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The purpose of this paper is to obtain a model that quickly predicts springback in the 

three-point bending process of steel / PUR / steel sandwich panels. Firstly, based on the 

finite element simulation, the springback behavior for different punch radius, length 

between supports, and foam thickness is established. The results obtained by the finite 

element analysis show a satisfactory agreement with the experimental results. Secondly, 

three machine learning approaches are applied, including linear regression (LR), artificial 

neural network (ANN), and support vector machine (SVM) in order to predict the 

springback of sandwich panels in the three-point bending process. The performance of 

these approaches is investigated by using some statistical tools like mean absolute error 

(MAE), root mean square error (RMSE), and coefficient of determination (R2). The 

obtained results show that the ANN approach is the best model for predicting the 

springback of sandwich panels when considering accuracy. 

 

1. Introduction 

Sandwich panels are widely used in a variety 
of industrial products, such as aerospace, 
shipbuilding, external and internal walls of 
industrial buildings and automobiles; this is due 
to their lightweight, thermal and acoustic 
insulation and vibration reduction [1-4]. 
Sandwich structures are generally formed by two 
faces with high flexural rigidity and a core with 
lower performance [5-8]. In many cases, the face 
sheet is thin and rigid. Several types of face sheets 
are made from metal [9], composite structures 
[10], thermoplastic sheets [11], or wood. The 
core can be made of balsa wood, structural foam 
[10], or honeycomb [6]. Accurate modeling of 
deformations including springback is one of the 
most important issues in the industrial setting. In 
material forming, the quantitative evaluation of 
the springback phenomenon is very important. 

The difference between the mechanical 
behavior of the face sheet and the foam core 
complicates the bending and the springback 
behavior of the sandwich panels. In order to 
improve the geometrical accuracy of the formed 
panels, proper selections of bending parameters 

are very significant. Some factors have 
considerable effects on springback, such as the 
sandwich geometry, the mechanical properties, 
and the process parameters. Many researchers 
have proposed analytical models based on 
material properties and geometrical parameters 
to predict springback [12-14]. Mohamadi et al. 
[12] suggested an analytical model for predicting 
the springback of sandwich panels composed of 
aluminum faces sheet and polypropylene foam 
core in a flexural test. They assumed that the 
maximum bending moment is located in the 
contact zone punch panel. They established the 
idea that the springback depends on the wrap 
around the punch which is estimated by an 
iterative method. Liu et al [13] developed an 
analytical model to obtain the springback angle in 
the air bending process of sandwich panels 
(aluminum-polymer). Their suggested model is 
primarily based on the analysis of the strain and 
stress distributions of the face sheets and the 
core materials. Recently, a semi-empirical 
method is proposed by Ouled Ahmed et al. [14] 
based on mechanical parameters and calibrated 
from experimental results (load-displacement) in 
the bending process. They found out that there is 
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a good agreement between the proposed semi-
empirical model and the experimental data. Jian 
Wang et al [15] analyzed the influence of the fiber 
direction, temperature, and metal thickness ratio 
on the springback characteristics of the CFRP/Al 
laminates in different fiber directions through 
three-point and stamping bending of the 
laminates. They established that the springback 
rate varies by approximately 30% between room 
temperature and 150 °C. 

The bending process and the springback 
prediction experiments are both time-consuming 
and expensive. The development of theoretical 
models for springback is also difficult due to the 
complexity of the panel bending process. 
Therefore, the finite element method (FEM) 
could be a helpful tool to predict springback. Most 
of the previous studies [16-20] have focused on 
the effects of the numerical parameters such as 
the number of integration points, the size 
element, and the contact algorithms on the 
springback prediction. More recently, Solfronk et 
al. [21] have investigated the effect of the 
computational model and the deformation mesh 
element strategy on the springback prediction of 
the sandwich panels in the U-bending process. 

