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The effect of friction and rotational speed parameters changes on the transient thermoelastic 

response of a rotating functionally graded cylinder with a short length subjected to thermal and 

mechanical loads are studied based on the First order shear deformation theory (FSDT). It is 

assumed that the cylinder is located on a friction bed and is rotating due to an external torque. 

The material property is assumed to be variable along radius according to a volume fraction 

distribution. Because temperature changes are unstable the changes in parameters are applied 

when the cylinder has reached a steady state. In the following, radial, longitudinal and angular 

displacement diagrams, as well as effective stresses due to changes in coefficient of friction and 

rotational velocities for longitudinal and radial directions, are drawn. The results show that these 

changes have significant effects on the measured parameters and in many industrial applications, 

these coefficients are not constant during the work period and have changed. 

1. Introduction 

Rotating shells are classified by their 
geometry (cylindrical, spherical, etc.) a shell is a 
thin structure composed of curved sheets of 
material so that the curvature plays an important 
role in the structural behavior. Today, these 
structures have many applications in the oil, gas, 
and petrochemical industries, military and 
aerospace industries, turbines, and reactors. On 
the other hand, with the rapid advancement of 
technology, the need to use new materials as 
engineering priorities in high-efficiency complex 
systems has been raised. Functionally graded 
materials are non-homogeneous composites 
composed of two or more different materials, and 
the composition of the constituent components 
varies continuously and in the form of a function 
of position in one or more specific regions [1, 2]. 
Gradual and continuous changes in physical 
properties can be useful to work in different 
environments and at very high temperatures. 
Functionally graded materials are used in 
modern technologies [3-5] for structural 

components such as those used in, nuclear, 
aircraft, space engineering, and pressure vessels. 
Different types of FGM, such as materials under 
the power distribution law or volume fraction 
and exponential distribution law, have led 
researchers to analyze structures with different 
target structures [6-8]. In many of these 
structures, the need to simultaneously provide 
material resistance to different thermal and 
mechanical loads and considering the physical 
properties of these materials in thermoelastic 
equilibrium causes the complexity of the 
structural equation analysis, which necessitates 
the choice of the appropriate method for 
thermoelastic analysis [9, 10]. 

An exact analysis of an axial compressor’s 
spool of a gas turbine engine for both 
homogeneous and functionally graded material 
states and spool subjected to centrifugal force 
and uniform radial loadings at internal and 
external surfaces to calculate stresses, strains, 
and displacements was presented by Yousefi et 
al. [11]. In the other research, Shahriari et al. [12] 
suggested a model in the framework of rotating a 
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thick-walled hollow circular cylinder with free-
clamp ends under centrifugal load for analysis of 
compressors spool in a turbojet engine. Lezgy-
Nazargah and Meshkani [13] present a finite 
element solution for static and free vibration 
analysis of functionally graded material plates 
rested on Winkler-Pasternak elastic foundations. 
A new analysis of functionally graded 
piezoelectric laminates based on simplifying the 
assumption that the FGP layer consists of several 
homogeneous sub-layers was introduced by 
Lezgy-Nazargah [14]. A three-dimensional exact 
state-space solution for cylindrical bending of 
continuously non-homogenous piezoelectric 
laminated plates with arbitrary gradient 
composition was presented by Lezgy-Nazargah 
[15]. Based on the finite element method, Lezgy-
Nazargah [16] studied the fully coupled thermo-
mechanical behavior of bi-directional FGM beam 
structures. Arefi [17] presented thermoelastic 
analyses of functionally graded cylindrical shells 
by using generalized shear deformation theory. 
Akbarzadeh and Chen [18] obtained analytical 
solutions for multi-physical responses of an FG, 
thermomagneto-elastic rotating hollow cylinder 
as well as a homogeneous orthotropic thermo-
magneto-electro-elastic Cylinder. Nonlinear 
analysis of varying thickness cylindrical shells 
with moderately large deformation subjected to 
non-uniform pressure using first-order shear 
deformation theory was presented by Nasrekani 
et al. [19]. Ghannad and Parhizkar Yaghoobi [20] 
presented a Thermo-elasticity solution for thick 
cylinders under thermo-mechanical loads with 
various boundary conditions.  

