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Functionally graded material (FGM) is an in-homogeneous composite, constructed from 
various phases of material elements, often ceramic and metal. This work aims to examine 
the behavior of free vibration in porous Functionally Graded Beams (FGBs) in 2 directions 
(2D) by using nth-order shear deformation theory. With the help of Hamilton's principle 
and Reddy's beam theory, equilibrium equations for free vibration were derived. 
Boundary conditions such as Simply Supported – Simply Supported (SS), Clamped – 
Clamped (CC) and Clamped-Free (CF) were employed. A unique shear shape function was 
derived and nth-order theory was adapted to take into account the effect of transverse 
shear deformation to get zero shear stress conditions at the top and bottom surfaces of the 
beam. Based on power law, FGB properties were changed in length and thickness 
directions. The displacement functions in axial directions were articulated in algebraic 
polynomials, including admissible functions which were used to fulfill different boundary 
conditions. Convergence and verification were performed on computed results with 
findings of previous studies. It was found that the results obtained using the nth-order 
theory were in agreement and allows for better vibration analysis in a porous material. 

 

1. Introduction 

Materials have played a significant role in the 
development of society throughout human 
history. But in the present scenario, conventional 
engineering materials are deficient in fulfilling 
the desired properties, demanded in various 
applications. To overcome the aforesaid 
deficiency, advancements in the field of materials 
are needed. 

FGMs are such materials that have a good 
number of advantages over conventional 
materials. They largely preserve the 
characteristics of the components that make 
them up. According to Li et al. [1], the continuous 
transition of materials minimizes residual strain, 
and stress concentration, and offers a good 
strength-to-weight ratio. These features make 
FGMs attractive to structural engineers and 
researchers, and they are leading to be used in 
broad engineering fields, such as Aerospace, 
Mechanical, Civil, and Nuclear domains. 

1.1. FGMs 

Asemi et al. [2] “for the transverse vibration of 
double-piezoelectric-nano plate systems with 
initial stress under an external electric voltage, a 
nonlocal continuum plate model was created”. To 
account for the impact of shearing between two 
piezoelectric nanoplates in addition to the typical 
behavior of coupling elastic medium, the 
Pasternak foundation model was used. Aydogdu 
et al. [3] based on exponential and power law, the 
elastic modulus of the beam was varied in a 
thickness direction. Using shear deformation 
shell theory, the free vibration behavior of a 
simply supported FGB was determined. Al-
Zahrani et al. [4] Finite element method was used 
for investigating free vibration in axial and 
thickness directions of bi-directional FGBs. To 
describe the changes of volume fraction in metal 
and ceramic based on the Vogit model. 

Barati et al. [5] their paper examined “bi-
directional Functionally Graded (FG) nanobeams” 
exposed to a longitudinal magnetic field in terms 
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of transverse vibrations. The small-scale effect 
was taken into account using the nonlocal 
elasticity hypothesis. Bellifa et al. [6] For bending 
and dynamic behavior of FG plates, a first-order 
theory incorporating shear deformation was 
developed. The governing equations of axial and 
transverse deformations of functionally graded 
plates (FGPs) were developed using 1st-order 
plate theory with shear deformation. 
Daneshmehr et al. [7], their study examined the 
small-scale effects on free vibration behavior. The 
small-scale effects on natural frequencies were 
investigated using Eringen's nonlocal hypothesis. 
While stocky and short nanoplates were taken 
into account, higher-order shear deformation 
plate theory was adapted to provide more precise 
results when analyzing the nanoplate.  Ebrahimi 
et al. [8] based on 3rd-order beam theory with 
shear deformation, free vibration characteristics 
of FG nanobeams were investigated by presenting 
a Navier-type solution. Along the thickness 
direction, the material properties of FG 
nanobeam were changed continuously as per 
power law. Hadji et al. [9] “in their study, attention 
was given to examining nano beam's dynamic 
stability in a generic condition of non-uniform 
bending stress. Higher-order deformation theory 
was used to develop governing equations of 
motion for FGPs. Zaoui et al. [10] using “an 
improved hyperbolic shear deformation theory, 
developed analytical solutions to free vibration 
analysis of FGBs that included stretching effect”. 

Haghshenas Gorgani et al. [11], various 
higher-order shear deformation theories have 
been established for bending and free vibration of 
FGPs. The pull-in behavior of FGM cantilever 
micro/nano-beams under the influence of 
electrostatic force was studied. By adopting a 
skew-symmetric portion of rotation gradients, 
the coupling tensor becomes skew-symmetric 
fulfilling consistent couple stress theory.  Hebbar 
et al. [12] 2D and quasi-3D theories of shear 
deformation were used to analyze the behavior of 
free vibration, static bending, and elastic buckling 
of FGBs with simply supported. Huang et al. [13] 
studied composite nanoplate's nonlinear 
vibration analysis, lipid face sheets and an FG 
core were used to create a composite nanoplate. 
The FG core material characteristics vary in three 
different directions. The viscoelastic impact of 
lipid layers was investigated using the Kelvin-
Voigt model. The “nonlinear differential equation 
of vibration analysis of composite” nanoplate was 
obtained” utilizing Von-Karman hypotheses. Jha 
et al. [14] using “higher-order theory of shear and 
normal deformation, free vibration analysis of FG 
elastic, rectangular, and simply supported plates 
as described”. Although heterogeneous, 
mechanical characteristics of FGM were modified 
smoothly concerning spatial coordinates. 

Armagan Karamanli [15], two-directional FGBs 
behavior of free vibration was presented with 
various boundary conditions. The properties of 
beam material were changed by accommodating 
various gradation exponents in x and z directions. 
Ketabdari et al. [16], “based on Winkler and 
Pasternak elastic foundation, the free vibration of 
homogeneous and FGPs” were tested. The elastic 
foundation was a combination of Pasternak and 
Winkler electric support with parabolically and 
linearly variable stiffness coefficients along the 
directions. Larbi et al. [17] presented a bending 
analysis of the free vibration of FGB on the natural 
surface position of shear deformation theory. 
Boundary settings were satisfied with no shear 
correction factor. Mohammadi et al. [18], the “free 
vibration behavior of a rectangular graphene 
sheet subjected to a shear in-plane force 
investigated. “The vibration analysis of 
“orthotropic single-layered graphene sheets 
exposed to shear in-plane” force has been studied 
using nonlocal elasticity theory.” Ohab-Yazdi et al. 
[19], based on the generalized differential 
quadrature method and minimum total potential 
energy, derived boundary conditions, and 
governing equations. In their investigation 
vibration analysis of 2D, FG nanobeams were 
done by employing the Euler-Bernoulli theory. 
Nguyen et al. [20], 1st order beam theory with 
shear deformation was developed to determine 
the static and vibration of FGBs. Transverse shear 
stiffness was improved by using plane stress and 
equilibrium equation. 

