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Radial basis functions (RBFs) with modified radial distance are proposed for vibration 

analysis of functionally graded materials (FGM) rectangular plates. The displacement field 

with five variables higher-order shear deformation theory (HSDT) is considered. The 

governing differential equations (GDEs) and boundary conditions are obtained using 

Hamilton's principle. The governing differential equations formulations are solved via 

strong-form solutions. The rectangular plates are analyzed in the framework of the RBF-

based meshfree method. The novelty of the present modified method is to analyze the 

square and rectangular plates without changing the shape parameters. Here, the 

seventeen different RBFs are available in various literature to demonstrate the accuracy 

and efficiency of the present method in terms of the number of nodes and computational 

time. The results of several numerical examples have shown that the present modified 

RBF-based mesh-free method can lead to much more accurate solutions. Computational 

times of different RBFs are also analyzed. 

 

1. Introduction 

Generally, models originating from practical 
applications in industry and engineering don't 
have an exact solution, or it is exorbitant to be 
implemented and actualized. Thus, depending 
upon the computational calculations, mainly 
numerical methods such intentions are 
unavoidable. The most significant achievements 
for solving governing differential equations in the 
simulation framework are the finite difference 
method, finite element method, and finite volume 
method, which relies on a mesh to construct the 
local approximation of functions. For more 
accuracy in these methods, we depend on quality 
mesh generation, and the time cost is very high. 
Recently, a novel numerical method known as the 
Meshfree method has drawn the attention of 
solving engineering problems by many 
researchers. The meshfree name method self-
defines the method in which no mesh is required 
and constructs a functional approximation based 
on scattered points without mesh connectivity. 
Recently detailed elucidation of various types of 
meshfree methods can be discussed by Chen et al. 

[1]. Meshfree methods formulations are 
developed under two categories which are 
known as strong form-based formulations, such 
as the radial basis collocation method Kansa 
[2],[3], and weak form-based formulations, such 
as the radial point interpolation method Wang 
and Liu [4]. The meshfree method based on the 
strong form formulation attracts many 
researchers due to its high accuracy and fast 
convergence rate, and it is also implemented 
easily. The time cost is also significantly reduced. 
In the previous 25 years, the strong form 
formulation of the meshfree method, which 
depends on the RBFs, has gotten an alluring 
response for solving partial differential equations 
(PDEs). The RBF-based meshfree method is truly 
meshfree in nature that can directly discretize 
GDEs of any order, along with their boundary 
conditions. The foundation thought of RBF 
interpolation was introduced by Hardy [5] to 
appraise the scattered data sets. After two 
decades, Kansa [3] pioneered the concept of 
solving PDEs utilized by multiquadric RBF. 
Franke [6] investigated the assessment of RBFs 
for scattered data interpolation in terms of time, 
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cost, accuracy, and simplicity of usage. In the 
recent past, the RBF-based meshfree method on 
strong form formulation has been successfully 
adapted to problems of solid mechanics, 
especially in beams, plates, shells, and panels, and 
drew attention due to the absence of a mesh in 
the researcher's community. The meshfree 
method for the analysis of plates has been 
previously examined by numerous authors. The 
nonlinearity of plates on the von Kármán strain 
assumptions. Van Do and Lee [7] carried out a 
modified mesh-free RPIM with a new RBF for the 
nonlinear bending response of the FGM plate 
using HSDT. Kumar et al [8] investigated the 
bending analysis of porous bidirectional FGM 
plates via meshfree methods. Liu and Gu [9] 
developed a local radial point interpolation 
method replacing the polynomial basis functions 
with radial basis functions. Liew et al. [10] 
introduced a review of the developments of 
element-free or meshless methods and their 
applications for the analysis of laminated and 
FGM structures. Ferreira et al. [11] investigated 
the buckling and vibration response of laminated 
plates using the RBF-based meshfree method and 
FSDT. Rodrigues et al. [12] applied Murakami's 
zig-zag theory with the RBF-finite-difference 
collocation method for the buckling, bending, and 
vibration analysis of composite plates. Zhang et 
al. [13] studied thermal and mechanical buckling 
responses of FGM plates using a local Kriging 
meshfree method. Liew et al. [14] studied the 
buckling and vibration response of plates by 
reproducing kernel particle approximate based 
meshfree method and first-order shear 
deformation theory (FSDT). 