Thermo-elastic behavior of axially 
functionally graded rotating thick cylindrical 
shells with variable thickness under mechanical 
loading was investigated by Jabbari et al. [21].  
Thermoelastic analysis of clamped-clamped thick 
FGM cylinders using third-order shear 
deformation theory was considered by Gharooni 
et al. [22]. 2D thermo-elastic behavior of an FG 
cylinder under thermomechanical loads was 
considered by Ghannad et al. [23] using a first-
order temperature theory. Nonsymmetrical 
thermo-mechanical analysis of a functionally 
graded cylinder subjected to mechanical, 
thermal, and magnetic loads was presented by 
Loghman et al. [24]. Omidi et al. [25] analysis of 
thermo-elastic behavior of FGM rotating cylinder 
resting on friction bed subjected to a thermal 
gradient and an external torque. Effect of grading 
index on two-dimensional stress and strain 
distribution of FG rotating cylinder resting on a 
friction bed under thermo-mechanical loads 
studied by Omidi et al. [26]. Omidi et al. [27], 
presented a three-dimensional thermo-elastic 
analysis of a rotating cylindrical functionally 
graded shell subjected to the mechanical and 

thermal loads based on the FSDT formulation. 
Omidi et al. [28] researched transient stresses 
and deformation analysis of a shear deformable 
functionally graded rotating cylindrical shell 
made of Al-SiC subjected to thermo-mechanical 
loading.  

The influence of friction coefficient and 
rotational speed on the transient thermo-elastic 
response of cylindrical FGM isn’t investigated in 
previous research. In this paper, the effect of 
changes in coefficient of friction and rotational 
slip on the thermo-elastic behavior of Al-SiC 
cylindrical shell has been investigated and 
analyzed. Radial and axial distributions of the 
effective stress for different friction coefficients 
and different rotating speeds were determined. 
On the other hand, the use of volume fraction is 
one of the innovations of this article. Many 
articles have been presented about power 
distribution or exponential functions, but fewer 
articles have been presented about volume 
fractions. Another reason for using volume 
fraction is its greater compatibility with the 
properties of composites. 

2. Problem Formulation 

An FG rotating cylinder with an inner radius

iR , outer radius oR , and axial length L that is 

subjected to internal and external pressure and 

temperature ( ), , ,i o i oP P T T is shown in Fig.1. The 

cylinder is made from a mixture of ceramic and 
metal and is defined in the cylindrical coordinate 

system ( ), ,r x  . 

 

Fig. 1. The schematic of a cylindrical shell and Particle 
distribution along the radius. 

The properties of a functionally graded 
material are considered by using the volume 
fraction distribution as follows [29]: 
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The FG material is distributed around the 
mid-radius of the cylinder. Material properties 
are assumed based on volume fraction 
distribution as follows: 
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(3) 

2.1. Thermal Solution 

The temperature distribution is obtained 
using the solution of the heat conduction 
equation as follows: 

1 T T
kr q c

r r r t


   
+ = 
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(4) 

Considering the heat due to friction, the initial 
and thermal boundary conditions are: 

0. . ( ,0) 27I C T r c= =
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(6) 

In the general solution by assuming 0q = , 

( ),T r t is obtained as follows: 

( ) ( ) ( ), ,s hT r t T r T r t= +
 

(7) 

that ( )sT r  and ( ),hT r t  are the steady-state 

solution and the transient solution respectively. 

Before obtaining ( ),T r t , we need to calculate the 

heat transfer coefficient ( )h .  

To calculate the heat transfer coefficient with 
the assumption of mineral oil, we have: 

1
0.8 30.037 Re Pr

k
h

L
=     (8) 

If the thickness of the oil film is assumed to be 
1mm and the diameter of the cylinder is 360 mm 
(due to the very small ratio of thickness to 
diameter), the assumption of a flat plate is correct 
and acceptable. Here the rotational speed of the 
cylinder is 3200 rpm. 

2
3200 334

60
rps


 =  =

 
(9) 

The schematic of the plate is shown in Fig. 2. 

 
Fig. 2. Flat Plate Condition. 