Rahmani et al. [21] discussed the effect of size 
dependency in FGM based on the beam theory of 
Timoshenko. Along with the thickness, the 
material properties of FG nanobeams varied 
based on the power law. Safarabadi et al. [22] 
considered the surface effect in an investigation 
of vibration frequencies of nanobeams and for the 
satisfaction of surface balance equations of 
continuum surface elasticity, to propose the 
Gurtin-Murdoch model. Şimşek [23], the 
fundamental frequency of FGB was investigated 
using classical, first-order, and third-order 
theories with various boundary settings. Babaei 
et al. [24], this study developed a computational 
3D finite element approach to examine the static 
responses and natural frequencies of a saturated 
FG porous annular elliptical sector plate. Utilizing 
the Rayleigh-Ritz energy model, the finite 
element method was used to construct the 
governing equations. Talha et al. [25], FGM plates 
were analyzed to determine the behavior of 
vibration and static, based on a theory of HSD 
with modification of transverse displacement by 
finite element model. Thai et al. [26], FGBs were 
analyzed to determine static bending and 
vibration analysis with various theories of HSD. 
With transverse shear strain, boundary settings 
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satisfy the top and bottom surfaces of the beam. 
Vo, et al. [27], “an improved theory of shear 
deformation was developed for the analysis of 
static bending and vibration of FGBs. The shear 
correction factor was not necessary by shear 
deformation theory”. Şimşek [28], “Free and 
forced vibration of a Timoshenko beam with bi-
directional FGM was explored under the 
influence of a moving load”. In both axial and 
thickness dimensions, the beam characteristics 
varied exponentially. Sayyad et al. [29], the theory 
of unified shear deformation was developed 
based on displacement for analysis of advanced 
composite plates and beams. This theory 
considered shape function in terms of the 
transverse shear deformation effect. Razouki et 
al. [30], under UDL, developed exact analytical 
results of a simply supported beam. Specific 
analytical formulas were expressed by using 3rd-
order shear deformation and compared to 
existing numerical results and classical analytical 
ones. 

1.2. Porous FGMs 

Slimane et al. [31], using “higher order shear 
deformation theory, free vibration analysis of a 
simply supported FGP with porosity was 
investigated. The material characteristics of FG 
porous plate changed over a thickness of plate ”. 
Mehdianfar et al. [32], investigated on analysis of 
free vibration of 2D porous FG sandwich beams 
by using the Galerkin method. From Hamilton’s 
principle, the motion equations of the beam were 
derived. This theory didn't require a shear 
correction factor. In this, the analytical values 
were compared with Timoshenko's first-order 
parabolic shear deformation theory. Asemi et al. 
[33], this research investigated for the first time 
static, dynamic, and natural frequency 
assessments of FG porous annular sector plate 
reinforced by graphene nanoplatelets. The plate 
was made up of a layered model with a metallic 
matrix that has open-cell interior pores and 
graphene platelets that are dispersed uniformly 
or unevenly. Babaei et al. [34], this research 
investigated natural frequencies and dynamic 
responses of thick beams formed of saturated 
porous materials resting on a viscoelastic 
foundation. Higher-order beam theory was 
utilized to model the beam. The viscoelastic basis 
was modeled using the Kelvin-Voight equation. 
Mohammadi et al. [35], Lipid face sheets and an 
FG core were used to create a composite 
nanoplate to study the composite nanoplate's 
nonlinear vibration analysis. The FG core's 
material characteristics vary in three different 
directions. The viscoelastic impact of lipid layers 
was investigated using the Kelvin-Voigt model. 
“Nonlinear differential equation of vibration 

analysis for composite nanoplate was obtained 
utilizing Von-Karman hypotheses. 

Kim et al. [36] by “using classical and first-
order shear deformation plate theories, the 
bending, free vibration, and buckling responses 
of FG porous micro-plates were investigated ”.  
Chen et al. [37] presented free vibration analysis 
of linear and nonlinear rotating FG porous beams 
by employing Timoshenko beam theory, modified 
couple of stresses, and assumptions of Von 
Karman Geometric nonlinearity. Li et al. [38] 
investigated buckling, free vibration, and bending 
analysis of 2D FGPs by using isogeometric 
analysis and first-order shear deformation 
theory. The governing equations of porous 2D FG 
plates were derived by employing Hamilton's 
principle. Bathini et al. [39] investigated the free 
vibration behavior of bi-directional FGPs from a 
refined theory of shear deformation with first 
order. From Lagrange equations, equations of 
motion were obtained. Kumar et al. [40], based on 
classical plate theory to investigated transverse 
vibration in thin isotropic simply supported FG 
rectangular plates with the effect of porosity. The 
plate is positioned elastically against rotation. 
Vasara et al. [41], investigated non-axisymmetric 
free vibration in 2D FGPs with porosity by using 
first-order theory. By employing gradient index in 
both directions and porosity distribution in 
different ways.  

The fabrication of FGMs can be done in a 
variety of ways, including vapor deposition, self-
propagating high-temperature synthesis, powder 
metallurgy, non-pressure sintering, and multistep 
sequential infiltration. Porosities and micro-
voids, however, may appear in the material 
created during the sintering process when FGMs 
are produced. This is a result of the ceramic phase 
being at a comparatively low temperature while 
the metal phase coagulated at a very high 
temperature. The strength of the material will be 
exotically weakened by the pores. When 
constructing bidirectional FGM components, it is 
essential to evaluate the porosity effect. 

From the literature, it is observed that most 
studies dealt with analysis on non-porous FGM 
such as beams, and plates using first and second 
order theories in one direction”. This intrigued us 
to investigate the effect of porosity in two 
directions in FGM adapting nth order theory. 

“The objective of this paper is to focus on the 
free vibration behavior of 2D-FGBs with porosity 
based on a power-law variation of material 
properties with various end conditions, aspect 
ratios, gradient indexes, and porosity index".  A 
unique shear shape function was derived and 
nth order theory was adapted to take into account 
the effect of transverse shear deformation to get 
zero shear stress conditions at the top and 
bottom surfaces of FGB. 
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2. Materials and Methods 

In this research work, a rectangular beam of 
FGM with length L in the x-direction, width b in 
the y-direction, and thickness h in the z-direction 
is considered as shown in Fig. 1. Variation of 
beam material along the length direction, in this 
situation the material gradient is changed from 
left (-L/2) to right (L/2) and in the thickness 
direction, FGM rectangular beam is created by 
grading ceramic and metal phases. Here, the 
upper surface (z= +h/2) with metal and the lower 
surface (z=-h/2) with ceramic. The middle 
surface of the beam is the reference surface i.e. 
(z=0). 

 
Fig. 1. Geometry of Functionally Graded Beam 

Material properties of FGBs are the function of 
the volume fraction of constituent materials. The 
functional relationship between thickness 
coordinates and material properties is assumed. 
The volume fraction of material according to 
power-law distribution in two directions (x and 
z) is expressed in Eq. 1[42]. 

𝑉𝑓(𝑥, 𝑧) =  (
𝑧

ℎ
+
1

2
)
𝑝𝑧

(
𝑥

𝐿
+
1

2
)
𝑝𝑥

 (1) 

where, h and z represent the thickness of the 
beam and thickness coordinate, and L and x 
represent the length of the beam and length 
coordinate respectively. Origin (O) is the 
rectangular beam's mid surface (x, y) thus 
z 𝜖 [-h/2, h/2]. ‘p’ indicates the volume fraction 
behavior along the beam's thickness and length. 
Figure 2 shows a variation of volume fractions of 
metal in thickness and length direction. 

 
Fig. 2. Volume fractions of metal in thickness (z/h) and 

length (x/L) direction. 

2.1. Formulation for Functionally Graded 
Porous Beams 

Porosities appear as a defect in FGBs because 
of technical and penetration problems in the 
production process. Porosities in the beam are 
two types namely even and uneven as shown in 
Fig. 3. “The properties of efficient material of FG 
beams such as Modulus of elasticity E, Poisson's 
ratio μ and mass density ρ, are to be found by 
using a modified rule of the mixture in which the 
porosity is represented by α, which affects 
averagely on the material volume fraction of each 
constituent”. As a result, the material property 
P(x, z) can be written for each type of porosity in 
coordinates of the x and z directions. 

 
Fig. 3. Representation of bi-directional FGB with even and 

uneven porosity distributions 

Material properties of the FGM porous beam 
(even distribution) are presented in Eq.2 [43]. 