In addition, response surface methodology 
(RSM) is nowadays an important research topic 
since the industrial interest in cost and time 
reduction is always increasing. Few works of 
literature are available for the prediction of 
springback in the bending test of sandwich panels 
using RSM. Ouled Ahmed et al. [22] applied the 
RSM technique to predict the springback of 
steel/polyurethane/steel sandwich panels in a 
three-point bending process. They considered 
punch radius, length between supports, and 
thickness of foam core as inputs. Recently, 
methods of Machine Learning have been used for 
predicting springback in the sheet metal forming 
process. Vasudevan et al. [23] compared the RSM 
and the artificial neural network (ANN) 
approaches to predict springback in air bending 
of electronically-galvanized steel sheets. The 
ANN model was based on a multi-layer feed-
forward topology and trained with a Levenberg-
Marquardt (LM) back-propagation algorithm. 
They found that the performance of the ANN 
model was better than the RSM models. Fei Han 
et al. [24] proposed a model combining FEM and 
the ANN approach to obtain a relationship 
between springback and processing parameters. 
Pathak et al. [25] used FEM and ANN techniques 
to predict the springback of the metal sheet 
during the air-bending process. The input 
parameters were the sheet thickness and the 
support radius. They observed that the ANN 
provides fairly accurate predictions of the formed 
metal sheet. Stefanos et al. [26] proposed a novel 
ANN, based on Bayesian regularized back-

propagation networks, for the prediction of 
springback in sheet metal forming processes. 
They reported that the obtained results were in 
good agreement with the FEM prediction.  

In addition to the ANN approach, serial new 
machine learning techniques have emerged such 
as linear regression (LR) and support vector 
machine (SVM). However, there is a lack of 
springback prediction when using the SVM. 
Kumar et al. [27] applied the SVM technique 
combined with the FEM to predict the springback 
in V-bending. Teng et al. [28] employed the SVM 
to predict springback in the three-dimensional 
stretch bending process. They found out that the 
springback prediction was more accurate than 
the ANN method. 

Based on the present literature, no studies 
have dealt with springback predictions of 
sandwich panels using machine learning. This 
study consists of using the LR, the ANN, and the 
SVM methods to predict the springback of 
sandwich panels in the three-point bending 
process. The performances of these models are 
investigated and compared with FEM results. 

2. Test Material 

The two face sheets (for each face thickness of 
0.5 mm) were made of galvanized steel. The core 
was obtained from rigid polyurethane foam 
(PUR) with a density of 40 kg/m3. The steel/ 
PUR/ steel sandwich panels were obtained by an 
injection method. A screw-driven MTS Insight 
universal testing machine, equipped with a 200 
kN load cell, was used to perform compression 
and tensile tests of the foam core and the face 
sheet respectively. The obtained mechanical 
properties are given in Table1 [14]. 

Table 1. Mechanical properties of the components of the 
sandwich panel 

 
Steel face 
sheet 

Polyurethane 
foam core 

Density  [kg/m3] 7800 40 

Yield stress  0  
[MPa] 

440 0.41 

Young’s modulus E 
[MPa] 

200000 3.31 

Poisson’s ratio  0.3 0.4 

Ultimate tensile 
strength Rm [MPa] 

453 0.53 

Steel faces sheet with a thickness of 0.5 mm 
and polyurethane foam with a thickness of 40 
mm were used for the preparation of sandwich 
panels. All sandwich panels were 500 mm long, 
50 mm wide, and between 40 mm and 60 mm 
thick (Fig. 1). 

https://www.sciencedirect.com/science/article/abs/pii/S0263822321000192#!
https://www.sciencedirect.com/science/article/abs/pii/S0263822321000192#!
https://sciprofiles.com/profile/1981379
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Steel face sheet with a thickness of 0.5mm  

Polyurethane foam core: 
Three thicknesses (e) 20 mm 40 mm and 60 mm 

Steel face sheet with a thickness of 0.5mm  

Fig. 1. Steel/ PUR/ steel sandwich panel. 

Quasi-Static three-point bending tests, 
according to the standard ASTM D 790, were 
conducted with the MTS Insight testing machine 
to acquire the load-displacement curves. These 
tests were performed by using the following 
process parameters: punch radii of 82 mm; 
length between supports of 200 mm and support 
radius of 10 mm. The punch stroke was 30 mm 
and the displacement rate was 3 mm/min.   