The vibration response of FGM plates 
necessarily includes the solution of eigenvalue 
problems. The solution of eigenvalue problems 
utilizing 3D elasticity theories is challenging to 
get, especially when the material properties vary 
using the power law. Thus, 2D assumption-based 
plate theories are developed and effectively-
being utilized for the analysis of plates via 
analytical and numerical methods. Reddy and 
Cheng [15] studied 3D asymptotic theory in 
terms of the transfer matrix to investigate 
harmonic vibration analysis of the FGM plates. 
Vel and Batra [16] investigated the free and 
forced vibration of FGM plates using the power 
series expansion method. Zenkour [17] 
considered the effect of rotary inertia on the free 
vibration response of SS FGM thick plates. The 
free vibration analysis of the FGM plate using the 
collocation method was investigated by Ferreira 
et al. [18]. Uymaz and Aydogdu [19] utilized CPT 
for the 3D solution of the FGM plate using closed-
form formulation. Roque et al. [20] investigated 
the free vibration of the FGM plate using the RBF-
based meshless method. Batra [21] applied the 

HSDT model for linearly elastic incompressible 
FGM plates. Fares et al. [22] introduced a refined 
ESL theory using the mixed variational approach 
for the deflection and free vibration analysis of 
FGM plates. Li et al. [23] studied a 3D elasticity 
solution for the vibration response of FGM plates 
using the Ritz method in uniformed, linear, and 
nonlinear types of temperature distribution. 
Malekzadeh [24] examined the 3D free vibration 
of the EFGM plate resting on the foundation, and 
the material properties vary exponentially 
through the thickness. Zhao et al. [25] 
implemented an element-free kp-Ritz technique 
to investigate the free vibration of FGM plates. 
FSDT examines transverse shear strain and 
mesh-free kernel functions used to approximate 
the 2D displacement fields. Atmane et al. [26] 
studied the free vibration of elastically supported 
FGM plate with new HSDT modeling the 
framework of Navier's method. Talha and Singh 
[27] examined the bending and vibration 
response of FGM plates via the FEM method. 
Giunta et al. [28] utilized the Chebyshev series to 
expand plate displacements, while the Ritz 
method determined the natural frequencies. Wu 
and Chiu [29] carried the RMVT-based meshless 
collocation and element-free Galerkin technique 
for the quasi-3D free vibration analysis of FGM 
plates. Zhu and Liew [30] examined the free 
vibration analysis of FGM plates using FSDT 
based on the local Kriging meshless technique. 
Neves et al. [31] studied the static and free 
vibration analysis of FGM plates via quasi-3D 
hyperbolic shear deformation theory with an 
RBF-based meshless technique. Neves et al. [32] 
proposed to improve the accuracy by introducing 
a new sinusoidal HSDT for static bending, 
buckling, and free vibration response of the FGM. 
Hosseini-Hashemi e. al. [33] studied the free 
vibration of thick FGM plates based on exact 3D 
elasticity theory and closed-form formulation. 
Xiang and Xing [34] introduced a new FSDT 
model with two independent variables for the 
free vibration of a rectangular plate. Chakravarty 
and Pradhan [35] used the Rayleigh-Ritz method 
to investigate the free vibration of FGM plates 
under various boundary conditions. Mahi et al. 
[36] introduced a new hyperbolic HSDT model to 
avoid utilizing the shear correction factor, which 
improved the efficiency of bending and free 
vibration response of isotropic, functionally 
graded, sandwich, and laminated composite. Su et 
al. [37] studied FSDT for the free vibration 
response of thick laminated FGM plate by using 
the modified Fourier–Ritz method. Chandra et al. 
[38] investigated vibration analysis of FGM plates 
using FSDT and a near-field elemental radiator 
approach to find the radiated acoustic field. 
Sekkal et al. [39] examined buckling and free 
vibration analysis of the FGM plate utilizing a 
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quasi-3D solution. Shahsavari et al. [40] 
investigated the free vibration of three types of 
porosity distribution FGM plate by using quasi-
3D hyperbolic theory. Xing et al. [41] 
implemented multiquadric radial basis functions 
for the free vibration studies of thin FGM plates 
via the separation-of-variable method. Zhao et al. 
[42] utilized a 3D exact solution for free vibration 
analysis of FGM plates under a porous medium 
with various boundary conditions. Parida and 
Mohanty [43] utilized HSDT for the free vibration 
of a skew FGM plate using a finite element 
approach. 