Therefore, the linear velocity of the cylinder 
edge is: 

0.18 334 60.12mV r
s

=  =  =
 

(10) 

By selecting mineral oil with a density of

3870
kg

m
, the Reynolds number is: 

3
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(11) 

Because the resulted Reynolds value is 

greater than 55 10  the flow is turbulent. On the 

other hand, the value of the Nusselt number on 
the flat plate for turbulent flow is equal to: 

1
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We also have for the mentioned oil: 
32100 17 10

Pr 255
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k
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As a result: 
1
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(14) 

Now if we consider the right side of Eq. (4) 
equal to zero, the solution of the equation of 
uniform temperature distribution of the cylinder 
is as follows: 

( ) 1 2

1
0
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T
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Using Eq. (3), the volume fraction distribution 
coefficient of thermal conductivity is considered 
as follows: 
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that sT  is obtained as follows: 
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The parameters appeared in Eq. (5) are 
defined as: 
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By using the boundary condition, the 
integration constants 1c and 2c  are obtained as: 
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Next, if the right-hand side of Equation (4) 
doesn’t time zero, the solution of the non-uniform 

temperature distribution is given ( ( ),T r t ). Here 

we have an Advection-Diffusion Equation: 
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At first: 
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By replacing the above values in the heat 
transfer equation in the cylindrical coordinate 
system, we have: 
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Also, the product of density in specific heat 
capacity is equal to: 
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The equation of final non-uniform 
temperature distribution for a cylinder with 
volume fraction distribution is written as follows: 
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Now to solve the above equation, we used the 
finite difference method: 
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For this purpose, the solution domain is 
divided into some finite divisions (as shown in 
Fig. 3). 

 
Fig. 3. Dividing radial domain into some finite 

 sub-domains. 

By replacing the above values in Eq. (24) we 
have: 
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Based on the finite difference method, Eq. (27) 
is rewritten as: 
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In Eq. (29) it is assumed; 
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Finally, we can consider the following relation: 
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and the boundary condition writes as follows: 
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Now by applying the thermal boundary conditions we 

have: 
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Next, if we write the above equations as a 
matrix, we have Equation (34). 

After solving, the unknown matrix is 
calculated as follows:   

1 B
AX B X A B X

A

−= → = → =
 

(35) 

The finite difference method also is used to 
solve the heat conduction problem. Figure 4 
shows the radial  and axial distribution of 
transient temperature at various times. It is 
observed that with the increase of time, the radial 
distribution of temperature is tending to be 
uniform. The initial and boundary conditions are 
completely satisfied based on these results.  

 

 
Fig. 4. The radial and axial distribution of temperature  

for various times. 

2.2. Thermoelastic Solution 

Thermo-elastic relations are developed in this 
section. Based on the FSDT, displacement 
components are considered as a linear 
combination of displacement of mid-surface and 
rotation about mid-surface. For a symmetric 
analysis, the displacement field is written as: 
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Using the strain-displacement relations, and 
the generalized Hooke’s law, strain energy per 
unit volume of the FG cylindrical shell is obtained 
as: 
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(37) 

In a more simple form, the total energy is 
presented as a combination of mechanical and 
thermal energies as follows: 
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(38) 

in which ( ) ( ) ( ) ( ), , ,i i i iA x f x B x g x , are 

functions of ( ), , , , ,z xu w v     and material 

properties. In continuation, the external works 
are calculated as:  
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The work due to rotation of cylindrical shell is 
obtained as: 
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and the external work due to friction is obtained 
as: 
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The total energy is obtained as: 
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Euler equation for first-order functional of 
four variables is presented as: 
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Finally, by using the Euler equation, six 
differential equations of the system in matrix 
form are derived as: 
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The boundary conditions are written as follows: 
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By applying boundary conditions, the general 
solution of differential equations of the system is 
as follows: 
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3. Validation by the Finite 
Element Method for Thermoelastic 
Numerical Analysis 

Abaqus finite element software has been used 
to validate the current analysis. The results of the 
thermo-elastic analysis of the functionally graded 
cylinder with power low distribution and 
uniform temperature distribution under 
mechanical and thermal loading, boundary 
conditions, and the information in Table 1 were 
calculated with the first order shear deformation 
theory and compared with those of finite element 
results. C3D8T element was used for finite 
element simulation and finally, the mentioned 
model converged with 50160 elements. The 
comparison of the results (Fig. 5) shows the 
appropriate accuracy of the used method.  