3. Finite Element Analysis 

3.1. Bending Simulation  

Implicit finite element analysis was used to 
simulate the three-point bending followed by the 
springback of steel/ PUR/ steel sandwich panels 
using the ABAQUS 6.14 software package. Due to 
the material symmetry, only half of the geometry 
was modeled. The 4-node bilinear plane strain 
quadrilateral, the reduced integration, and the 
hourglass control element (CPE4R) were used. 

Frictional effects were taken into account by 
means of Coulomb’s law. The friction coefficient 
of 0.1 was set for interactions between punch and 
support contact surfaces with the sandwich panel 
similar to the value used by Schwarze et al. [29]. 
Several simulations were conducted and proved 
that there was no significant effect of the friction 
coefficient on the numerical results explained by 
the fact that the contact zones tools/panels were 
small (punctual contact in 2D space). In order to 
get more accurate results, the experimental data 
of the tensile and the compressive tests were 
used as input data in the finite element software 
Abaqus. 

Table 1 summarizes the identified mechanical 
properties of the face sheet and the foam core. 

Punch and die were modeled as analytical rigid 
bodies. It is well established that the number of 
elements through thickness has great importance 
on the accuracy of the finite element simulations, 
particularly in bending processes as 
recommended by Meinders et al. [30] and Chatti 
et al. [31]. 

Different simulations were done using an 
increasing number of elements through the panel 
thickness using the same number of elements for 
each layer. It can be seen from Fig. 2 that as the 
elements’ number increases, the punch load 
converges to a certain value and it seems that 60 
elements (20 elements for each layer) were 
sufficient to obtain an accurate result. In addition, 
the panel was sufficiently refined in the vicinity of 
the tool’s contacts in order to ensure more 
accurate results. For all the FEM simulations, 
1600 elements for the foam core and 3200 
elements for each face sheet were used. Three-
point bending tests were executed by changing 
the parameters of the following process 
parameters: three thicknesses (e) of 20 mm 40 
mm and 60 mm, three punch radii (Rp) of 82, 102, 
and 115 mm, and three lengths between supports 
(L) of 200, 250 and 300 mm. 

Firstly, the punch moves downwards in order 
to bend the panel reaching a full punch stroke Yp 
of 30 mm. In the second step, the tools are 
removed and springback ∆Yp can be predicted by 
measuring the difference between the deflection 
of the sandwich panel before and after removing 
the punch as shown in Fig. 3.  

 
Fig. 2. Punch load vs. element number through thickness 

(Yp=30 mm; L= 200 mm; Rp=82mm; e=40mm). 

 
Fig. 3. Bending simulation; (a) before unloading, (b) after unloading (springback). 



Ouled Ahmed Ben Ali and Chatti / Mechanics of Advanced Composite Structures 10 (2023) 11-20 

14 

3.2. Validation of the FEM Model 

In Fig. 4, the punch load vs. the punch 
displacement obtained from the experiment and 
numerical results is plotted. The results obtained 
by the finite element analysis show a satisfactory 
agreement with experimental results in terms of 
overall trends. 

 
Fig. 4. Punch load vs. the punch displacement obtained 

from experimental and numerical results  
(L= 200 mm; Rp=82mm; e=40mm). 

Table 2 gives some numerical and 
experimental results of springback [14]. It can be 
inferred that the obtained results are acceptable. 

Table 2. Comparison of numerical and experimental 
 values of springback 

3.3. Springback Prediction 

In this study, several sheet thicknesses, length 
between supports, and punch radii are 
considered. The results obtained by the finite 
element analysis of the springback of sandwich 
panels in the three-point bending process are 
shown in Fig. 5. This figure clearly shows that the 
amount of springback increases with increasing 
distance between the supports. Figure 5 also 
shows that mostly when the springback slightly 
increases, the punch radius increases too. 
However, it can be seen that the springback 
decreases as the core thickness increases. 

 

Fig. 5. Effect of the foam thickness, length between supports 
and punch radii on springback; a) e=20mm; 

b) e=40mm; c) e=60mm. 