The objective of this paper is to offer modified 
radial distance in different RBFs for the free 
vibration of FG rectangular plate by strong form 
formulation. To the best of the author's 
knowledge, the first time the RBF-based 
meshfree method has been used to analyze the 
free vibration response of the FG rectangular 
plate without changing the shape parameters. 
The influence of the grading index, foundation 
parameters, span-to-thickness ratio, and plate 
aspect ratio on the free vibration of rectangular 
FGM is discussed. 

2. Theoretical Formulations 

2.1. Material properties and constitutive 
equations 

A porous FG rectangular plate of dimensions 
length a, breadth b, and thickness h in the 
Cartesian coordinate system (x-y-z) are shown in 
Figure 1. The modified power-law 
homogenization technique with porosity 
distribution effect for material properties is 
employed, which is formulated by Zhao et al., [42] 
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(1) 

where ‘n’ is the grading index and 'P' is the 
porosity volume fraction. E and ρ represent the 
effective material property Young's modulus and 
mass density respectively, subscripts m and c 
represent the metallic and ceramic constituents 
respectively, P is the porosity fraction (0 <P< 1) 
and P=0 means pure FG rectangular plate.  

 
Fig. 1. The geometry of a rectangular FG plate with porosity 

in the rectangular coordinate system 

2.2. Displacement field 

The displacement field is a framework as an 
equivalent single-layer approach with five 
variables higher order shear deformation theory 
which can be expressed by Kumar et al. [44]. 
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where 
xu , yu , 

zu , 
x  and y  are the five 

unknown displacement variables and (z)f   is the 

algebraic transverse shear deformation function 
which is taken from Kumar et al. [44] and   is 

the time derivative. 

The stress-strain relation using generalized 
Hook's law with respect to the structural axis 
system (X-Y-Z) can be expressed as Kumar et al. 
[44]; 
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,i jQ is plane stress-reduced stiffness and is 

given below [33]. 
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Hamilton's principle is utilized to formulate 
the GDEs of the FG plate, which is represented as; 

( )
2

1

t

t
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where KE = Kinetic energy, UE = Strain energy,  

The kinetic energy of the FG plate can be 
expressed as. 
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The strain energy of the FG plate can be 
expressed as. 
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Hamilton's principle is used herein to derive 
the GDEs of the FG plate along with variationally 
admissible boundary conditions and collecting 

the coefficients of 0 0 0, , , , andx y z x yu u u     , 

the governing differential equations of the plate 
are obtained as: 
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The axial force resultants,  the bending 
moment resultants 

ijM  , the additional moment 

resultants related to the transverse shear 

function 
ijO  , and the transverse shear force 

resultants f

xQ  and f

yQ   are expressed as: 
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The inertia terms of rectangular FG plate are 
expressed as: 
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The GDEs are expressed in terms of 
displacement components represented as: 
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  
+ + + 
   

  
+ − + − 
    

    
+ + 
     

    
 + + − 
   

 
= − +

  

2

5 2

y
I

 



 
(20) 

2.3. Boundary Conditions 

The boundary conditions for an arbitrary 
edge with simply supported (SS) condition is as 
follows: 

0,

: u 0; 0; 0; 0; 0

0,

: 0; 0; 0; 0; 0

y y z xx xx

x x z yy yy

x

a u M N

y

b u u M N





=

= = = = =

=

= = = = =

 (21) 

3. Solution Methodology 

The importance of RBF-based meshfree 
methods is that it discretizes the GDEs directly 
and produce a high rate of convergence with good 
accuracy. The firm establishment of RBF came to 
light in the early 1970s, when it was utilized for 
fitting scattered data [5]. And almost after two 
decades, Kansa [2][3] used RBF directly to solve 
partial differential equations that help to initiate 

the pillar of new methods by using different types 
of RBFs.  

In the present analysis, we have considered 
nodes distribution uniformly for a 2-D 
rectangular domain having IN interior nodes, BN 
boundary nodes, and N is the total nodes which 
are the sum of IN and BN which is shown in Singh 
and Shukla[45]. All computational calculations 
are carried out in MATLAB with a 2.7 GHz Corei7 
processor. 

Here, we have considered seventeen types of 
RBFs that are used in various kinds of 
computational engineering applications and are 
listed in Table 1. The considered GDEs with five 
unknown variables 0 0 0,u ,u ,x y z x yu and   can 

be an interpolation in the form of the modified 
radial distance between nodes. In order to 
eliminate the singularity, an infinitesimally small 
value is added for zero radial distance. The radial 
distance between two nodes is denoted by ‘r’ and 
the modification of radial distance between the 
nodes for rectangular coordinates is done in such 
a way that the aspect ratio starts changing 
without changing the shape parameters. The 
expression used for square plate 

( ) ( )
2 2

j j jr X X x x y y= − = − + − has been 

modified as 

2 2
j j

j

x x y y
r X X

a b

− −   
= − = +      

   
 

for rectangular plate where a and b are the length 
and breadth of a rectangular plate. 

