminated composite cross-ply cylindrical shell 
on a nonlinear rotating elastic foundation. Figs. 8 
(a) and (b) show that for constant amplitude 
parameters, rotational velocity causes a small 
and negligible difference in the forward and 
backward frequency ratio values. Table 7 
demonstrates the effects of the rotation speed on 
the vibration characteristics of the cylindrical 
shell. This table shows that the values of linear 
frequencies as well as f fe  and b be  are not 

significantly affected by the change of  which 
justifies the behavior of the curves of Figs. 8 (a) 
and (b). 

  
(a) (b) 

Fig. 7. The influence of the rotating shell length on the curves of, (a): nonlinear forward frequency ratio, 
 (b): nonlinear backward frequency ratio, versus amplitude parameter 

Table 6. Vibration characteristics of the rotating cylindrical shells with different length values 

 (m)L   (rad/s)fω  2 (sm )fe −

 
2 (m )f fe ω −   (rad/s)bω  2 (sm )be −

 
2 (m )b be ω −  

0.4 9439.31 1.76724657⨯106 187.22 9470.73 1.76831396⨯106 186.71 

0.8 5934.00 5.0408278⨯105 84.95 5967.10 5.0429484⨯105 84.51 

1.2 5024.14 4.4698669⨯105 88.97 5057.55 4.4714929⨯105 88.41 

1.6 4664.90 4.5191660⨯105 96.88 4698.40 4.5206975⨯105 96.22 
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(a) (b) 

Fig. 8. The images of the diagrams of nonlinear frequency ratios against amplitude parameters acquired  
for different rotational speeds for, (a): forward waves, (b): backward waves 

Table 7. The impression of rotational velocity on the vibration characteristics of the rotating cylindrical shell 

 (rad/s)Ω   (rad/s)fω  2 (s.m )fe −

 
2 (m )f fe ω −   (rad/s)bω  2 (s.m )be −

 
2 (m )b be ω −  

25 5938.11 5.0416784⨯105 84.90 5961.75 5.0431931⨯105 84.59 

50 5928.23 5.0392101⨯105 85.00 5975.51 5.0422395⨯105 84.38 

75 5919.63 5.0356049⨯105 85.07 5990.57 5.0401490⨯105 84.13 

100 5912.33 5.0308684⨯105 85.09 6006.92 5.0369272⨯105 83.85 

 

Another consequence of Figs. 5 to 8 is the fact 
that the greater the amplitude parameters, the 
greater the nonlinear forward and backward 
frequency ratios; the mentioned outcome is in 
agreement with equation (37). 

6. Conclusions 

In this study, nonlinear vibration responses of 
rotating laminated composite cross-ply 
cylindrical shell surrounded by a nonlinear 
rotating elastic foundation are presented by 
applying modal analysis and multiple scales 
method to the nonlinear equation of the system 
in the state space form. The system is modeled 
considering von Karman's nonlinear theory while 
FSDT and rotary inertia are taken into 
consideration. The influences of initial hoop 
tension, as well as centrifugal and Coriolis 
accelerations in the rotating cylindrical shell 
modeling are taken into account. The relation of 
the rotating elastic foundation which surrounds 
the shell is obtained with the Winkler-Pasternak 
model. The nonlinear ordinary differential 
equation of the rotating shell is derived via the 
Ritz method and then is converted to the state 
space form. Afterward, modal analysis and 
multiple scales method are utilized to obtain 
nonlinear frequency ratios for forward and 
backward waves. The results published in the 
literature are used to investigate the validity of 
the results of this study and good agreement is 

observed. The effects of several parameters 
including the nonlinear and linear constants of 
elastic foundation, radius, total thickness, length 
and rotation speed on the linear and nonlinear 
vibration behavior are presented which can be 
classified as follows: 

1. For determined amplitude parameters, 
the greater the nonlinear constant of the 
rotating elastic foundation, the greater 
the nonlinear forward (backward) 
frequency ratio; the reason for this 
conclusion is the increase of the nonlinear 
forward (backward) parameter of the 
system. 

2. The increase of the nonlinear constant of 
the rotating elastic foundation doesn’t 
have any effect on the linear forward and 
backward frequencies.  

3. The increase of the rotating foundation 
linear constants leads to the increase of 
the stiffness and thus the increase of 
linear frequencies. The increase of the 
linear frequencies along with the 
decrease of the nonlinear parameters 
caused by the increase of the rotating 
foundation linear constants leads to the 
decrease of the nonlinear frequency 
ratios. 

4. The linear forward and backward 
frequencies get smaller values with an 
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increase in the radius. In addition, the 
increase of the radius leads to smaller 
nonlinear parameters and nonlinear 
frequency ratios for both forward and 
backward waves. 

5. As the total thickness of the rotating 
cylindrical shell increases, the absolute 
values of the mass components of the 
system become higher which leads to the 
decrease of the values of the linear 
frequencies. Furthermore, the decrease of 
the linear frequencies along with the 
increase of the nonlinear parameters 
which are the results of the increase of the 
total thickness cause greater values for 
nonlinear frequency ratios. 

6. The increase of the absolute values of 
mass components due to the increase of 
the length leads to the reduction of the 
values of linear forward and backward 
frequencies. 

7. The influences of the rotation speed on 
the linear frequencies and nonlinear 
frequency ratios are not remarkable and 
can be ignored. 

8. The increase of the amplitude parameters 
leads to the increase of the nonlinear 
forward and backward frequency ratios. 
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