𝑃(𝑥, 𝑧) = (𝑃𝑐 − 𝑃𝑚) (
𝑧

ℎ
+
1

2
)
𝑝𝑧

(
𝑥

𝐿
+
1

2
)
𝑝𝑥

 

+𝑃𝑚 −
𝛼

2
(𝑃𝑐 + 𝑃𝑚)                                                                (2) 

here α represents the coefficient of porosity 
which can be defined as the ratio between void 
volume and complete volume (0 ≤ α< 1). “The 
subscripts m denotes the metal and c denote 
ceramic phases. ‘Px’ and 'Pz' is non-negative 
variables that define AFG (along an axis) and FG 
(along thickness) power indexes, respectively. 
These are related to volume fraction change along 
axis and thickness ". The material properties of the 
beam, i.e. Young’s Modulus ‘E’ and mass density 
‘ρ’ of FGM porous beam (even) are given in Eq. 3, 
Eq. 4. 

𝐸(𝑥, 𝑧) = (𝐸𝑐 − 𝐸𝑚) (
𝑧

ℎ
+
1

2
)
𝑝𝑧

(
𝑥

𝐿
+
1

2
)
𝑝𝑥

 

                +𝐸𝑚 −
𝛼

2
(𝐸𝑐 + 𝐸𝑚)                   (3) 

𝜌(𝑥, 𝑧) = (𝜌𝑐 − 𝜌𝑚) (
𝑧

ℎ
+
1

2
)
𝑝𝑧

(
𝑥

𝐿
+
1

2
)
𝑝𝑥

 

               +𝜌𝑚 −
𝛼

2
(𝜌𝑐 + 𝜌𝑚)                               (4) 

The material properties of the beam, i.e. 
Young’s Modulus ‘E’ and mass density ‘ρ’ of FGM 
porous beam (uneven) are given below in Eq. 5, 
Eq. 6. 
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(𝑥, 𝑧) = (𝐸𝑐 − 𝐸𝑚) (
𝑧

ℎ
+
1

2
)
𝑝𝑧

(
𝑥

𝐿
+
1

2
)
𝑝𝑥

 

              +𝐸𝑚 −
𝛼

2
(𝐸𝑐 + 𝐸𝑚) (1 −

2|𝑧

ℎ
)  (5) 

𝜌(𝑥, 𝑧) = (𝜌𝑐 − 𝜌𝑚) (
𝑧

ℎ
+
1

2
)
𝑝𝑧

(
𝑥

𝐿
+
1

2
)
𝑝𝑥

 

+𝜌𝑚 −
𝛼

2
(𝜌𝑐 + 𝜌𝑚) (1 −

2|𝑧

ℎ
)                             (6) 

2.2. Displacement Field and Constitutive 
Equations 

Consider the FG rectangular beam as shown in 
Fig.1. for an analytical result of vibration analysis.  
The accurate vibration of beams depends upon 
transverse shear and normal deformation. 
Therefore any refinement of classical beam 
theory is generally meaningless. In this regard, 
the effect of transverse shear and normal strain is 
considered. The present theory has important 
features as follows: 

The displacement equations are based on 
Reddy’s advanced refined higher-order beam 
theory. 

𝑈(𝑥, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑡) + z∅(𝑥, 𝑡) 

                   −𝑓 (∅(𝑥, 𝑡) +
𝜕𝑤0

𝜕𝑥
(𝑥, 𝑡))                  (7) 

𝑊(𝑥, 𝑧, 𝑡) =  𝑤0(𝑥, 𝑡)    (8) 

From the above equations, u is axial 
displacement, w is transverse displacement, and 
u0, w0 is the axial displacement at any point on the 

neutral axis, 
𝜕𝑤0

𝜕𝑥
   is the bending slope and ϕ is a 

shear slope. For determining the distribution of 
transverse shear deformation shape function 
𝑖. 𝑒. 𝑓(𝑧). 

ԑ𝑥 =
𝜕𝑈

𝜕𝑥
=

𝜕𝑢0

𝜕𝑥
− 𝑧

𝜕2𝑤0

𝜕𝑥2
+ 𝑓 (

𝜕𝜙

𝜕𝑥
+

𝜕2𝑤0

𝜕𝑥2
)  (9) 

ԑ𝑧 =
𝜕𝑤

𝜕𝑧
= 0                                                 (10) 

𝛾𝑥𝑧 = 𝑓
′ [∅ +

𝜕𝑤0

𝜕𝑥
]                                 (11) 

𝑓 =
ℎ

𝜋
∗ 𝑠𝑖𝑛 [

𝜋 ∗ 𝑧

ℎ
] 

    −
𝑧

𝑛∗𝜋
(1 −

1

𝑛
∗ (

2

ℎ
)
𝑛−1

∗ 𝑧𝑛−1)                    (12) 

𝑓′ =
ℎ

𝜋
∗ 𝑠𝑖𝑛 [

𝜋

ℎ
] 

−
1

𝑛∗𝜋
(1 −

1

𝑛
∗ (

2

ℎ
)
𝑛−1

∗ (𝑛 − 1)𝑧𝑛−2)         (13) 

The relationship between stress and strain of 
two directional FGM beam coordinate axes is 
given by, 

𝜎𝑥 =
𝐸(𝑥,𝑧)

1−𝜇2
ԑ𝑥                                        (14) 

𝜏𝑥𝑧 = 
𝐸(𝑥,𝑧)

2(1+𝜇)
𝛾𝑥𝑧                                  (15) 

2.3. Governing Equations of Motion 

From the principle of Hamilton, the equations 
of motion are derived and can be stated in time 
intervals [0,t] as, 

∫ 𝛿(𝑈 − 𝐾)
𝑇

0
𝑑𝑡 = 0                                   (16) 

where δU is the variation of strain energy, and δk 
is the variation of kinetic energy respectively. 

2.4. Formulation of Free Vibration 

The strain energy of bi-directional FGB can be 
written as: 

𝑈 =     
1

2
 ∫ ∫ (𝜎𝑥𝜀𝑥  + 𝜏𝑥𝑧𝛾𝑥𝑧)𝑑𝑧𝑑𝑥

+
ℎ

2

−
ℎ

2

𝐿

0
           (17) 

Substituting Eq. (9), Eq. (11), Eq. (14), and 
Eq.(15) into Eq. (17) the strain energy can be 
written as, 

U =
1

2
∫ ∫ [(

E(x,z)

1−μ2
((

∂u0

∂x
)
2

− 2f 
∂u0

∂x

d2w0

dx2
+

+
h

2

−
h

2

L

0

(2z − 2f)
∂u0

∂x

∂ϕ

∂x
+ f2 (

d2w0

dx2
)
2

+
d2w0

dx2

∂ϕ

∂x
(2f2 −

2zf) + (
∂ϕ

∂x
)
2
(z2 − 2zf + f2))) +

E(x,z)

2(1+μ)
(ϕ2(1 − 2f ′ + (f′)2 +ϕ

∂w0

∂x
(2 −

4f ′−2f′ 2) + (
dw0

dx
)
2
(1 − 2f ′ − (f′)2)] dzdx  

(18) 

(A,B,C,D,F,H)=∫ (1, z, f ′, f, (f ′)2, (f)2)d
+
h

2

−
h

2

z  

(18a) 

U =
1

2
∫ ∫ [(

E(x,z)

1−μ2
(A (

∂u0

∂x
)
2

− 2D 
∂u0

∂x
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dx2
+

+
h

2

−
h

2

L

0

(2B − 2D)
∂u0

∂x

∂ϕ
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d2w0

dx2
)
2

+
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∂x
(2H −
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∂ϕ

∂x
)
2
(C − 2BD + H))) +

E(x,z)