Table 1 Various types of RBFs used in computation 
applications. 

S.N. RBF 

1 
Polynomial, g1 

kr  

2 
Gaussian quadratic, g2 

( )2 2k r
e

−
 

3 
Thin Plate Spline, g3  

2klog(r) r  

4 
Wendland's C2, g4 

4(1 k r) (4kr 1)− +  

5 
Wendland's C4, g5 

( ) ( )( ) ( )( )6 2
1 kr 35 kr 18kr 3− + +  

6 
Wendland's C6, g6 

( ) ( )( ) ( )( ) ( )( )8 3 2
1 kr 32 kr 25 kr 8kr 1− + + +  

7 
Hyperbolic secant, g7  

( )sech k r  

8 
Wu-C2, g8 

( ) ( ) ( ) ( )( )5 2 3 4
1 kr 8 40kr 48 kr 25 kr 5 kr− + + + +  

9 
Wu-C4, g9 

( ) ( ) ( ) ( ) ( )( )6 2 3 4 5
1 kr 6 36kr 82 kr 72 kr 30 kr 5 kr− + + + + +  

10 
Hardy's Multiquadric, g10 

( )2 2k r+  
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S.N. RBF 

11 
Hardy's Inverse Quadric g11 

( )
1

2 2k r
−

+  

12 
Multi-quadratic, g12 

21 (kr)+  

13 
Inverse Multi-quadratic, g13 

( )
1

21 (kr)
−

+  

14 
GeneralizedInverse Multi-quadratic, g14 

( )( )
2

2
1 kr

−

+  

15 
Inverse quadratic, g15 

( )
1

21 (k r)
−

+  

16 
Multi-quadratic Shu II, g16 

2r k+  

17 
Inverse Multi-quadratics, g17 

( )
1

2r k
−

+  

'k' is the shape parameter that is responsible 
for the accurate numerical solution and stability 
of the method in the computational domain. It is 
additionally reported that stability and accuracy 
both simultaneously can't be ensured.  

All the five variables of Equation (2) have 
been discretized from seventeen RBFs for nodes 
1: N, as: 

( )00 0

0 0 0

u u

1

, u ,u , ,

( , , , , ) ,y yx z x

x y z x y

N
u

j j j j j j
j

u

gi X X k


 

    
=

=

−
 (22) 

00 0
u uy yx z x

T
u

j j j j j

  =     
   

where,   is unknown coefficients of unknown 

variables.  
In the eigenvalue problems, the objective is to 

obtain eigenvalues (λ) and corresponding 

eigenvectors  . The eigenvalue problem can be 
expressed as: 

   
5 1 5 1

5 5 5 5
0N N

N N N N

L A

B  

 

   
 =     

     
(23) 

Equation (23) is solved by standard eigen 
solvers of computational software to obtain 
eigenvalues and eigenvectors. 

 
 

1

[ ]

0[ ]

LI

B

K F

K

−

    
 =           

 (24) 

[ ]IK =  (25) 

1 ( , ) 1 ( , ) 1 ( , ) 1 ( , ) 1 ( , )

2 ( , ) 2 ( , ) 2 ( , ) 2 ( , ) 2 ( , )

3 ( , ) 3 ( , ) 3 ( , ) 3 ( , ) 3 ( , )

4 ( , )

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

[ ] [

x y

x y

x y

l l l l l
u NI N v NI N w NI N NI N NI N

l l l l l
u NI N v NI N w NI N NI N NI N

l l l l l
u NI N v NI N w NI N NI N NI N

l
u NI N

K K K K K

K K K K K

K K K K K

K K

 

 

 

4 ( , ) 4 ( , ) 4 ( , ) 4 ( , )

5 ( , ) 5 ( , ) 5 ( , ) 5 ( , ) 5 ( , )

(5 5 )

] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

x y

x y

l l l l
v NI N w NI N NI N NI N

l l l l l
u NI N v NI N w NI N NI N NI N

NI N

K K K

K K K K K

 

 



 
 
 
 
 
 
 
 
 
  

 

 B  F (5 ,5 )
[K ] 0

NB N 
=  (26) 

here, [K]I represents the stiffness matrix for 

interior points resulting from LHS of Eq. (25). 