Table1. Material property and boundary condition. 

property  property  
L 1 m Ti 150 ˚C 
Ri 0.04 m To 70 ˚C 
Ro 0.06 m E 200 GPa 
Pi 80 MPa ν 0.3 

Po 30 MPa α 1.2×10-6
 

˚𝐶
 

E 200 GPa µ 0.01 
K 6/5 w 3200 rpm 

 
Fig. 5. Comparison of radial displacement distribution in the 

longitudinal direction of the cylinder obtained by FSDT and 

FEM methods. 

4. Numerical Results 

In this section, the numerical results are 
plotted by Matlab software based on the 
following data (as written in Table 2). The 
longitudinal results are plotted at the middle 
surface (z=0) and the radial results are plotted at 
x=0. 

Table 2. Material properties, geometry, and thermal loading 

geometry Material properties Constant Thermal Pressure 

1L m=  3
2700Al

Kg

m
 =  237Al

W
k

mc
=  0.3 =  70o

iT c=  30iP Mpa=  

0.1=iR m  
3

3200Sic

Kg

m
 =  120Sic

W
k

mc
=  0.01 =  130o

oT c=  80op Mpa=  

0.18oR m=  410SicE Gpa=  
06 14 10Sic k − −=   3200rpm =    

 70AlE Gpa=  
06 123.1 10Al k − −=      
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4.1.  Friction Coefficient 

Radial and axial distribution of 
circumferential displacements and effective 
stress are presented in Figures 6 and 7 for 
Time=256 s and different friction coefficients. 
These results show that radial and axial 
distribution is outward and are increased with 
the increase of friction coefficient. The minimum 
value of 𝑉𝜃 occurs at x=1m for all times. 

 

 
Fig. 6. The radial and axial distribution of 𝑉𝜃 for different 

friction coefficients. 

As the friction coefficient increases, the 
effective stress also increases. As can be seen in 
Figure 6, the maximum value of effective stress 
occurs at x=1m and outer radios. 

 

Fig. 7. The Radial and axial distributions of the effective 
stress for different friction coefficients. 

4.2. Rotation Speed 

Radial and axial distribution of displacements 
and effective stress are presented in Figures 8-10 
for Time=256 s and different rotation speeds. The 
radial displacement is almost the same for all 
points. Radial displacement is zero for all rotating 
speeds at x=1m. As the rotating speed increases, 
the radial stress also increases. 

As the friction coefficient increases, the 
environmental stress also increases 

 

 
Fig. 8. Radial and axial distributions of the radial 

displacement for different rotation speeds. 

Figures 8 and 9 show that the longitudinal 
displacement and effective stress increase as the 
rotating speed increases. On the other hand, the 
minimum value of 𝑊𝑥  and effective stress occurs 
at about x=0.95m for all rotating speeds. 

 

 
Fig. 9. Radial and axial distributions of the longitudinal 

displacement for different rotation speeds. 
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Fig. 10. Radial and axial distributions of the effective stress 

for different rotation speeds. 

5. Conclusion 

In this study, the solution of the temperature 
distribution was explained in detail and the 
resulting diagrams were shown  in radial 
distribution. The temperature distribution 
approaches its steady state over time and is 
completely stable after about 256 seconds. As 
shown in the presented diagrams, the change of 
each of the parameters of friction coefficient and 
rotational speed affects displacements and 
effective stresses.  

As the results show, increasing the amount of 
coefficient of friction has a direct effect on the 
environmental displacement and increases it, 
which in turn increases the effective stress. 
Regarding the increase of rotational speed, it can 
be observed that with its increase, the cylindrical 
barrel shape becomes more visible (in this way, 
positive radial displacements and longitudinal 
displacements increase negatively) and as a 
result, the amount of effective stress is combined. 
The minimum value of circumferential 
displacements and the maximum value of 
effective stress occur at x=1m for all times. An 
increase in friction coefficient has a direct effect 
on effective stress. Also, the increase in angular 
velocity has a direct effect on the radial 
displacement. 
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