2(1+μ)
(ϕ2(1 − 2C + H) + ϕ

∂w0

∂x
(2 − 4C −

2F) + (
dw0

dx
)
2

(1 − 2C − F))] dx  

(18b) 
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The kinetic energy of bi-directional FGB can 
be written similarly: 

(I0, I1, I2, J1, J2, K1) = ∫  (1, z, f ′, f, (f ′)2, (f)2)
+
h
2

−
h
2

 

(18c) 

𝐾 =
1

2
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E(x,z)
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𝜕𝑢0

𝜕𝑡

𝜕𝜙

𝜕𝑡
+ 𝐾1 (

𝑑2𝑤0

𝜕𝑥𝑑𝑡
)
2

+

(2𝐼1 − 2𝐼1𝐽1)
𝑑2𝑤0

𝑑𝑥𝑑𝑡

𝜕𝜙

𝜕𝑡
+ (𝐼2 − 2𝐼1𝐽1 +

𝐾1) (
𝜕𝜙

𝜕𝑡
)
2

)) + 𝜌(x, 𝑧)
𝐸(x,z)

2(1+𝜇)
(𝜙2(1 − 2𝐼2 +

𝐾1) + 𝜙
𝜕𝑤0

𝜕𝑡
(2 − 4𝐼2 − 2𝐽2) + (

𝑑2𝑤0

𝑑𝑥𝑑𝑡
)
2

(1 −

2𝐼2 − 𝐽2))]  𝑑𝑥                                                   (19) 

The kinematic boundary conditions 
expressed in Lagrange equations from 
Hamilton’s principle are expressed in infinity 
dimensions in terms of generalized coordinators 
and are presented in displacement functions as, 

𝑢0(𝑥, 𝑡) = ∑𝐴𝑗𝜃𝑗(𝑥)𝑒
𝑖𝜔𝑡

𝑚

𝑗=1

,   𝜃𝑗(𝑥) 

                = (𝑥 +
𝐿

2
)
𝑝𝑢
(𝑥 −

𝐿

2
)
𝑞𝑢
𝑥𝑚−1            (20) 

𝑤0(𝑥, 𝑡) = ∑𝐵𝑗𝜑𝑗(𝑥)𝑒
𝑖𝜔𝑡

𝑚

𝑗=1

, 

𝜑𝑗(𝑥) = (𝑥 +
𝐿

2
)
𝑝𝑤
(𝑥 −

𝐿

2
)
𝑞𝑤
𝑥𝑚−1               (21) 

𝜙(𝑥, 𝑡) =∑𝐶𝑗𝜓𝑗(𝑥)𝑒
𝑖𝜔𝑡

𝑚

𝑗=1

, 

𝜓𝑗(𝑥) = (𝑥 +
𝐿

2
)
𝑝𝜙
(𝑥 −

𝐿

2
)
𝑞𝜙
𝑥𝑚−1              (22) 

Proposed  𝜃𝑗 (𝑥),  φj(𝑥), and ψj(𝑥) are shape 

functions in the natural frequency of beam, and 

𝑖 = √−1 complex numbers are used in 
determining unknown coefficients 𝐴𝑗, 𝐵𝑗 , and 𝐶𝑗. 

By substituting equations 20, 21, and 22 into 
18 & 19 and got governing equations of motion. 

∂U

∂qj
+

∂

dt
(
∂k

∂qj
) = 0                                  (23) 

The values of Aj, Bj, and Cj represented with qj, 
lead to: 

[
 
 
 
 
[𝑆11]

[𝑆12]
𝑇

[𝑆13]
𝑇

[𝑆12]

[𝑆22]

[𝑆23]
𝑇

[𝑆13]

[𝑆23]

[𝑆33]]
 
 
 
 

− 𝜔2

[
 
 
 
 
[𝑀11]

[𝑀12]
𝑇

[𝑀13]
𝑇

[𝑀12]

[𝑀22]

[𝑀23]
𝑇

[𝑀13]

[𝑀23]

[𝑀33]]
 
 
 
 

{
 
 

 
 
𝐴

𝐵

𝐶}
 
 

 
 

 

=

{
 
 

 
 
{0}

{0}

{0}}
 
 

 
 

                       (24) 

The stiffness and mass matrices are [Ski] and 
[Mki], respectively. The stiffness and mass 
matrices should be symmetric and in max size. 
The stiffness and mass matrix components are 
given by,  

𝑆11(𝑖, 𝑗) = A∫
𝐸(𝑥,𝑧)

1−𝜇2

𝐿/2

−𝐿/2
𝜃𝑖,𝑥𝜃𝑗,𝑥𝑑𝑥                  (25) 

𝑆12(𝑖, 𝑗) = −𝐷 ∫
𝐸(𝑥,𝑧)

1−𝜇2

𝐿/2

−𝐿/2
𝜃𝑖,𝑥𝜑𝑗,𝑥𝑥𝑑𝑥            (26) 

𝑆13(𝑖, 𝑗) = (𝐵 − 𝐷)∫
𝐸(𝑥,𝑧)

1−𝜇2

𝐿/2

−𝐿/2
𝜃𝑖,𝑥ψ𝑗,𝑥𝑑𝑥    (27) 

𝑆22(𝑖, 𝑗) = H∫
𝐸(𝑥, 𝑧)

1 − 𝜇2

𝐿
2

−
𝐿
2

𝜑𝑖,𝑥𝑥𝜑𝑗,𝑥𝑥  𝑑𝑥 + 

(1 − 2C − F) ∫
𝐸(𝑥,𝑧)

2(1+𝜇)

𝐿

2

−
𝐿

2

 𝜑𝑖,𝑥𝜑𝑗,𝑥𝑑𝑥                 (28) 

𝑆23(𝑖, 𝑗) = (2H − 2BD)∫
𝐸(𝑥,𝑧)

1−𝜇2

𝐿

2

−
𝐿

2

𝜑𝑖,𝑥𝑥ψ𝑗,𝑥𝑑𝑥 +

(2 − 4𝐼2 − 2𝐽2) ∫
𝐸(𝑥,𝑧)

2(1+𝜇)

𝐿

2

−
𝐿

2

𝜑𝑖,𝑥ψ𝑗𝑑𝑥               (29) 

𝑆33(𝑖, 𝑗) = C − 2BD + H∫
𝐸(𝑥,𝑧)

1−𝜇2

𝐿

2

−
𝐿

2

ψ𝑖,𝑥ψ𝑗,𝑥𝑑𝑥 +

(1 − 2C + H)∫
𝐸(𝑥,𝑧)

2(1+𝜇)

𝐿

2

−
𝐿

2

ψ𝑖ψ𝑗𝑑𝑥                      (30) 

𝑀11(𝑖, 𝑗) = 𝐼0 ∫ 𝜌(𝑥, 𝑧)
E(x,z)

1−μ2

𝐿/2

−𝐿/2
𝜃𝑖𝜃𝑗𝑑𝑥        (31) 

𝑀12(𝑖, 𝑗) = −2𝐽1 ∫ 𝜌(𝑧)
E(x,z)

1−μ2

𝐿/2

−𝐿/2
𝜃𝑖𝜑𝑗,𝑥𝑑𝑥   (32) 

𝑀13(𝑖, 𝑗) = 2𝐼1 − 2𝐽1 ∫ 𝜌(𝑥, 𝑧)
E(x,z)

1−μ2

𝐿/2

−𝐿/2
𝜃𝑖ψ𝑗𝑑𝑥   

                                                                                 (33) 

𝑀22(𝑖, 𝑗) = 𝐾1 ∫  𝜌(𝑥, 𝑧)
E(x,z)