4. Methodology of Machine Learning  

The machine learning approach is used to 
update the FEM for springback prediction in the 
three-point bending test. Three machine learning 
models are considered including linear 
regression, artificial neural network, and support 
vector regression. As displayed in Fig. 6, the 
attributes (inputs) for each case of sandwich 
panels are the punch radius, the distance 
between supports, the core thickness, and the 
results of the FEM simulation. 

e 
(mm) 

L 
(mm) 

Rp 
(mm) 

 
∆Yp EXP 
(mm) 

∆Yp FEM 
(mm) 

40 250 82  15 12.23 

40 300 82  16 14.01 

40 300 102  17 14.25 

40 300 115  18 14.59 

60 300 82  14 12.5 
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Fig. 6. Machine learning Diagram 

4.1. Linear Regression  

The regression approach is one of the most 
common statistical techniques [7, 10]. Regression 
analysis is a method of modeling a functional 
relationship between two or more variables. The 
purpose of the regression methodology is to use 
independent variables (inputs) that are known to 
provide the only dependent variables (response). 
The model considered is the linear regression 
(LR) is a linear equation expressed by: 

0

1

n

i i

i

Y X 
=

= + 
 

(1) 

where Y denotes the dependent variable 

(response), n is the number of input factors, i 

are the regression coefficients and Xi‘s are the 
independent variables (inputs). For the 
springback response, the inputs will be the punch 
radius, the distance between supports, and the 
core thickness. By using the Rapidminer 
software, the springback ∆Yp is obtained:  

𝛥𝑌𝑃 = 4.199 − 0.020 × 𝑒 + 0.035 × 𝐿 

         − 0.000 × 𝑅𝑃 
(2) 

Figure 7 presents the comparison between 
the results obtained by the FEM and by the LR 
approach. It is clear that this relationship is 
almost along a line representing the capacity of 
this model to predict springback. The RMSE and 
R² for the LR are 0.823 and 0.906 respectively. 

 
Fig. 7. Linear regression predicted output results  

vs. numerical simulation results  

4.2. Artificial Neural Networks 

Artificial neural networks have emerged as a 
new branch of computing that leads to the 
resolution of problems encountered in the 
modeling and optimization of several processes. 
It is one of the most useful techniques for 
resolving engineering design issues and reducing 
errors in experimental data. The ANN method 
was inspired by both human biological neural 
network systems and mathematical theories of 
information learning, processing, and controlling. 

 
Fig. 8. Basic structure of an artificial neuron 

A multilayer neural network structure 
consists of an input layer, hidden layers, and an 
output layer. Figure 8 shows the basic structure 
of an ANN. The input layers (X1,…,Xn) are the 
layers that receive input data and then transfer it 
to the hidden layer which will be used as training 
data for the ANN. The weighted values Wi are 
transmitted to the neuron where they are 
changed by the threshold function, like the 
sigmoid function. The output layer obtains all the 
responses from the hidden layer and transfers a 
corresponding output.  

The output of any neuron is expressed as 
follows: 

1

n

i j ij j

j

S x w b
=

= +
 

(3) 

where n is the input number, xj denotes the value 
received from the earlier neuron, wij is the weight 
between the i and j neurons and bj denotes the 
neuron bias. The output of the neuron is 
expressed by:  

( )i iy f S=
 

(4) 

where f is the transfer function. 
The network has been trained using the 

Levenberg-Marquardt back-propagation 
algorithm. This algorithm is displayed in Fig. 9 
and is specially designed to reduce the sum of 
squared error’s function. 
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Fig. 9. Procedure for identifying the optimal ANN architect 

The equation for updating weights and bias 
for each node of the neural is expressed by:  

1 1z z z

ij ij ijw w w+ += + 
 

(5) 

Based on the LM back-propagation algorithm, 
the weight change can be assumed by: 

( )
1

1 1z T T z z

ij ij ijw J J I J e w w 
−

+ −  = + + −   
(6) 

where z denotes the step of learning,
1z

ijw +  is 

the increment of the weight, J is the Jacobean 
matrix containing the first derivative of the 
network error related to the weight and bias, μ 
denotes the adaptive learning parameter, I is the 
identity matrix, the vector e is the network errors 
vector and α denotes the momentum term. 