The boundary conditions can be discretized in a 

similar fashion. For example, simply supported 

boundary condition at the edge x=0 is discretized 

and finally expressed as:  

   [ ] 0BK  =  (27) 

where 

[ ]BK =  (28) 

, 0 , , , 0
(5 ,5 )

[ ] [ ] [ ] [ ]
B

T

b y b x a b y b b x
N N

K K K K= = = =
 

  
   

 

while discretizing the boundary, corner nodes 
are considered only once. 

The unknown coefficients {δ} are calculated 
from equation (24) obtained, and finally, using 

equations (22), u0, v0, w0, x  and y  at desired 

locations are obtained. Using equation (2), the 
displacement components, and using equation 
(3), the stress components are obtained. 

4. Result and Discussions 

In the following, we demonstrate the 
implementation of seventeen types of RBF-based 
meshfree methods for free vibration response of 
rectangular FG plate. The stability and 
performance of the proposed modified RBFs-
based meshfree method have been checked by 
convergence and time study. A simply supported 
FG rectangular plate is considered throughout 
the study. Three types of FG rectangular plates, 
FG1, FG2, and FG3, are considered, and the 
material property is described in Table 2. 

Convergence study 

In this section, we examine the impact of the 
number of nodes on the normalized natural 
frequency of the rectangular FG1 plate. The plate 
geometry is defined by uniformly distributed 
nodes. The results related to the convergence 
study are explored in Table 3. It is noticed that the 
present solution obtained by the proposed 
modified RBFs converged well and is also in good 
agreement with the result presented in the 
literature by the 3D HSDT solution of Jin et al. 
[46]. It can also be noted that all the RBFs 
produced good results, and the convergence rate 
is less than 1% after 14x14 nodes. So, based on 
the convergence study, a 15×15 node is used 
throughout the study. 
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Fig. 2. Comparison study of the natural frequency with 

 the computational speed of different RBF 

Table 2 Mechanical properties of metallic and ceramic 
materials considered. 

Types of Functionally 
graded material 

Properties 

E  
(GPa) 


 

(kg/m3) 
  

FG1 
Metal (Al) 70 2702 0.3 

(Al2O3) 380 3800 0.3 

FG2 
(Al) 70 2702 0.3 

(ZrO2) 200 5700 0.3 

FG3 
(Ti-6Al-4V) 105.7 4429 0.298 

(Aluminum 
oxide) 

320.2 3750 0.26 

 

Table 3. Convergence study of non-dimensional frequency parameters 
m mh E=   of rectangular plates (a/h=10, n=1, b/a=2). 

RBFs 
Number of nodes 

Jin et al., [46] 
11x11 12x12 13x13 14x14 15x15 16x16 

g1 0.05494 0.05498 0.05498 0.05493 0.05494 0.05494 0.055 

g2 0.05493 0.05482 0.05475 0.05470 0.05471 0.05469 0.055 

g3 0.05524 0.05502 0.05491 0.05488 0.05486 0.05486 0.055 

g4 0.05494 0.05498 0.05498 0.05493 0.05494 0.05494 0.055 

g5 0.0549 0.0549 0.0549 0.0549 0.0549 0.0549 0.055 

g6 0.0550 0.0547 0.0548 0.0548 0.0549 0.0549 0.055 

g7 0.05501 0.05493 0.05503 0.05499 0.05490 0.05486 0.055 

g8 0.05455 0.05468 0.05476 0.05479 0.05482 0.05483 0.055 

g9 0.05505 0.05494 0.05489 0.05487 0.05486 0.05486 0.055 

g10 0.05476 0.05478 0.05474 0.05474 0.05473 0.05472 0.055 

g11 0.05522 0.05510 0.05504 0.05499 0.05495 0.05493 0.055 

g12 0.05554 0.05532 0.05512 0.05503 0.05496 0.05492 0.055 

g13 0.05556 0.05532 0.05511 0.05502 0.05494 0.05491 0.055 

g14 0.05447 0.05547 0.05515 0.05508 0.05496 0.05494 0.055 

g15 0.05572 0.05545 0.05516 0.05507 0.05497 0.05499 0.055 

g16 0.05481 0.05480 0.05478 0.05478 0.05476 0.05479 0.055 

g17 0.05510 0.05499 0.05496 0.05491 0.05490 0.05491 0.055 

Table 4. Comparison of non-dimensional frequency parameter with seventeen RBFs of SS FG2 plate with  
different span to thickness ratio (a=b = 1, n=0.5). 