1−μ2

𝐿

2

−
𝐿

2

𝜑𝑖𝜑𝑗𝑑𝑥 +

(1 − 2𝐼2 − 𝐽2) ∫  𝜌(𝑥, 𝑧)
𝐸(x,z)

2(1+𝜇)

𝐿

2

−
𝐿

2

𝜑𝑖,𝑥𝜑𝑗,𝑥𝑑𝑥   

(34) 

𝑀23(𝑖, 𝑗) = 2𝐼1 −

2𝐼1𝐽1 ∫  𝜌(𝑥, 𝑧)
𝐿

2

−
𝐿

2

E(x,z)

1−μ2
𝜑𝑖,𝑥ψ𝑗𝑑𝑥                     (35) 

𝑀33(𝑖, 𝑗) = (𝐼2 − 2𝐼1𝐽1 + 𝐾1) 

                  × ∫  𝜌(𝑥, 𝑧)
𝐿

2

−
𝐿

2

𝐸(𝑥,𝑧)

1−𝜇2
𝜓𝑖𝜓𝑗𝑑𝑥            (36) 

3. Results and Discussion 

Free vibration analysis of 2D FGBs, “which are 
affected by thickness ratio, aspect ratio, 
gradation indexes, type of porosity, and volume 
fraction porosity, is presented. The numerical 
investigations on Simply Supported (SS), 
Clamped-Clamped (CC), and Clamped-Free (CF) 
beam at different boundary conditions are 
carried out” as shown in Table 1. 
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Table 1. Various kinematic boundary conditions for 
numerical computations. 

Boundary condition X= -L/2 X= L/2 

Simply Supported u=0, w=0 w=0 

Clamped-Camped 
u=0, w=0,  
𝜙=0, w’=0 

u=0,w=0, 
𝜙=0, w’=0 

Clamped-Free 
u=0, w=0, 
𝜙=0, w’=0  

Free vibration behavior is presented to 
discuss and validate the accuracy of the current 
theory. FGM porous beam is considered for 
numerical results, made of Alumina and 
Aluminum with material properties as follows: 

Alumina: EC=380 GPa  ρc = 3960 kg/m3 μc = 0.3 

Aluminum: Em=70 GPa  ρm = 2702 kg/m3 μm=0.3 

According to power-law distribution, the FGB 
material properties are varying in thickness (h) 
and axial (L) directions. For a representation of 
results, the following dimensionless natural 
frequency (λ) parameter is used: 

𝜆 =
𝜔𝐿2

ℎ
√
𝜌𝑚

𝐸𝑚
                   (37) 

Consider the homogeneous beam and a 
different number of terms with displacement 
functions. The result of dimensionless free 
vibration is presented with various gradient 
indexes in x and z directions, aspect ratios, and 
boundary conditions. For comparison purpose, 
previous result [15, 28] was used in terms of free 
vibration as shown in Table 2, Table 3, Table 4, 
Table 5, Table 6, and Table 7. It can be observed 
that in dimensionless free vibration of SS, CC, and 
CF beams, the response was very quick and 
polynomial expansion is at 6 in the SS beam and 
4 in CC and CF beams. But for better accuracy 
purposes, polynomial expansion at 12 terms was 
considered. In terms of aspect ratios (L/h=5 and 
L/h=20) and gradient indexes in both directions, 
dimensionless free vibration decreases in SS, CC, 
and CF beams as the gradient indexes increases 
in both directions. On the other hand, the 
dimensionless natural frequency of the CC beam 
increases in the x-direction and decreases in the 
z-direction as the gradient index value increase, 
this is due to the end conditions and reactions. 

From the result, the elasticity modulus and 
stiffness of the beam increase subsequently with 
an increase in gradient indexes. The frequencies 
have raised as since the gradient indexes and 
elasticity modulus increase along with the 
stiffness of the beam. Of course, this is accurate 
provided that the beam's mass remains constant. 
Anyhow in the study mass is not consistent and it 
is increased by gradient indexes of material. 
According to vibration theory, the vibration 
frequency is inversely proportional to mass and 

directly proportional to the rigidity (also known 
as elasticity modulus). Then it can be inferred 
that the effect of modulus of elasticity is more on 
dimensionless fundamental frequency and the 
effect of mass is less on the dimensionless 
fundamental frequency. But the valves of 
elasticity modulus and mass can compensate for 
the dimensionless fundamental frequency. 
However, it is observed that the effect of mass is 
slightly more than the effect of elasticity modules 
on frequency. Another important observation is 
that the effect of gradient indexes (px, pz) is 
different on frequencies. This effect is dependent 
upon the boundary conditions. From 
observation, the effect of gradient indexes on the 
frequency of SS and CC beam is the same, but the 
gradient index in the x-direction is more effective 
than the gradient index in the z-direction as 
shown in Table 4 and Table 5. In the CF beam, the 
effect of the gradient index in the z-direction is 
more than in the x-direction of the gradient index 
on frequency. Finally, the frequency is more in 
the CC beam and followed by SS and CF beams as 
shown in Table 2, Table 3, Table 4, Table 5, Table 
6, and Table 7. It is found that the aspect ratio 
effect becomes very important because, the free 
vibration increases as the aspect ratio increases, 
refer to Fig. 4. Fig.5, and Fig. 6.  

 
Fig. 4. Changes in dimensionless natural frequencies of SS 

beam at various aspect ratios along the x-direction gradient 
index and z-direction gradient index. 

 
Fig. 5. Changes in dimensionless natural frequencies of CC 

beam at various aspect ratios along the x-direction gradient 
index and z-direction gradient index. 
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Table 2. Influence of gradient indexes and aspect ratio on dimensionless natural frequencies of SS bi-directional FGB, L/h=5 

Beam Theory Px 
L/h=5                                                           Pz 

0 0.2 0.4 0.6 0.8 1 

Timoshenko [30] 

0 

2.6767 2.6748 2.6669 2.6533 2.6337 2.6103 

RBT [17] 2.6773 2.6746 2.6665 2.6532 2.6347 2.6114 

PRESENT 

2 terms 2.9619 2.9589 2.9501 2.9428 2.9224 2.8968 

4 terms 2.6782 2.6756 2.6672 2.6546 2.6371 2.6136 

6 terms 2.6774 2.6748 2.6664 2.6538 2.6346 2.6118 

8 terms 2.6774 2.6748 2.6664 2.6538 2.6346 2.6118 

10 terms 2.6774 2.6748 2.6664 2.6538 2.6346 2.6118 

12 terms 2.6774 2.6748 2.6664 2.6538 2.6346 2.6118 

Timoshenko [30] 

0.4 

2.6728 2.6689 2.6611 2.6474 2.6279 2.6044 

RBT [17] 2.6722 2.6694 2.6613 2.6479 2.6293 2.6059 

PRESENT 

2 terms 2.9614 2.9583 2.9490 2.9338 2.9128 2.8864 

4 terms 2.6733 2.6707 2.6629 2.6501 2.6323 2.6099 

6 terms 2.6725 2.6699 2.6615 2.6478 2.6289 2.6061 

8terms 2.6725 2.6699 2.6615 2.6478 2.6289 2.6061 

10terms 2.6725 2.6699 2.6615 2.6478 2.6289 2.6061 

12terms 2.6725 2.6699 2.6615 2.6478 2.6289 2.6061 

Timoshenko [30] 