The mean-square-error (MSE) of all outputs 
can be assumed as follows: 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑡𝑗 − 𝑎𝑗)

2
𝑛

𝑗=1

 (7) 

where n is the number of sets containing the 
input and output data, aj ‘s are the output based 
on the input values, and tj ‘s are the 
corresponding predicted output values.  

Various networks have been studied 
considering different scenarios where not only 
the number of hidden layers is different, but also 
the number of neurons in each hidden layer is 
different, too. All possible ANN cases have been 
consulted via MATLAB script, and finally, the one 
with the smallest generalization error has been 
selected as the representative one. 

In this study, the number of neurons in the 
hidden layer is modified and the MSE is evaluated 
as given in Table 3. As soon as the MSE of the 

training data reaches the target value, the 
training is stopped and the weights and biases are 
saved. After several trials, the number of neurons 
with minimal MSE is selected for the hidden layer 
to be 14. The designed architecture will be 3-14-
1. 

Table 3. Effect of the number of neurons on the MSE and R2 

N°neurons MSE R2 

10 0.436 0.774 

11 0.987 0.321 

12 0.476 0.908 

13 1.691 0.608 

14 0.066 0.990 

15 0.648 0.794 

16 1.425 0.440 

Figure 10 presents the numerical prediction 
and the corresponding ANN predictions of 
springback. Linear regression between all the 
values of the springback shows that all the points 
are dispersed around a line with a slope close to 
1. 

 
Fig. 10.  Regression of predicted neural network output 

result and numerical simulation target value 

4.3. Support Vector Machine  

Recently, the support vector machine 
approach has been used to predict the springback 
of metal sheets in the bending process. The 
principle of the SVM is to map the non-linear 
problems in the original space to the linear 
problems in high-dimensional feature space. This 
non-linear transformation is obtained by defining 
the appropriate kernel (algorithm) function. 

The objective of the SVM modeling is to obtain 
the linear function expressed by: 
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( ) ; ( )i if x w x b=   +  (8) 

where   denotes scalar product, ( )i ix is a 

non-linear mapping vector of the input vector xi, 
𝑤 is the weight vector and 𝑏 is a bias constant. 

For a given training sample of n data points 

{ ix ,
iy }; 𝑖=1,…𝑛, the risk function, to be 

minimized, is expressed by: 

2

, 1

1
( ) ( ( ), )

2

n

i i

i j

C
R C w L f x y

n


=

= +   (9) 

where 𝐶 is a regularized constant, w is the 

norm of the weight vector w, )),(( ii yxfL
is 

called the ε insensitive loss function [32] and 
assumed by the following equation: 

𝐿𝜀(𝑓(𝑥𝑖), 𝑦𝑗) 

= {
|(𝑓(𝑥𝑖) − 𝑦𝑖)| − 𝜀       |(𝑓(𝑥𝑖) − 𝑦𝑖) ≥ 𝜀|

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(10) 

Notice that the regularization constant C 
determines the barter between the training error 

and w . 

In order to obtain an acceptable degree of 

error, the deviation variables i  and 
*

i have 

been used as shown in Fig. 11. These variables 
present the distance from the actual value to the 
corresponding limit of  . The goal of the SVM is 

to reduce i  , 
*

i and
2

w  as expressed by: 

𝑀𝑖𝑛 𝑅(𝑤, 𝜉𝑖
∗) =

1

2
‖𝑤‖2 + 𝐶 ∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑛

𝑖=1

 (11) 

 
Fig. 11.  Non-linear regression with ε insensitive band in the 

SVM model [27] 

Lagrangian multipliers have been used to 
convert the above optimization equation (Eq.11) 
to a quadratic programming problem. The 
solution to this problem can be expressed by: 

*

, 1

( ) ( ) ( , )
n

i i i j

i j

f x K x x b 
=

= − +  (12) 

with the constraints 

niC

niC

i

i

n

i

ii

n

i

,....,10

,....,10

*

1

*

1

=

=

= 
==







 

where i and 
*

i are the Lagrange multipliers,

),( ji xxK is a kernel function whose values are 

the inner product of two vectors 
ix and jx in the 

feature spaces )( ix and )( jx which satisfies 

Mercer’s condition. The kernel function is 
expressed by: 