RBFs 
Span-to-thickness ratio 

Aver diff % 
5 10 20 50 100 

Ref.[39] 1.6149 1.7504 1.7902 1.8017 1.8034 --------- 

g1 1.5832 1.7393 1.7837 1.7965 1.7983 0.71 

g2 1.5924 1.7424 1.7862 1.7989 1.8008 0.47 

g3 1.5826 1.7395 1.7834 1.7959 1.7977 0.73 

g4 1.5832 1.7393 1.7837 1.7965 1.7983 0.71 

g5 1.5804 1.7389 1.7842 1.7974 1.7993 0.72 

g6 1.5818 1.7391 1.7835 1.7963 1.7981 0.73 

g7 1.5772 1.7390 1.7849 1.7975 1.8152 0.83 

g8 1.5794 1.7373 1.7825 1.7957 1.7976 0.81 

g9 1.5818 1.7390 1.7835 1.7963 1.7963 0.75 

g10 1.5879 1.7414 1.7849 1.7975 1.7993 0.59 

g11 1.5842 1.7414 1.7861 1.7992 1.8011 0.58 

g12 1.5846 1.7419 1.7867 1.7997 1.8016 0.55 

g13 1.5837 1.7411 1.7859 1.7990 1.8008 0.60 

g14 1.5868 1.7426 1.7869 1.7998 1.8016 0.51 

g15 1.5853 1.7420 1.7867 1.7997 1.8015 0.55 

g16 1.5804 1.7375 1.7822 1.7952 1.7970 0.81 

g17 1.5945 1.7397 1.7847 1.7977 1.7996 0.52 
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Now compare all the RBFs in terms of 
effectiveness (CPU time) and accuracy, which is 
shown in Fig. 2. It can be noticed that RBFs g8 and 
g9 consume more time and RBFs g2, g10, g11, 
g12, g13, g14, g15, g16, and g17 take less time to 
execute the computational calculation. RBFs g4, 
g5, g11, g12, g13, g14 and g15 predict closer 
results with the 3D HSDT solution of Jin et al., 
[46]. It can be clearly noticed that RBFs g11, g12, 
g13, g14, and g15 give closer results to Jin et al. 
[46] with less time as compared to other RBFs. 
Table 4 represents the effect of the span-to-
thickness ratio for seventeen RBFs. The grading 
index is taken as 0.5 with a=b. It can be observed 
that all the RBFs predict less than 1 % average 
difference and show good agreement with the 3D 
HSDT result by Sekkal et al. It can also be 
observed that by increasing span-to-thickness 
ratios, normalized frequency increases, and after 
a/h=50, the effect is negligible. 

To further examine the effectiveness of the 
proposed modified RBFs for rectangular FG plate, 
various parametric study is carried out. Table 5 
represents the comparison study of seventeen 
RBFs with various grading indexes. The span-to-
thickness ratio is taken as 10 with an aspect ratio 
=0.5. It can be seen that all the RBFs predict good 
results and are in agreement with the existing 3D 
results by Jin et al. [46]. Results are also 
compared with 2D results of [47], and it is found 
that the present results are closer to 3D results, 
which shows the accuracy of the present solution 
methodology. It can also be observed that g14 
and g15 results are more accurate. The 
normalized frequency decreases by increasing 
the grading index. 

Figure 3 represents non-dimensional 
frequency parameter with various porosity index 
for FG1 rectangular plate with a=20h, n=1 and 
a=0.5b. It can be noticed that RBFs g4, g6, g7, g8, 
g9, g11, g12, g13, g14, 15, and g17 predict closer 
to the HSDT result published by Rezaei et al. [48]. 
It can also be seen that normalized frequency 
parameters decrease with an increase in the 
porosity index. Figure 4 represents the 
comparison study of seventeen RBFs for 
rectangular FG plates with various aspect ratios. 
The grading index is taken as 1 with a span-to-
thickness ratio =10. It can be seen that all the RBF 
results predict good agreement with the existing 
3D HSDT solution of Jin et al. [46] and the 2D 
HSDT result by Thai and Choi [47]. It can be 
noticed that RBFs g1, g4, g11, g12, g13, g14, and 
g15 predict closer results as compared to other 
RBFs, and by increasing the aspect ratio, 
normalized natural frequency increases. 
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Fig. 3. Comparison study of non-dimensional frequency 

parameter 
m mh=    of FG1 rectangular plates 

with various porosity index (a/h=20, n=1.a/b=0.5) 
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Fig. 4. Comparison study of non-dimensional frequency 

parameters 2 / h m ma E=  of FG1 rectangular 

plates (a/h=10, n=1 
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Table 5. Comparison study of non-dimensional frequency parameter 

2

m m

a
E

h


 =  of  

FG1 rectangular plate. (a/h=10, a/b=0.5). 