1 

2.6455 2.6416 2.6337 2.6201 2.6005 2.5771 

RBT [17] 2.6452 2.6425 2.6418 2.6208 2.6022 2.5788 

PRESENT 

2 terms 2.9145 2.9112 2.9015 2.8854 2.8626 2.8351 

4 terms 2.6463 2.6436 2.6357 2.6225 2.6036 2.5808 

6 terms 2.6451 2.6416 2.6337 2.6205 2.6025 2.5792 

8terms 2.6451 2.6416 2.6337 2.6205 2.6025 2.5792 

10terms 2.6451 2.6416 2.6337 2.6205 2.6025 2.5792 

12terms 2.6451 2.6416 2.6337 2.6205 2.6025 2.5792 

Table 3. Influence of gradient indexes and aspect ratio on dimensionless natural frequencies of SS bi-directional FGB, L/h=20 

Beam Theory Px 
L/h=20                                                        Pz 

0 0.2 0.4 0.6 0.8 1 

Timoshenko [30] 

0 

2.8369 2.8349 2.8251 2.8115 2.7919 2.7685 

RBT [17] 2.8371 2.8343 2.8258 2.8118 2.7925 2.7681 

P 
R 
E 
S 
E 
N 
T 

2 terms 3.1487 3.1455 3.1361 3.1206 3.0992 3.0721 

4 terms 2.8377 2.8349 2.8265 2.8125 2.7933 2.7689 

6 terms 2.8369 2.8340 2.8256 2.8117 2.7924 2.7681 

8 terms 2.8369 2.8340 2.8256 2.8117 2.7924 2.7681 

10 terms 2.8369 2.8340 2.8256 2.8117 2.7924 2.7681 

12 terms 2.8369 2.8340 2.8256 2.8117 2.7924 2.7681 

Timoshenko [30] 

0.4 

2.8330 2.8291 2.8212 2.8076 2.7880 2.7626 

RBT [17] 2.8326 2.8298 2.8213 2.8073 2.7880 2.7636 

P 
R 
E 
S 
E 
N 
T 

2 terms 3.1386 3.1355 3.1261 3.1106 3.0892 3.0621 

4 terms 2.8332 2.8303 2.8219 2.8080 2.7887 2.7644 

6 terms 2.8324 2.8296 2.8212 2.8072 2.7880 2.7637 

8terms 2.8324 2.8296 2.8212 2.8072 2.7880 2.7637 

10terms 2.8324 2.8296 2.8212 2.8072 2.7880 2.7637 

12terms 2.8324 2.8296 2.8212 2.8072 2.7880 2.7637 

Timoshenko [30] 

1 

2.8096 2.8056 2.7978 2.7841 2.7646 2.7412 

RBT [17] 2.8089 2.8061 2.7977 2.7839 2.7647 2.7405 

P 
R 
E 
S 
E 
N 
T 

2 terms 3.0878 3.0847 3.0755 3.0601 3.0390 3.0122 

4 terms 2.8095 2.8067 2.7983 2.7845 2.7654 2.7412 

6 terms 2.8091 2.8063 2.7979 2.7841 2.7650 2.7408 

8terms 2.8091 2.8063 2.7979 2.7841 2.7650 2.7408 

10terms 2.8091 2.8063 2.7979 2.7841 2.7650 2.7408 

12terms 2.8091 2.8063 2.7979 2.7841 2.7650 2.7408 
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Table 4. Influence of gradient indexes and aspect ratio on dimensionless natural frequencies of CC bi-directional FGB, L/h=5. 

Beam Theory Px 
L/h=5                                                       Pz 

0 0.2 0.4 0.6 0.8 1 

Timoshenko [30] 

0 

5.1943 5.1904 5.1806 5.1630 5.1396 5.1083 

RBT [17] 5.2314 5.2274 5.2155 5.1958 5.1685 5.1339 

P 
R 
E 
S 
E 
N 
T 

2 terms 5.2515 5.2485 5.2393 5.2241 5.2025 5.1746 

4 terms 5.2328 5.2299 5.2208 5.2056 5.1841 5.1563 

6 terms 5.2328 5.2298 5.2207 5.2055 5.1840 5.1562 

8terms 5.2328 5.2298 5.2207 5.2055 5.1840 5.1562 

10 terms 5.2328 5.2298 5.2207 5.2055 5.1840 5.1562 

12 terms 5.2328 5.2298 5.2207 5.2055 5.1840 5.1562 

Timoshenko [30] 

0.4 

5.1982 5.1943 5.1845 5.1669 5.1435 5.1123 

RBT [17] 5.2356 5.2316 5.2197 5.2000 5.1727 5.1381 

P 
R 
E 
S 
E 
N 
T 

2 terms 5.2612 5.2582 5.2492 5.2340 5.2127 5.1850 

4 terms 5.2376 5.2347 5.2256 5.2164 5.1889 5.1611 

6 terms 5.2376 5.2346 5.2255 5.2163 5.1888 5.1609 

8terms 5.2376 5.2346 5.2255 5.2163 5.1888 5.1609 

10 terms 5.2376 5.2346 5.2255 5.2163 5.1888 5.1609 

12 terms 5.2376 5.2346 5.2255 5.2163 5.1888 5.1609 

Timoshenko [30] 

1 

5.2197 5.2177 5.2060 5.1884 5.1650 5.1337 

RBT [17] 5.2580 5.2540 5.2421 5.2223 5.1949 5.1601 

P 
R 
E 
S 
E 
N 
T 

2 terms 5.3123 5.3095 5.3008 5.2864 5.2660 5.2394 

4 terms 5.2631 5.2603 5.2512 5.2359 5.2144 5.1864 

6 terms 5.2631 5.2601 5.2510 5.2357 5.2141 5.1862 

8terms 5.2631 5.2601 5.2510 5.2357 5.2141 5.1862 

10 terms 5.2631 5.2601 5.2510 5.2357 5.2141 5.1862 

12 terms 5.2631 5.2601 5.2510 5.2357 5.2141 5.1862 

Table 5. Influence of gradient indexes and aspect ratio on dimensionless natural frequencies of CC bi-directional FGB, L/h=20 

Beam Theory Px 
L/h=20                                                     Pz 

0 0.2 0.4 0.6 0.8 1 

Timoshenko [30] 

0 

6.3486 6.3427 6.3251 6.2939 6.2529 6.2001 

RBT [17] 6.3513 6.3451 6.3266 6.2690 6.2537 6.2002 

P 
R 
E 
S 
E 
N 
T 

2 terms 6.3734 6.3673 6.3491 6.3189 6.2772 6.2244 

4 terms 6.3514 6.3455 6.3273 6.2973 6.2557 6.2031 

6 terms 6.3514 6.3453 6.3272 6.2972 6.2556 6.2029 

8terms 6.3514 6.3453 6.3272 6.2972 6.2556 6.2029 

10 terms 6.3514 6.3453 6.3272 6.2972 6.2556 6.2029 

12 terms 6.3514 6.3453 6.3272 6.2972 6.2556 6.2029 

Timoshenko [30] 

0.4 

6.3564 6.3486 6.3310 6.2998 6.2587 6.2060 

RBT [17] 6.3575 6.3513 6.3327 6.3021 6.2597 6.2062 

P 
R 
E 
S 
E 
N 
T 

2 terms 6.3785 6.3725 6.3545 6.3247 6.2835 6.2312 

4 terms 6.3578 6.3517 6.3335 6.3035 6.2618 6.2091 

6 terms 6.3577 6.3516 6.3334 6.3033 6.2617 6.2090 

8terms 6.3577 6.3516 6.3334 6.3033 6.2617 6.2090 

10 terms 6.3577 6.3516 6.3334 6.3033 6.2617 6.2090 

12 terms 6.3577 6.3516 6.3334 6.3033 6.2617 6.2090 

Timoshenko [30] 

1 

6.3876 6.3818 6.3623 6.3330 6.2900 6.2373 

RBT [17] 6.3896 6.3832 6.3646 6.3338 6.2912 6.2374 

P 
R 
E 
S 
E 
N 
T 

2 terms 6.4069 6.4013 6.3844 6.3565 6.3177 6.2683 

4 terms 6.3907 6.3846 6.3663 6.3361 6.2943 6.2413 

6 terms 6.3906 6.3844 6.3662 6.3360 6.2941 6.2412 

8terms 6.3906 6.3844 6.3662 6.3360 6.2941 6.2412 

10 terms 6.3906 6.3844 6.3662 6.3360 6.2941 6.2412 

12 terms 6.3906 6.3844 6.3662 6.3360 6.2941 6.2412 
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Table 6. Influence of gradient indexes and aspect ratio on dimensionless natural frequencies of CF bi-directional FGB, L/h=5. 