)().(),( jiji xxxxK =  (13) 

which is frequently used as a polynomial (Eq. 14) 
or radial (Eq. 15) function: 

d

jiji xxxxK )1..(),( +=
 

(14) 















 −
−=

2

2

2
exp),(



ji

ji

xx
xxK  (15) 

where d is the degree of a polynomial function 
and   is the variance also called 

hyperparameter. 
Based on 27 cases analyzed using the finite 

element method, an SVM has been trained. Punch 
radius, length between supports, and foam 
thickness have been selected as the primary 
inputs; where the springback is used as the 
output. A computer program has been performed 
under the Rapidminer script. Training of the SVM 
has been performed using the two kernel 
functions (radial and polynomial). 

To determine a more accurate combination of 
these functions’ parameters, various 
combinations are tested. Tables 4 and 5 
summarize the main parameters tested for each 
Kernel function. 

Table 4. Parameters of the polynomial kernel 

Degree of kernel 
function d 

1(linear) 2(quadratic) 
3 (cubic) 

Regularization 
parameter C 

1    10    20   30  40  50  60  
70  80   90   100 

Table 5. Parameters of radial kernel 

Gamma in kernel 

function 



1

=  

0.1 0.2 0.3 0.4 0.5  0 .6   0.7   0.8   
0.9  1  2  3   4   5   6    7    8    9   
10   20    30    40     50   

Regularization 
parameter C 

1    10    20   30  40  50  60  70  
80   90   100 
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The predicted performance of the SVM 
models has been evaluated using some statistical 
properties such as MAE, RMSE, and R2. Tables 6 
and 7 summarize the best combinations of radial 
and polynomial kernel functions’ models and the 
corresponding performances. The results from 
the model training reveal that the cubic kernel 
function for predicting springback is the best 
polynomial model. However, the radial model is 
the best SVM. 

Table 6. Best parameter combinations of  
the polynomial kernel 

Kernel 
type 

C MAE RMSE R2 

Linear 80 0.479 0.612 0.901 

Quadratic 10 1.360 1.607 0.493 

Cubic  50 0.509 0.717 0.929 

Table 7. Best parameters combinations of radial kernel 

GAMMA C ε MAE RMSE R2 

0.7 10 0.01 0.454 0.541 0.962 

The scatter plot of the springback’ results 
obtained by numerical simulation and the values 
predicted by the four SVM models are presented 
in Fig. 12. The predicted values of cubic and radial 
models are narrowly distributed on both sides of 
the line y = x. As mentioned above, these two 
models predict the springback more accurately 
than the others. 

 
Fig. 12. Scatter plots of the SVM springback vs. the FEM 

springback. 

Figure 13 gives the comparison between the 
springback obtained by the FEM and by the four 
SVM models. It can be concluded once more that 

the radial kernel function gives the best results 
when compared with the FEM results. 

 
Fig. 13. Comparison between the four SVM models 

and the FEM. 

5. Discussion 

The results obtained with the LR, the ANN, 
and the SVM methods on the springback 
prediction are compared and discussed. From the 
obtained results, the following conclusions are 
drawn. The LR clearly shows that the distance 
between the supports and the thickness of the 
foam is the most influential parameters for the 
springback of the sandwich panel. However, it 
turns out that the punch radius is not a significant 
parameter. 

 
Fig. 14. Comparison between the three machine learning 

models, (LR), (ANN), and (SVM). 

The ANN approach based on the LM back-
propagation algorithms was used as a learning 
algorithm in the multilayered feed-forward 
networks. An increased number of neurons from 
10 to 16 in a single hidden layer were considered. 
For the comparison, some statistical methods 
such as R2 and MSE values have been used. It has 
been found that the LM algorithm with 14 
neurons gives the best results. 