Methods 
Grading index Aver. diff% 

(2D [47]) 
Aver. diff%  
(3D [46]) 0 1 2 5 

Ref.[46] 3D 0.0719 0.0550 0.0499 0.0471 --------- --------- 

Ref.[47] 2D 0.0717 0.0548 0.0498 0.0470 --------- --------- 

g1 0.0717 0.0549 0.0499 0.0471 -0.18 0.10 

g2 0.0717 0.0547 0.0496 0.0468 0.24 0.51 

g3 0.0717 0.0549 0.0498 0.0470 -0.04 0.24 

g4 0.0717 0.0549 0.0499 0.0471 -0.18 0.10 

g5 0.0718 0.0549 0.0498 0.0469 -0.04 0.24 

g6 0.0717 0.0549 0.0498 0.0469 0.00 0.27 

g7 0.0716 0.0549 0.0498 0.0470 -0.02 0.25 

g8 0.0717 0.0548 0.0498 0.0469 0.03 0.31 

g9 0.0717 0.0549 0.0498 0.0470 -0.04 0.24 

g10 0.0715 0.0547 0.0497 0.0469 0.19 0.47 

g11 0.0718 0.0550 0.0499 0.0470 -0.16 0.11 

g12 0.0718 0.0550 0.0499 0.0470 -0.17 0.11 

g13 0.0718 0.0549 0.0499 0.0470 -0.16 0.12 

g14 0.0718 0.0550 0.0499 0.0471 -0.22 0.05 

g15 0.0718 0.0550 0.0499 0.0471 -0.23 0.05 

g16 0.0716 0.0548 0.0497 0.0469 0.15 0.42 

g17 0.0718 0.0549 0.0498 0.0470 -0.09 0.18 

 

Table 6 shows the results for all 10 modes of 
non-dimensional frequency parameter 

c

2
ca / h / E =    of FGM-3 plate (a=b = 1) for 

different values of the grading index n = 0, 0.5, 1, 
2, 5, 8, 10 and metal with respect to span to 
thickness ratio. It can be observed that the value 
of   increase by increasing the mode. The first 

three mode shapes and their normalized 

frequency response /2

c ca E h  =  of SS 

FGM-1 rectangular plate (a/b=0.5, a/h=10, g12, 
n=1, P=0) are examined and shown in Fig. 5. It 
seems that the figure with the higher modes 
plates buckles in different shapes. 

 
Mode 1 =2.798 

 
Mode 2= 4.422 

 
Mode 3=7.035 

Fig. 5. Mode shape of the normalized frequency response 
of FGM-1 rectangular plate. 
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Table 6. Effect of grading index 'n' with span-to-thickness ratio on non-dimensional frequency parameter 

c
a / h / E2

c =  of FGM-3 square plates for mode 10 (g10) 

a/h Modes Grading Index' n' 