Beam Theory Px 
L/h=5                                                        Pz 

0 0.2 0.4 0.6 0.8 1 

Timoshenko [30] 

0 

0.9844 0.9832 0.9796 0.9735 0.9661 0.9576 

RBT [17] 0.9848 0.9839 0.9810 0.9764 0.9700 0.9618 

P 
R 
E 
S 
E 
N 
T 

2 
terms 

0.9894 0.9885 0.9857 0.9812 0.9749 0.9669 

4 
terms 

0.9850 0.9840 0.9813 0.9768 0.9705 0.9626 

6 
terms 

0.9850 0.9840 0.9813 0.9768 0.9705 0.9626 

8terms 0.9850 0.9840 0.9813 0.9768 0.9705 0.9626 

10 
terms 

0.9850 0.9840 0.9813 0.9768 0.9705 0.9626 

12 
terms 

0.9850 0.9840 0.9813 0.9768 0.9705 0.9626 

Timoshenko [30] 

0.4 

0.8709 0.8697 0.8673 0.8624 0.8564 0.8486 

RBT [17] 0.8720 0.8712 0.8687 0.8645 0.8588 0.8516 

P 
R 
E 
S 
E 
N 
T 

2 
terms 

0.8797 0.8789 0.8765 0.8724 0.8668 0.8597 

4 
terms 

0.8706 0.8698 0.8673 0.8633 0.8508 0.8492 

6 
terms 

0.8706 0.8698 0.8673 0.8633 0.8508 0.8492 

8terms 0.8706 0.8698 0.8673 0.8633 0.8508 0.8492 

10 
terms 

0.8706 0.8698 0.8673 0.8633 0.8508 0.8492 

12 
terms 

0.8706 0.8698 0.8673 0.8633 0.8508 0.8492 

Timoshenko [30] 

1 

0.7216 0.7216 0.7177 0.7138 0.7099 0.7021 

RBT [17] 0.7225 0.7218 0.7197 0.7163 0.7115 0.7055 

P 
R 
E 
S 
E 
N 
T 

2 
terms 

0.7414 0.7407 0.7386 0.7352 0.7304 0.7244 

4 
terms 

0.7225 0.7218 0.7198 0.7164 0.7118 0.7059 

6 
terms 

0.7225 0.7218 0.7198 0.7164 0.7118 0.7059 

8terms 0.7225 0.7218 0.7198 0.7164 0.7118 0.7059 

10 
terms 

0.7225 0.7218 0.7198 0.7164 0.7118 0.7059 

12 
terms 

0.7225 0.7218 0.7198 0.7164 0.7118 0.7059 

Table 7. Influence of gradient indexes and aspect ratio on dimensionless natural frequencies of CF bi-directional FGB, L/h=20. 

 

Beam Theory Px 
L/h=20                                                      Pz 

0 0.2 0.4 0.6 0.8 1 

Timoshenko [30] 

0 

1.0126 1.0126 1.0087 1.0029 0.9970 0.9873 

RBT [17] 1.0130 1.0120 1.0090 1.0040 0.9971 0.9884 

P 
R 
E 
S 
E 
N 
T 

2 terms 1.0178 1.0168 1.0138 1.0088 1.0019 0.9932 

4 terms 1.0130 1.0120 1.0090 1.0040 0.9972 0.9885 

6 terms 1.0130 1.0120 1.0090 1.0040 0.9972 0.9885 

8terms 1.0130 1.0120 1.0090 1.0040 0.9972 0.9885 

10 terms 1.0130 1.0120 1.0090 1.0040 0.9972 0.9885 

12 terms 1.0130 1.0120 1.0090 1.0040 0.9972 0.9885 

Timoshenko [30] 

0.4 

0.8955 0.8935 0.8916 0.8876 0.8798 0.8721 

RBT [17] 0.8950 0.8941 0.8914 0.8870 0.8810 0.8733 

P 
R 
E 
S 
E 
N 
T 

2 terms 0.9046 0.9037 0.9010 0.8966 0.8905 0.8827 

4 terms 0.8949 0.8940 0.8914 0.8870 0.8809 0.8732 

6 terms 0.8949 0.8940 0.8914 0.8870 0.8809 0.8732 

8terms 0.8949 0.8940 0.8914 0.8870 0.8809 0.8732 

10 terms 0.8949 0.8940 0.8914 0.8870 0.8809 0.8732 

12 terms 0.8949 0.8940 0.8914 0.8870 0.8809 0.8732 

Timoshenko [30] 

1 

0.7392 0.7392 0.7373 0.7333 0.7275 0.7216 

RBT [17] 0.7394 0.7386 0.7364 0.7328 0.7278 0.7214 

P 
R 
E 
S 
E 
N 
T 

2 terms 0.7589 0.7582 0.7559 0.7522 0.7470 0.7405 

4 terms 0.7392 0.7385 0.7363 0.7326 0.7276 0.7213 

6 terms 0.7392 0.7385 0.7363 0.7326 0.7276 0.7213 

8terms 0.7392 0.7385 0.7363 0.7326 0.7276 0.7213 

10 terms 0.7392 0.7385 0.7363 0.7326 0.7276 0.7213 

12 terms 0.7392 0.7385 0.7363 0.7326 0.7276 0.7213 
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Fig. 6. Changes in dimensionless natural frequencies of CF 
beam at various aspect ratios along the x-direction gradient 

 
Fig. 7. Dimensionless natural frequencies of SS beam with 

even porosity at aspect ratio L/h=5 

 
Fig. 8.  Dimensionless natural frequencies of SS beam 

with uneven porosity at aspect ratio L/h=5 

 
Fig. 9. Dimensionless natural frequencies of CC beam 

with even porosity at aspect ratio L/h=5 

 
Fig. 10. Dimensionless natural frequencies of CC beam 

with uneven porosity at aspect ratio L/h=5 

 
Fig. 11. Dimensionless natural frequencies of CF beam 

with even porosity at aspect ratio L/h=5 
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Table 8. Influence of gradient indexes and porosity distribution on dimensionless natural frequencies 
of SS bi-directional FGB at aspect ratio L/h=5 

Px  & 
Pz 

Even Porosity 
 

Uneven Porosity 

0 0.1 0.2 0.3 0 0.1 0.2 0.3 

0 2.6774 2.7781 2.8193 2.8528 

 

2.6774 2.7612 2.7843 2.7985 

0.2 2.6738 2.7708 2.8082 2.8376 2.6738 2.7573 2.7805 2.7944 

0.4 2.6615 2.7559 2.7897 2.8154 2.6615 2.7453 2.7649 2.7771 

0.6 2.6447 2.7333 2.7628 2.7861 2.6447 2.7228 2.7420 2.7524 

0.8 2.6192 2.7032 2.7305 2.7499 2.6192 2.6937 2.7110 2.7196 

1 2.5792 2.6656 2.6901 2.7068 2.5792 2.6570 2.6723 2.6793 

Table 9. Influence of gradient indexes and porosity distribution on dimensionless natural frequencies 
 of CC bi-directional FGB at aspect ratio L/h=5 