The SVM using four kernel functions (radial, 
linear, quadratic, and cubic) reveals that the 
radial method is the best one for predicting 
springback in the training data. Figure 14 gives a 
comparison between the numerical results of the 
springback and the predicted values obtained by 
the three machine learning models. This figure 
shows that the ANN model is the best accurate 
model for predicting springback when compared 
with the FEM. 
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6. Conclusion 

This paper consists of predicting the 
springback of the sandwich panel under three-
point bending process by using several 
approaches of machine learning, including linear 
regression, artificial neural network and support 
vector machine. By using FEM, the predicted 
springback has been used as input to the three 
machine learning models. The obtained results 
show that the ANN approach is found to be the 
best approach for predicting springback. 

Conflicts of Interest 

The author(s) declared no potential conflicts of 
interest with respect to the research, authorship, and/ 

or publication of this article. 

References 

[1] Kim, K.J., Rhee, M.H., Choi, B.I.K., 2009. 
Development of application technique of 
aluminium sandwich sheet for automotive 
hood. Int J Precis EngManuf, 10, pp. 71–75. 

[2] Keller, T. 2007. Material Tailored Use of FRP 
Composites in Bridge and Building 
Construction. Swiss Federal Institute of 
Technology Lausanne, Switzerland. 

[3] Klempner D., Sendijarevic, V., 2004. 
Handbook of polymeric foams and foam 
technology. Munich, Germany: Carl 
HandserVerlag.  

[4] Link, T.M., 2001. ‘Formability and 
performance of steel-plastic-steel laminated 
sheet materials’, In: SAE technical paper, pp. 
48-55. 

[5] Ashby, M.F., 2001. Plastic deformation of 
cellular materials. Encyclopedia Mater. Sci. 
Technol, pp. 7068-7071. 

[6] Belouettar, S., Abbadi, A., Azari, Z., 
Belouettar, R., Freres, P., 2009. Experimental 
investigation of static and fatigue behaviour 
of composites honeycomb materials using 
four points bending tests. Compos Struct, 87, 
pp. 265–273. 

[7] Russo, A., Zuccarello, B., 2007. Experimental 
and numerical evaluation of the mechanical 
behaviour of GFRP sandwich plates. Compo 
Struct, 81, pp. 575–586. 

[8] Zhou, G., Hill, M., Hookham, N., 2007. 
Investigation of parameters governing the 
damage and energy absorption 
characteristics of honeycomb sandwich 
plates. J Sandwich Struct. Mater, 9, pp. 309–
342. 

[9] Mohammadi, S.V., Parsa, M.H., Aghchai, A.J., 
2015. Simplified springback prediction in 
Al/PP/Al sandwich air bending. Journal of 
Sandwich Structures and Materials, 17, pp. 
217–237 

[10] Amir, F., Sharaf, T., 2010. Flexural 
performance of sandwich plates comprising 
polyurethane core and GFRP skins and ribs 
of various configurations. Composite 
Structures, 92, pp.2927–293.  

[11] Daniel, I.M., Abot, J.L., 2000. Fabrication, 
testing and analysis of composite sandwich 
beams. Compos Sci Technol, 60, pp.2455–
2463. 

[12] Mohammadi, S.V., Parsa, M.H., Aghchai, A.J., 
2015. Simplified springback prediction in 
Al/PP/Al sandwich air bending. Journal of 
Sandwich Structures and Materials, 17, 
pp.217–237 

[13] Jianguang, L., Wei, X., 2017. Unconstrained 
bending and springback behaviors of 
aluminum-polymer sandwich sheets.  Int J 
Adv Manuf Technol, 91, pp.1517–1529. 

[14] Ouled Ahmed, R., Chatti, S., 2018. Simplified 
springback prediction of thick sandwich 
panel’, J Sandwich Struct Mater, 20, pp. 399–
513. 

[15] Wang, J., Li, J., Fu, C., Zhang, G., Zhu, W., Li, X., 
& Yanagimoto, J., 2021. Study on influencing 
factors of bending springback for metal fiber 
laminates’, Composite Structures, pp. 261, 
113558. 

[16] Li, X., Yang, Y., Wang, Y., Bao, J., & Li, S., 2002. 
Effect of the material-hardening mode on the 
springback simulation accuracy of V-free 
bending’, Journal of Materials Processing 
Technology, 123(2), pp.209-211. 