0 0.5 1 2 4 8 10 Metal 
4 1 4.858 4.051 3.673 3.346 3.115 2.952 2.909 2.587 

2 7.926 6.784 6.176 5.537 5.000 4.628 4.541 4.133 

3 7.926 6.784 6.176 5.537 5.000 4.628 4.541 4.133 

4 9.605 8.107 7.356 6.644 6.090 5.721 5.636 5.086 

5 9.614 8.112 7.361 6.648 6.093 5.724 5.639 5.090 

6 11.154 9.568 8.698 7.690 6.810 6.279 6.181 5.835 

7 11.154 9.583 8.699 7.690 6.810 6.279 6.181 5.843 

8 11.167 9.583 8.699 7.692 6.814 6.284 6.185 5.843 

9 11.167 9.596 8.708 7.692 6.814 6.284 6.185 5.848 

10 11.190 9.596 8.708 7.740 6.864 6.332 6.232 5.848 

10 1 5.705 4.722 4.287 3.944 3.735 3.568 3.515 3.056 

2 13.575 11.260 10.217 9.369 8.822 8.406 8.282 7.257 

3 13.576 11.260 10.218 9.370 8.822 8.407 8.282 7.257 

4 19.814 16.978 15.476 13.890 12.542 11.591 11.368 10.334 

5 19.814 16.978 15.476 13.890 12.542 11.591 11.368 10.334 

6 20.734 17.235 15.633 14.294 13.392 12.732 12.546 11.065 

7 25.136 20.923 18.974 17.317 16.176 15.357 15.133 13.399 

8 25.192 20.969 19.016 17.356 16.215 15.394 15.169 13.429 

9 27.975 23.967 21.842 19.599 17.697 16.359 16.045 14.588 

10 31.293 26.104 23.670 21.552 20.051 18.995 18.719 16.657 

30 1 5.878 4.858 4.413 4.070 3.868 3.701 3.645 3.153 

2 14.606 12.075 10.966 10.108 9.600 9.184 9.045 7.832 

3 14.607 12.075 10.966 10.108 9.600 9.184 9.045 7.832 

4 23.239 19.216 17.449 16.078 15.258 14.593 14.372 12.457 

5 28.933 23.928 21.725 20.011 18.981 18.150 17.876 15.506 

6 28.971 23.960 21.755 20.039 19.009 18.176 17.902 15.527 

7 37.386 30.928 28.080 25.855 24.508 23.427 23.074 20.032 

8 37.386 30.928 28.080 25.855 24.508 23.427 23.074 20.032 

9 48.730 40.324 36.606 33.686 31.902 30.484 30.026 26.102 

10 48.730 40.324 36.606 33.686 31.902 30.484 30.026 26.102 

50 1 5.893 4.870 4.423 4.080 3.878 3.712 3.656 3.161 

2 14.697 12.146 11.031 10.174 9.669 9.254 9.113 7.882 

3 14.697 12.146 11.031 10.174 9.669 9.254 9.113 7.882 

4 23.468 19.397 17.615 16.243 15.434 14.769 14.545 12.585 

5 29.291 24.210 21.985 20.270 19.256 18.426 18.147 15.706 

6 29.326 24.239 22.012 20.295 19.281 18.449 18.169 15.725 

7 37.982 31.398 28.512 26.284 24.963 23.884 23.521 20.365 

8 37.982 31.398 28.512 26.284 24.963 23.884 23.521 20.365 

9 49.737 41.118 37.338 34.411 32.672 31.255 30.781 26.664 

10 49.737 41.118 37.338 34.411 32.672 31.255 30.781 26.664 

100 1 5.898 4.874 4.427 4.084 3.883 3.717 3.660 3.164 

2 14.735 12.176 11.059 10.201 9.699 9.283 9.142 7.904 

3 14.735 12.176 11.059 10.201 9.699 9.283 9.142 7.904 

4 23.566 19.474 17.687 16.314 15.510 14.845 14.619 12.640 

5 29.446 24.332 22.097 20.381 19.376 18.546 18.263 15.793 

6 29.478 24.360 22.123 20.406 19.399 18.567 18.285 15.810 

7 38.239 31.600 28.699 26.470 25.162 24.083 23.717 20.509 

8 38.239 31.600 28.699 26.470 25.162 24.083 23.717 20.509 

9 50.176 41.464 37.657 34.729 33.010 31.595 31.114 26.909 

10 50.176 41.465 37.657 34.729 33.010 31.595 31.114 26.909 
 



Srivastva and Singh / Mechanics of Advanced Composite Structures 10 (2023) 137-150 

147 

5. Conclusions 

In the present analysis, seventeen radial basis 
functions have been compared for normalized 
frequency parameters obtained from five 
variables HSDT of rectangular FG plate. 
Hamilton’s principle is used to derive a strong 
form governing differential equations based on 
the displacement fields. The governing 
differential equations and boundary conditions 
are discretized in simultaneous equations using 
the generalized radial basis function. Modified 
radial distance-based RBF methods results are in 
good agreement with various examples available 
in the literature. The computational speed of 
RBFs g2, g10, g11, g12, g13, g14, g15, g16, and 
g17 is good as compared to other RBFs taken 
here. It also concluded that results produced by 
g14 g15 are closer to 3D results.  

Through the implementation of numerical 
model results, it is concluded that 

(a) The results obtained by the RBFs have a 
fast convergence rate (15x15 nodes) 
with high precision.  

(b) By increasing the grading index, the 
normalized natural frequency starts 
decreasing. 

(c) There is an increment in the normalized 
natural frequency for thick to thin plates, 
and after a/h=50, the effect of the span-
to-thickness ratio is constant. 

(d) The normalized frequency decrease with 
an increase in the porosity index. 

Finally, it is up to the research society to 
sensibly select the RBF that offers more accurate 
results with less computational cost. 
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