Px 
& Pz 

Even Porosity 
 

Uneven Porosity 

0 0.1 0.2 0.3 0 0.1 0.2 0.3 

0 5.2328 5.6552 5.9867 6.3282 

 

5.2328 5.6249 5.9175 6.2110 

0.2 5.2310 5.5870 5.9698 6.3005 5.2310 5.5623 5.9127 6.2040 

0.4 5.2255 5.5745 5.9479 6.2675 5.2255 5.5537 5.8995 6.1854 

0.6 5.2163 5.5578 5.9212 6.2293 5.2163 5.5398 5.8791 6.1577 

0.8 5.2032 5.5368 5.8896 6.1860 5.2032 5.5209 5.8523 6.1224 

1 5.1862 5.5114 5.8532 6.1376 5.1862 5.4971 5.8197 6.0804 

Table 10. Influence of gradient indexes and porosity distribution on dimensionless natural frequencies 
 of CF bi-directional FGB at aspect ratio L/h=5 

Px 
& Pz 

Even Porosity 
 

Uneven Porosity 

0 0.1 0.2 0.3 0 0.1 0.2 0.3 

0 0.9850 1.0006 1.0142 1.0256 

 

0.9850 0.9944 1.0014 1.0057 

0.2 0.9255 0.9381 0.9488 0.9571 0.9255 0.9317 0.9355 0.9364 

0.4 0.8673 0.8777 0.8861 0.8922 0.8673 0.8714 0.8731 0.8720 

0.6 0.8108 0.8193 0.8260 0.8305 0.8108 0.8134 0.8137 0.8114 

0.8 0.7560 0.7631 0.7685 0.7718 0.7560 0.7576 0.7571 0.7542 

1 0.7059 0.7092 0.7135 0.7160 0.7059 0.7042 0.7032 0.7000 

 

 
Fig. 12. Dimensionless natural frequencies of CF beam with 

uneven porosity at aspect ratio L/h=5 

Figure 7 and Figure 8 show the dimensionless 
free vibration versus the gradient indexes in 
length (px) and thickness (Pz) direction for 
different porosity distribution patterns when α = 
0.1. It can be observed that the difference 
between different porosity distribution patterns 
can be increased with an increase in the porosity 
index (α). “Which indicates that the porosity 
distribution in thickness (z) direction has a 
greater influence on vibration than axial porosity 
(x direction) distribution.” On the other hand, free 
vibration is more in even porosity distribution 
than in uneven porosity distribution.  

Figure 9, Figure 10, Figure 11, and Figure 12 
illustrate the dimensionless free versus gradient 
indexes in length (Px) and thickness (Pz) direction 
of the beam and the total volume fraction of 
porosity in different modes, respectively. It can be 
seen that the sensitivity of free vibration to the 
gradient index of the beam and total volume 
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fraction of porosity has improved with an 
increase in the vibration mode number. 

Table 8 shows the free vibration value of the 
SS beam which increases with an increase in 
porosity index, and decreases with an increase in 
gradation exponents in the x and z directions. 
Vibration value is more in even porosity 
distribution as compared with uneven porosity 
distribution. 

Table 9 shows the free vibration value of the 
CC beam which increases with an increase in 
porosity index, and decreases with an increase in 
gradation exponents in the x and z directions. 
Vibration value is more in even porosity 
distribution as compared with uneven porosity 
distribution. 

Table 10 shows the free vibration value of the 
CF beam which increases with an increase in 
porosity index, and decreases with an increase in 
gradation exponents in the x and z directions. 
Vibration value is more in even porosity 
distribution as compared with uneven porosity 
distribution. 

It can be noted that free vibration increases 
with the porosity coefficient and this impact is 
more significant at a high porosity value, which is 
caused by a reduction in flexible rigidity of the FG 
beam at a high porosity value. In addition, it can 
be observed that the vibration decreases with an 
increase in gradient index, this is for even and 
uneven types of porosity. When the gradient 
index is zero (p=0) the beam is pure metal with 
less stiffness. As the gradient index (p) tends to 
infinity, a beam is a pure ceramic with high 
stiffness which means less vibration. 

4. Conclusions 

Two directional FG porous beams were 
analyzed for the behavior of free vibration, 
subjected to various boundary conditions (SS, CC, 
and CF).  

Considering these boundary conditions with 
different aspect ratios and gradation exponents 
in x and z directions. nth-order shear deformation 
theory was adapted to determine free vibration 
with even and uneven porosity distribution. 
Based on power-law distribution, the effective 
properties of FG porous beams in two directions 
were determined. 

The effect of boundary conditions, 
distribution of porosity, aspect ratios, and 
gradation exponents on free vibration analysis 
through several numerical illustrations was 
highlighted. 

The computed results are compared to those 
with earlier investigations in terms of 
dimensionless free vibration. The calculated 

outcomes are found to have a very good 
correlation with earlier ones. Aspect ratios, 
gradient indexes, and boundary conditions' 
impact on 2D-FGBs' free vibration were explored.  

The most significant findings w.r.t nonporous 
FGBs are listed below: 

• The gradient indexes have a significant 
impact on the dimensionless free 
vibration of 2D-FGBs. However, the 
gradient index's impact in the x-direction 
is more profound than its impact in the z-
direction. 

• The shear deformation effect on the 
vibration of 2D-FGBs increases as the 
aspect ratio increases.  CC 2D-FGB is 
found to be significantly more susceptible 
to the shear deformation effect than the 
other 2D-FGB models. 

• CC beams experience the highest first free 
vibration, followed by SS and CF beams. 

• By choosing appropriate gradient 
indexes, vibration behaviors of 2D-FGBs 
may be regulated to match the design 
requirements. 

• The shear deformation impact is quite 
significant, especially for thick beams, and 
the proposed theory yields accurate 
findings and is effective in resolving 
vibration behaviors of 2D-FGBs. 

• The suggested two-directionally porous 
beam model is used to examine the free 
vibration behavior of two-directional 
porous beams.  

• The most significant findings w.r.t porous 
FGBs are listed below: 

• As the volume percentage of porosity 
increases close to the middle surface, free 
vibration will increase for the same total 
volume fraction of porosity.  

• The effect of porosity distribution in a 
thickness direction is more dominant 
than the effect of axial direction on free 
vibration. 

• The “porosity parameter is a crucial 
parameter that must be considered in the 
design of modern structures and the 
percentage of porosity in structure can be 
affected considerably in its performance 
and response”. The proposed method 
shall also be useful to analyze the shear 
deformation of FGBs, where these FGB 
surfaces are subjected to high 
temperatures at one end and low 
temperatures at the other end. 
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Nomenclature 

x,y, z 
Different coordinates along length, 
width, and thickness directions of 
beam 

2D Two dimensional 

FGB Functionally graded beam 

SS Simply supported  

CC Clamped-clamped 

CF Clamped free 

FGM Functionally graded material 

L Length[m] 

h Height[m] 

𝜕𝑤0
𝜕𝑥

 Bending slope 

ϕ Shear slope. 

Vf Volume fraction 

Pz 
Gradient index in the thickness 
direction 

px Gradient index in the length direction 

CBT Classical beam theory 

K Shear correction factor 

f(z) Shear shape function 

FG Functionally graded 

3D Three dimensional 

FGP Functionally graded plate 

HSD Higher order deformation 

E Modulus of elasticity[GPa] 

μ Poisson’s ratio 

ρ Mass density[Kg/m3] 

α Coefficient of porosity 

[Ski] Stiffness matrix 

[Mki] Mass matrix 

δU Strain energy 

δk Kinetic energy 
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