[17] Li, K.P., Geng, L.M., & Wagoner, R.H., 1999, 
July. Simulation of springback with the 
draw/bend test’, In Proceedings of the 
Second International Conference on 
Intelligent Processing and Manufacturing of 
Materials IPMM'99, 1, pp.91-104.  

[18] Xu, W.L., Ma, C.H., Li, C.H., & Feng, W.J., 2004. 
Sensitive factors in springback simulation 
for sheet metal forming’, Journal of Materials 
Processing Technology, 151(1-3), pp. 217-
222. 

[19] Yao, H., Liu, S. D., Du, C., & Hu, Y., 2002. 
Techniques to improve springback 
prediction accuracy using dynamic explicit 
FEA codes. SAE Transactions, pp.100-106. 

[20] Burchitz, I. A., Meinders, T., &Huetink, J., 
2006, April. Influence of numerical 
parameters on springback prediction in 
sheet metal forming’, In 9th International 
conference on material forming ESAFORM, 
pp.407-410. 

[21] Solfronk, P., Sobotka, J., & Koreček, D., 2022. 
Effect of the Computational Model and Mesh 
Strategy on the Springback Prediction of the 
Sandwich Material. Machines, 10(2), pp.114.  

[22] Ouled Ahmed Ben Ali, R., & Chatti, S., 2019. 
Modeling springback of thick sandwich 
panel using RSM’, The International Journal 



Ouled Ahmed Ben Ali and Chatti / Mechanics of Advanced Composite Structures 10 (2023) 11-20 

20 

of Advanced Manufacturing 
Technology, 103(9), pp.3375-3387. 

[23] Vasudevan1, D., Srinivasan,R. 2012. 
Comparison of Artificial Neural Network and 
Response Surface Methodology in the 
Prediction of Springback and Bend force in 
Air Bending of Electrogalvanised Steel 
Sheets. Int. Conf. on Recent Trends in 
Mechanical, Instrumentation and Thermal 
Engineering  

[24] Fei, H.A.N., Mo, J.H., Qi, H.W., Long, R.F., Cui, 
X.H., & Li, Z.W., 2013. Springback prediction 
for incremental sheet forming based on 
FEM-PSONN technology. Transactions of 
Nonferrous Metals Society of China, 23(4), 
pp. 1061-1071. 

[25] Pathak, K. K., Panthi, S., & Ramakrishnan, N., 
2005. Application of neural network in sheet 
metal bending process. Defence Science 
Journal, 55(2), pp.125. 

[26] Spathopoulos, S.C., &Stavroulakis, G.E., 2020. 
Springback prediction in sheet metal 
forming, based on finite element analysis 
and artificial neural network 
approach. Applied Mechanics, 1(2), pp.97-
110. 

[27] Apurv, K., Vishwanath P., Amit K.G., and 
Swadesh, K.S., 2008. Application of Support 
Vector Regression (SVR) in Predicting 
Spring back in V Bending Competitive 

Manufacturing. Proc. of the 2nd Intl. & 23rd 
AIMTDR Conf.  

[28] Teng, F., Zhang, W., Liang, J., & Gao, S., 2015. 
Springback prediction and optimization of 
variable stretch force trajectory in three-
dimensional stretch bending 
process’, Chinese Journal of Mechanical 
Engineering, 28(6), pp.1132-1140. 

[29] Schwarze, M., Vladimirov, I.N., & Reese, S., 
2011. Sheet metal forming and springback 
simulation by means of a new reduced 
integration solid-shell finite element 
technology’, Computer Methods in Applied 
Mechanics and Engineering, 200(5-8), 
pp.454-476. 

[30] Meinders, T., Burchitz, I. A., Bonté, M. H., & 
Lingbeek, R. A., 2008. Numerical product 
design: Springback prediction, 
compensation and 
optimization. International Journal of 
Machine Tools and Manufacture, 48(5), 
pp.499-514.  

[31] Chatti, S., & Fathallah, R., 2014. A study of the 
variations in elastic modulus and its effect on 
springback prediction. International journal 
of material forming, 7(1), pp.19-29.  

[32] Vapnik, V., 1999. The nature of statistical 
learning theory. Springer science & business 
media. 

 


